
ORIE 6300 Mathematical Programming I October 21, 2014

Lecture 16
Lecturer: David P. Williamson Scribe: Shih-Hao, Tseng

1 The Cutting Stock Problem

W

si

Figure 1: Raw

This is a problem from the paper industry. Paper is produced in W inch long rolls called raws in which
W is very large. These raws are cut into smaller lengths called finals for sale according to demand. Suppose
there is demand for bi rolls of length si ≤ W , where i = 1, . . . ,m. The goal is to find a way to cut raws
into finals such that we use the minimum possible number of raws. A clear upper-bound for this problem is∑m

i=1 bi = N (i.e., using one complete roll of paper to produce each one of the rolls needed).
How can we use LP to solve this problem? We start out by formulating this as an integer program. Here

is one possible formulation (which is not very good, as we will see). Let wj denote the length of the jth final
to be produced (i.e. it is si for some i). We set up decision variables yi and xij in which we use yi ∈ {0, 1},
i = 1, 2, ..., N to denote whether or not the i-th roll is used in a solution and xij ∈ {0, 1}, j = 1, 2, ..., N to
denote whether or not the j-th desired roll is obtained by cutting that length from the i-th complete raw.
Thus we may formulate the integer programming problem as:

min
∑N

i=1 yi
s.t. (1):

∑N
j=1 xijwj ≤W for i = 1, . . . , N (maximum available per roll)

(2):
∑N

i=1 xij = 1 for j = 1, . . . , N (all demands must be satisfied)
(3): 0 ≤ xij ≤ yi ∀ i, j (must cut from a complete roll which is used)
(4): xij , yi integers.

It turns out this is a bad integer programming formulation, but to understand why, we need to know
a little about how integer programs are solved using linear programs as a subroutine. First, we solve the
LP relaxation of the IP: Relax xij ∈ {0, 1} → 0 ≤ xij ≤ 1, yi ∈ {0, 1} → 0 ≤ yi ≤ 1. The value of the LP
relaxation is at most the value of the IP, since the optimal IP solution is feasible for the LP relaxation. If
the optimal LP solution is integral (i.e. it has xij ∈ {0, 1}, yi ∈ {0, 1}), then the optimal LP solution is the
optimal IP solution. If the LP solution is not integer, then we can use a branch-and-bound algorithm. In
branch-and-bound, we take some fraction variable (say yi), and solve two subproblems, one in which yi = 0
and the other in which yi = 1. Clearly, the cheaper of the two subproblems should be the solution to our
overall problem. We solve the subproblem as we started out solving the general problem; i.e., solving a linear
programming relaxation, and hoping to obtain an integral solution, and “branching” on a fractional variable
if needed.

For this process to work well, it desirable to have at least two things:

16-1

LP LP

LP

yi = 0 yi = 1

Figure 2: Branch-and-bound

1. The value of the LP relaxation is close to the IP optimal solution, so that we don’t need to enumerate
many subproblems before we find an integer solution.

2. The two possible branches partition the space of solutions, so we aren’t considering the same possibilities
under both branches (this will slow things down otherwise).

Neither is true of the above IP formulation of the problem. First, a trivial solution to the LP relaxation is
xij = yi = 1/N ∀i, j, which has LP value of 1. So no matter what the true IP solution is, our LP solution can
be quite far away from it. Second, there are lots of different ways of representing the same integer solution.

1.1 Another Formulation

We switch our attention to one raw of length W . We use a column vector Aj to represent a feasible cutting
pattern or configuration pj . The i-th component of Aj (aij) corresponds to the number of pieces of length
si cut in one roll of configuration pj . For pj to be a feasible cutting pattern, the elements of Aj must all be
non-negative integers and the sum of them must be at most W (

∑m
i=1 aij ≤ W). Let xj = number of rows

cut in pattern/configuration j. For example, W = 10, s1 = 5, s2 = 3, s3 = 2 can cut raws into finals in the
following ways:  2

0
0

x1 +

 1
1
1

x2 + . . .

 0
2
2

x7 ≥

 b1
b2
b3

 (1)

So the integer program is

Minimize
∑
j

xj

subject to Ax ≥ b

x ≥ 0 are integers.

where aij = the number of finals of size si in the pattern j.
We relax the IP by LP relaxation. Replace the integer constraint by x ≥ 0. Is that a good relaxation of

IP?

1. How many xj > 0? At most m for any basic feasible solution.

2. If we round up every non-zero LP variable to the nearest integer, this integer solution is feasible and
has value at most m more than LP solution.

16-2

1.2 Column Generation

As there are exponentially many feasible patterns, we do not want to consider them all simultaneously. To
run the revised simplex method, we need only to:

1. find initial basic feasible solution.

2. decide if all non-basic j has cj ≥ 0, or find Aj such that cj < 0.

We can generate an initial basis of feasible patterns A = [A1, . . . , Am], where Aj is a pattern that produces
bw/sjc finals of type j and no other finals, so Ajj = bw/sjc and Aij = 0 for all i 6= j. As the sub-matrix
of these columns is diagonal with positive diagonal entries, it is full rank and forms a basis. A feasible x for
these patterns is xj = bj/bw/sjc, and xi = 0 for i 6∈ B, as then Ax = b.

Given a basis, we can compute the reduced costs directly from the formulas y = (AT
B)−1cB and c̄j =

cj − AT
j y. As there are exponentially many cj and Aj , we need an efficient method to find a c̄j which will

be negative. However, cj = 1 for every j, so the reduced cost for j is non-negative if and only if AT
j y ≤ 1.

Thus all reduced costs are non-negative if and only if AT
j y ≤ 1 for all j. This motivates the following integer

program:

Maximize

m∑
i=1

yiai

subject to

m∑
i=1

siai ≤W

ai ≥ 0 are integers.

where ai is the number of finals of size i to cut for pattern a, si is the size of the ith final type, and
the constraint ensures that the pattern is feasible. As any such feasible pattern a will be a column of A,
so solving this integer program will give us the column with the least reduced cost. Thus if the optimal
objective function value is less than 1, then there are no columns with negative reduced costs, otherwise
the optimal a is a column with negative reduced cost. We have reduced to problem of finding a negative
reduced cost column to enter the basis to solving this new integer programming problem. This technique is
called column generation. The new integer program is in fact the Knapsack Problem, which can be solved
via dynamic programming, and we discuss this next time.

16-3

