1 Varieties of Simplex Method: Dual Simplex

1.1 Description

Recall that the regular (primal) simplex method is an algorithm that maintains primal feasibility and works towards dual feasibility. We start with a primal feasible solution and try to reach dual feasibility while maintaining complementary slackness. Dual simplex is exactly analogous to primal simplex where we start with a dual feasible solution corresponding to a basis B and move towards making the corresponding primal solution feasible while maintaining complementary slackness.

Consider the standard primal and dual linear programs.

$$
\begin{array}{cccc}
\text { min } & c^{T} x & \max & b^{T} y \\
\text { s.t. } & A x=b & \text { s.t. } & A^{T} y \leq c \\
& x \geq 0 & &
\end{array}
$$

Assume we have a dual basic feasible solution $y=\left(A_{B}^{T}\right)^{-1} c_{B}$ with associated basis B, then

$$
A^{T} y \leq c \quad \text { i.e. } \quad \bar{c} \geq 0
$$

Let

$$
x_{B}=A_{B}^{-1} b=\bar{b}, \quad x_{N}=0
$$

If $\bar{b} \geq 0$, then x is primal feasible. Since x and y satisfy complementary slackness, they are primal and dual optimal solutions. If not, then there exists $i \in B$ such that $\bar{b}_{i}<0$. So we want to remove i from the basis B. The next question is which index should we add to the basis.

Recall that the primal LP can be rewritten as

$$
\begin{array}{ccllll}
\min & c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & & \text { min } & c_{B}^{T} x_{B}+c_{N}^{T} x_{N} \\
\text { s.t. } & A_{B} x_{B}+A_{N} x_{N}=b & \text { or } & (2) & \text { s.t. } & I x_{B}+\bar{A} x_{N}=\bar{b} \tag{1}\\
& x_{B}, x_{N} \geq 0 & & & & x_{B}, x_{N} \geq 0
\end{array}
$$

where $\bar{A}=A_{B}^{-1} A_{N}, \bar{b}=A_{B}^{-1} b$. Consider the $i^{\text {th }}$ constraint of $\operatorname{LP}(2)$,

$$
x_{i}+\sum_{j \in N} \bar{A}_{i j} x_{j}=\bar{b}_{i}<0
$$

If $\bar{A}_{i j} \geq 0, \forall j \in N$, since we also have $x \geq 0$, thus above constraint cannot be satisfied. Therefore there is no feasible solution to the primal LP in this case.

Now what should we do if there exists $j \in N$ such that $\bar{A}_{i j}<0$? Taking the duals for both (1) and (2), we get

$$
\begin{array}{ccllll}
& \max & b^{T} y & & \max & \bar{b}^{T} \tilde{y} \\
\text { (3) } & A_{B}^{T} y \leq c_{B} \\
\text { s.t. } & \text { or } & \text { (4) } & \text { s.t. } & I^{T} \tilde{y} \leq c_{B} \\
& A_{N}^{T} y \leq c_{N}
\end{array}
$$

Note (3) and (4) are equivalent if we let $\tilde{y}=A_{B}^{T} y$. And we have already set y such that $A_{B}^{T} y=c_{B}$, or equivalently $\tilde{y}=c_{B}$. Consider LP (4). since $\bar{b}_{i}<0$, we can increase the value of the objective function if we decrease \tilde{y}_{i}. But how far can we do this?

Suppose we decrease \tilde{y}_{i} by δ. For any $j \in N$ such that $\bar{A}_{i j} \geq 0$, we still have $\bar{A}_{j}^{T} \tilde{y} \leq c_{j}$. For any $j \in N$ such that $\bar{A}_{i j}<0$, the LHS of the $j^{\text {th }}$ constraint goes up by $-\bar{A}_{i j} \delta$. To stay feasible, we should have

$$
\delta \leq \frac{c_{j}-\bar{A}_{j}^{T} \tilde{y}}{-\bar{A}_{i j}} \quad \forall j \in N \text { s.t. }-\bar{A}_{i j}<0
$$

We can rewrite it into a more familiar form

$$
\delta \leq \frac{c_{j}-\bar{A}_{j}^{T} \tilde{y}}{-\bar{A}_{i j}}=\frac{c_{j}-\left(A_{B}^{-1} A_{j}\right)^{T} \tilde{y}}{-\bar{A}_{i j}}=\frac{c_{j}-A_{j}^{T}\left(A_{B}^{T}\right)^{-1} \tilde{y}}{-\bar{A}_{i j}}=\frac{c_{j}-A_{j}^{T} y}{-\bar{A}_{i j}}=\frac{\bar{c}_{j}}{-\bar{A}_{i j}}
$$

Therefore if we decrease \tilde{y}_{i} by δ such that

$$
\delta=\min _{j \in N: \bar{A}_{i j}<0} \frac{\bar{c}_{j}}{-\bar{A}_{i j}}
$$

then the dual variables are still feasible. And the index j that achieves this minimum will enter the basis.

