
ORIE 6300 Mathematical Programming I October 23, 2014

Lecture 17

Lecturer: David P. Williamson Scribe: Jeff Tian

1 The Knapsack Problem

In the Knapsack Problem, we have items 1 = 1, . . . ,m with size si and value yi, a knapsack of size
W , and want to maximize the value of the goods that fit in the knapsack by taking ai of each type
of good. We can efficiently solve the knapsack problem with a dynamic programming algorithm.

We assume si and W are integers and each si > 0.1 We then define Fi(v) to be the optimum value
of the knapsack if the knapsack size is v and we only can take items from {1, . . . , i}. Ultimately,
we want Fm(w). First, we compute directly F1(v) for v = 0, . . . ,W directly, as

F1(v) =

{⌊
v
s1

⌋
y1 y1 > 0,

0 otherwise.

For each i = 1, . . . ,m − 1, for each v = 0, . . . ,W , we can compute the remaining terms by the
recurrence

Fi+1(v) = max
ai+1=0,...,

⌊
v

si+1

⌋︸ ︷︷ ︸
times item i+1 used

 yi+1ai+1︸ ︷︷ ︸
value from item i+1

+ Fi(

Space left over
after taking ai+1
items of type i + 1︷ ︸︸ ︷
v − ai+1si+1)︸ ︷︷ ︸

Optimal value of items 1, . . . , i
fitting in the remaining space


As we have mW entries and we must maximize over at most w terms in computing each entry (if
for example, every si = 1), the algorithm will run in O(mW 2). By modifying the algorithm to store
items that were selected, we can obtain the optimal a as well, or alternatively, we can reconstruct
a directly from the dynamic programming table F .

1More generally, we need only assume si and W are rationals where si > 0, as we can multiply our constraints by
a common denominator to make everything integer valued. We cannot in general extend this algorithm for irrational
si or w.

17-1

2 Dantzig-Wolfe Decompositions

Consider a linear program of the form:

min cT1 x1 + cT2 x2 + ... + cTmxm
s.t. A01x1 + A02x2 + ... + A2mxm = b0

A11x1 = b1
A22x2 = b2

...
Ammxm = bm
xj ≥ 0 ∀j = 1, 2, ...,m,

where Aij ∈ Rmi×nj , cj , xj ∈ Rnj , and bi ∈ Rmi . This linear program can be equivalently written
more consisely as:

min

m∑
i=1

cTi xi

subject to

m∑
i=1

A0ixi = b0

Aiixi = bi ∀i = 1, . . . ,m

xi ≥ 0 ∀i = 1, . . . ,m

In terms of motivation, such an LP is quite reasonable. For example, consider a bakery chain
minimizing its costs. Each bakery in the chain has its own requirements for production, and there
are global constraints on shared resources, perhaps flour. We want to minimize the costs of the
entire chain.

The first type of constraint
∑m

i=1A0ixi = b0 is called a linking constraint. So we have a set of
linking constraints (row 1) followed by m smaller systems. Each of the Aij are matrices of size
mi × nj ; these blocks are not necessarily square. Similarly, the c1, ..., cm, x1, ..., xm, and b1, ..., bm
are vectors. Our goal is to reformulate this problem so that we can take advantage of its special
structure to solve it more easily.

In such linear programs, our main assumption is that the following local optimization subproblem
is relatively easy to solve for any cost vector ĉ:

min ĉTxi
s.t. Aiixi = bi

xi ≥ 0

We will take advantage of this to help us solve the global optimization problem.

17-2

The feasible region of this subproblem is Qi = {xi ∈ <ni : Aiixi = bi, xi ≥ 0}. We will assume
for simplicity that Qi is bounded. Then if we enumerate its vertices {vi1, vi2, ..., viNi}, these vij ’s
completely define the feasible region. That is, for any xi ∈ Qi we can write xi as a convex
combination of the vij . That is, xi =

∑Ni
j=1 λijvij for some λij such that

∑Ni
j=1 λij = 1 and λij ≥ 0.

Thus we can rewrite the original LP in terms of the variables λij as follows:

min
∑m

i=1

∑Ni
j=1 λij(civij)

s.t.
∑m

i=1

∑Ni
j=1 λij(A0ivij) = b0∑Ni

j=1 λij = 1 ∀i = 1, 2, ...,m

λij ≥ 0 ∀i, j.

This is sometimes called the master problem.

This new formulation reduces the number of constraints to m0 + m, since there are now m0 con-
straints for the linking constraints and only 1 constraint for each of the m subproblems. However,
the number of variables is now huge! Therefore, to solve this problem we will want to use the
revised simplex method, so that we do not need to keep track of all of these variables at once. As
in the cutting stock problem, to do this, we need to be able to check whether the reduced cost
corresponding to each variable is negative.

We first create the dual variables y ∈ Rm0 corresponding to the m0 linking constraints, and we
create z ∈ Rm corresponding to the m subproblem constraints (which set the sums of the λij to 1).
To check the reduced cost corresponding to variable λij , we consider

c̄ij = cTi vij −
(
(A0ivij)

T y + eTi z
)

= cTi vij − yT (A0ivij)− zi
= (ci −AT

0iy)T vij − zi.

which we get from taking the inner product of the dual variables with column for λij :

[y0 z]
[
A0ivij
ei

]

Does there exist vij such that c̄ij < 0 or equivalently such that (ci − y0A0i)
T vij < zi? How can we

answer this? Consider c̄i = ci −AT
0iy in the following subproblem:

min c̄Ti xi
s.t. Aiixi = bi

xi ≥ 0.

Since we assume that Qi is nonempty and bounded, this problem must have an optimal solution
which is a vertex; call it v = vik for some k. If the optimal value c̄iv < zi then c̄ik < 0, which
implies that the index of variable λik should enter the basis. If c̄iv ≥ zi, then this implies that
c̄ij ≥ 0 for all vertices vij for j = 1, . . . , Ni.

Therefore, by solving the auxiliary optimization problem for each of Q1, ..., Qm we either find a
negative reduced cost column or else we prove that the current solution to the master problem is
optimal.

17-3

Notice that what we have really done here is simply the revised simplex method. Using this method
is good because it vastly reduced the amount of space required to solve the problem. Also, it is
good computationally because the slave problems can be solved in parallel; we simply choose the
column corresponding to whichever problem answers back first with negative reduced cost to enter
the basis.

17-4

