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1 Varieties of Simplex Method: Dual Simplex

1.1 Description

Recall that the regular (primal) simplex method is an algorithm that maintains primal feasibility
and works towards dual feasibility. We start with a primal feasible solution and try to reach dual
feasibility while maintaining complementary slackness. Dual simplex is exactly analogous to primal
simplex where we start with a dual feasible solution corresponding to a basis B and move towards
making the corresponding primal solution feasible while maintaining complementary slackness.

Consider the standard primal and dual linear programs.

min cTx max bT y
s.t. Ax = b s.t. AT y ≤ c

x ≥ 0

Assume we have a dual basic feasible solution y = (AT
B)−1cB with associated basis B, then

AT y ≤ c i.e. c̄ ≥ 0

Let
xB = A−1

B b = b̄, xN = 0

If b̄ ≥ 0, then x is primal feasible. Since x and y satisfy complementary slackness, they are primal
and dual optimal solutions. If not, then there exists i ∈ B such that b̄i < 0. So we want to remove
i from the basis B. The next question is which index should we add to the basis.

Recall that the primal LP can be rewritten as

min cTBxB + cTNxN min cTBxB + cTNxN
(1) s.t. ABxB +ANxN = b or (2) s.t. IxB + ĀxN = b̄

xB, xN ≥ 0 xB, xN ≥ 0

where Ā = A−1
B AN , b̄ = A−1

B b. Consider the ith constraint of LP(2),

xi +
∑
j∈N

Āijxj = b̄i < 0

If Āij ≥ 0, ∀j ∈ N , since we also have x ≥ 0, thus above constraint cannot be satisfied. Therefore
there is no feasible solution to the primal LP in this case.
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Now what should we do if there exists j ∈ N such that Āij < 0? Taking the duals for both (1)
and (2), we get

max bT y max b̄T ỹ
(3) s.t. AT

By ≤ cB or (4) s.t. IT ỹ ≤ cB
AT

Ny ≤ cN ĀT ỹ ≤ cN

Note (3) and (4) are equivalent if we let ỹ = AT
By. And we have already set y such that AT

By = cB,
or equivalently ỹ = cB. Consider LP (4). since b̄i < 0, we can increase the value of the objective
function if we decrease ỹi. But how far can we do this?

Suppose we decrease ỹi by δ. For any j ∈ N such that Āij ≥ 0, we still have ĀT
j ỹ ≤ cj . For

any j ∈ N such that Āij < 0, the LHS of the jth constraint goes up by −Āijδ. To stay feasible, we
should have

δ ≤
cj − ĀT

j ỹ

−Āij
∀j ∈ N s.t. − Āij < 0

We can rewrite it into a more familiar form

δ ≤
cj − ĀT

j ỹ

−Āij
=
cj − (A−1

B Aj)
T ỹ

−Āij
=
cj −AT

j (AT
B)−1ỹ

−Āij
=
cj −AT

j y

−Āij
=

c̄j
−Āij

Therefore if we decrease ỹi by δ such that

δ = min
j∈N :Āij<0

c̄j
−Āij

then the dual variables are still feasible. And the index j that achieves this minimum will enter
the basis.

1.2 Summary

In the dual simplex method,

• Set x = A−1
B b, y = (AT

B)−1cB. If b̄ ≥ 0, then x and y are primal and dual optimal.

• (Check for infeasibility) Otherwise, b̄i < 0 for some i. If Āij ≥ 0 for all j ∈ N , then the
LP is primal infeasible.

• (Ratio test) Otherwise, Āij < 0 for some j. Compute

δ = min
j∈N :Āij<0

c̄j
−Āij

Pick j ∈ N that attains the minimum as the index to add to the basis.

• (Update basis) B̂ ← B − {i} ∪ {j}

15-2



1.3 Why use dual simplex?

• The dual simplex works better in practice.

– It is usually easier to find initial dual feasible solutions.
Since in practise we usually have c ≥ 0, then y = 0 is a dual feasible solution.

– The dual LP is often less degenerate.

• ”Warm start”s: to solve another related LP after solving the first one.

– If the objective function c changes, we use primal simplex with the previous primal
optimum as an initial primal feasible solution.

– If the RHS of the constraints b changes, we use dual simplex with the previous dual
optimum as an initial dual feasible solution.

– If an additional constraint is added to the primal LP, we use dual simplex.
Now the dual LP has one more variable, if we set the new variable to be 0 and all other
variables to be the previous dual optimum, we get a dual feasible solution for the new
LP and can carry out dual simplex.

This is frequently used in solving integer programming.

2 Sensitivity Analysis

In sensitivity analysis, we ask the question: How do solutions x and y change as input data (A, b,
c) changes? We’ll look at small, local changes of each of these in turn.

2.1 Changes in b

Suppose we increase bi by δ. b→ b+δei (ei is a vector of 0s with 1 in ith place.) Then y = (AT
B)−1cB

stays the same and feasible. Let xN = 0, xB = A−1
B (b+ δei), then complimentary slackness is still

obeyed. If we also have xB ≥ 0, then x is feasible. Thus x and y are optimal solutions.
How does optimal objective funtion value change?

4c = cTB(4xB) = δ(cTBA
−1
B ei) = δ((AT

B)−1cB)T ei = δyT ei = δyi

So the optimal dual variable yi gives the change in cost as we perturb the RHS bi.
yi is shadow price/marginal cost of bi.

Now suppose we change b to b → b + δb̂. Then y = (AT
B)−1cB stays feasible. Let xN = 0,

xB = A−1
B (b+ δb̂). Then x and y stay optimal if xB ≥ 0. The objective function changes by

4c = cTB(4xB) = δ(cTBA
−1
B b̂) = δ((AT

B)−1cB)T b̂ = δyT b̂.

2.2 Changes in c

Suppose we change cj → cj + δ. Then x stays feasible. There are now two cases:

1. j ∈ N. The objective function stays the same, since xj = 0. cB is unchanged, so y = (AT
B)−1cB

stays the same, and therefore complementary slackness still holds. Is y feasible? Yes, if
AT

j y ≤ cj + δ. If so, then x, y are still optimal.
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2. j ∈ B. Then cB → cB + δej and then y = (AT
B)−1cB → ỹ = (AT

B)−1cB + δej). This new y is
feasible if AT

k ỹ ≤ ck for all k ∈ N, i.e. if AT
k y + δAT

k(AT
B)−1ej ≤ ck. So there are bounds on

δ such that y stays feasible. Note that the objective function changes by δxj .

2.3 Changes in A

Now suppose we change a single entry of the constraint matrix A; suppose aij → aij + δ. Once
again there are two cases:

1. j ∈ N . In this case, x stays feasible (since xj = 0). Then y = (AT
B)−1cB stays the same, so

that complementary slackness still holds. y is feasible if AT
j y + δyi ≤ cj .

2. j ∈ B. In this case, both xB = AB
−1b and y = (AT

B)−1cB change. We need to check
whether AB + δeie

T
j remains singular! If so, we can solve for both x and y and check whether

they remain feasible; if so, they will be optimal because they both still obey complementary
slackness.
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