1.2 Summary

In the dual simplex method,

- Set $x=A_{B}^{-1} b, y=\left(A_{B}^{T}\right)^{-1} c_{B}$. If $\bar{b} \geq 0$, then x and y are primal and dual optimal.
- (Check for infeasibility) Otherwise, $\bar{b}_{i}<0$ for some i. If $\bar{A}_{i j} \geq 0$ for all $j \in N$, then the LP is primal infeasible.
- (Ratio test) Otherwise, $\bar{A}_{i j}<0$ for some j. Compute

$$
\delta=\min _{j \in N: \bar{A}_{i j}<0} \frac{\bar{c}_{j}}{-\bar{A}_{i j}}
$$

Pick $j \in N$ that attains the minimum as the index to add to the basis.

- (Update basis) $\hat{B} \leftarrow B-\{i\} \cup\{j\}$

1.3 Why use dual simplex?

- The dual simplex works better in practice.
- It is usually easier to find initial dual feasible solutions.

Since in practise we usually have $c \geq 0$, then $y=0$ is a dual feasible solution.

- The dual LP is often less degenerate.
- "Warm start"s: to solve another related LP after solving the first one.
- If the objective function c changes, we use primal simplex with the previous primal optimum as an initial primal feasible solution.
- If the RHS of the constraints b changes, we use dual simplex with the previous dual optimum as an initial dual feasible solution.
- If an additional constraint is added to the primal LP, we use dual simplex.

Now the dual LP has one more variable, if we set the new variable to be 0 and all other variables to be the previous dual optimum, we get a dual feasible solution for the new LP and can carry out dual simplex.
This is frequently used in solving integer programming.

2 Sensitivity Analysis

In sensitivity analysis, we ask the question: How do solutions x and y change as input data $(A, b$, c) changes? We'll look at small, local changes of each of these in turn.

2.1 Changes in b

Suppose we increase b_{i} by $\delta . b \rightarrow b+\delta e_{i}\left(e_{i}\right.$ is a vector of 0 s with 1 in $i^{\text {th }}$ place.) Then $y=\left(A_{B}^{T}\right)^{-1} c_{B}$ stays the same and feasible. Let $x_{N}=0, x_{B}=A_{B}^{-1}\left(b+\delta e_{i}\right)$, then complimentary slackness is still obeyed. If we also have $x_{B} \geq 0$, then x is feasible. Thus x and y are optimal solutions.

How does optimal objective funtion value change?

$$
\triangle c=c_{B}^{T}\left(\Delta x_{B}\right)=\delta\left(c_{B}^{T} A_{B}^{-1} e_{i}\right)=\delta\left(\left(A_{B}^{T}\right)^{-1} c_{B}\right)^{T} e_{i}=\delta y^{T} e_{i}=\delta y_{i}
$$

So the optimal dual variable y_{i} gives the change in cost as we perturb the RHS b_{i}.
y_{i} is shadow price/marginal cost of b_{i}.
Now suppose we change b to $b \rightarrow b+\delta \hat{b}$. Then $y=\left(A_{B}^{T}\right)^{-1} c_{B}$ stays feasible. Let $x_{N}=0$, $x_{B}=A_{B}^{-1}(b+\delta \hat{b})$. Then x and y stay optimal if $x_{B} \geq 0$. The objective function changes by

$$
\Delta c=c_{B}^{T}\left(\Delta x_{B}\right)=\delta\left(c_{B}^{T} A_{B}^{-1} \hat{b}\right)=\delta\left(\left(A_{B}^{T}\right)^{-1} c_{B}\right)^{T} \hat{b}=\delta y^{T} \hat{b}
$$

2.2 Changes in c

Suppose we change $c_{j} \rightarrow c_{j}+\delta$. Then x stays feasible. There are now two cases:

1. $j \in N$. The objective function stays the same, since $x_{j}=0 . c_{B}$ is unchanged, so $y=\left(A_{B}^{T}\right)^{-1} c_{B}$ stays the same, and therefore complementary slackness still holds. Is y feasible? Yes, if $A_{j}^{T} y \leq c_{j}+\delta$. If so, then x, y are still optimal.
2. $j \in B$. Then $c_{B} \rightarrow c_{B}+\delta e_{j}$ and then $\left.y=\left(A_{B}^{T}\right)^{-1} c_{B} \rightarrow \tilde{y}=\left(A_{B}^{T}\right)^{-1} c_{B}+\delta e_{j}\right)$. This new y is feasible if $A_{k}^{T} \tilde{y} \leq c_{k}$ for all $k \in \mathbb{N}$, i.e. if $A_{k}^{T} y+\delta A^{T}{ }_{k}\left(A_{B}^{T}\right)^{-1} e_{j} \leq c_{k}$. So there are bounds on δ such that y stays feasible. Note that the objective function changes by δx_{j}.

2.3 Changes in A

Now suppose we change a single entry of the constraint matrix A; suppose $a_{i j} \rightarrow a_{i j}+\delta$. Once again there are two cases:

1. $j \in N$. In this case, x stays feasible (since $x_{j}=0$). Then $y=\left(A_{B}^{T}\right)^{-1} c_{B}$ stays the same, so that complementary slackness still holds. y is feasible if $A_{j}^{T} y+\delta y_{i} \leq c_{j}$.
2. $j \in B$. In this case, both $x_{B}=A_{B}{ }^{-1} b$ and $y=\left(A_{B}^{T}\right)^{-1} c_{B}$ change. We need to check whether $A_{B}+\delta e_{i} e_{j}^{T}$ remains singular! If so, we can solve for both x and y and check whether they remain feasible; if so, they will be optimal because they both still obey complementary slackness.
