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1 Varieties of Simplex Method: Dual Simplex

1.1 Description

Recall that the regular (primal) simplex method is an algorithm that maintains primal feasibility

and works towards dual feasibility. We start with a primal feasible solution and try to reach dual

feasibility while maintaining complementary slackness. Dual simplex is exactly analogous to primal

simplex where we start with a dual feasible solution corresponding to a basis B and move towards

making the corresponding primal solution feasible while maintaining complementary slackness.
Consider the standard primal and dual linear programs.

min ¢’z max bl'y
st. Az =0 st. ATy <c
x>0

Assume we have a dual basic feasible solution y = (AL)~lcp with associated basis B, then
ATygc ie. ¢>0

Let B
zp=Ag'b=b, xy=0

If b > 0, then x is primal feasible. Since z and y satisfy complementary slackness, they are primal
and dual optimal solutions. If not, then there exists i € B such that b; < 0. So we want to remove
i from the basis B. The next question is which index should we add to the basis.

Recall that the primal LP can be rewritten as

min cga:B + c%x]v min c%xB + c%mN_
(1) s.t. Apxp+ Anzy =Db or (2) st. Ixgp+Azny =5b
xg, N >0 zp,xN 2 0

where A = A5' Ay, b= A5'b. Consider the it constraint of LP(2),

l’i—l—Zz‘L‘jl’j :Bi <0
JEN

If A;; > 0,Vj € N, since we also have z > 0, thus above constraint cannot be satisfied. Therefore
there is no feasible solution to the primal LP in this case.
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Now what should we do if there exists j € N such that A;; < 07 Taking the duals for both (1)
and (2), we get

max by max bl'y
(3) st. ALy <ecp or (4) s.t. I:Tg] <cp
Ay <cn ATy <en

Note (3) and (4) are equivalent if we let § = ALy. And we have already set y such that ALy = cp,
or equivalently § = cp. Consider LP (4). since b; < 0, we can increase the value of the objective
function if we decrease ;. But how far can we do this?

Suppose we decrease ¢; by d. For any j € N such that Az‘j > 0, we still have A]ng < ¢j. For
any j € N such that A;; < 0, the LHS of the 4*" constraint goes up by —A;j0. To stay feasible, we
should have 3
Cj — A?g _

o< VjENS.t.*Aij<O

-y
We can rewrite it into a more familiar form

s G ATT (AT - ATAR T - ATy g

Therefore if we decrease §; by ¢ such that

§= min ——
JEN:A;;<0 _Aij

then the dual variables are still feasible. And the index j that achieves this minimum will enter
the basis.

1.2 Summary

In the dual simplex method,
e Set x = A;lb, y = (AL) lep. If b > 0, then z and y are primal and dual optimal.

e (Check for infeasibility) Otherwise, b; < 0 for some 4. If flij > 0 for all j € N, then the
LP is primal infeasible.

e (Ratio test) Otherwise, 4;; < 0 for some j. Compute

. Cj
0= min J
JEN:A;;j<0 —Ajj

Pick j € N that attains the minimum as the index to add to the basis.

e (Update basis) B « B — {i} U {j}
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1.3 Why use dual simplex?
e The dual simplex works better in practice.

— It is usually easier to find initial dual feasible solutions.
Since in practise we usually have ¢ > 0, then y = 0 is a dual feasible solution.

— The dual LP is often less degenerate.
e "Warm start”s: to solve another related LP after solving the first one.

— If the objective function ¢ changes, we use primal simplex with the previous primal
optimum as an initial primal feasible solution.

— If the RHS of the constraints b changes, we use dual simplex with the previous dual
optimum as an initial dual feasible solution.

— If an additional constraint is added to the primal LP, we use dual simplex.
Now the dual LP has one more variable, if we set the new variable to be 0 and all other
variables to be the previous dual optimum, we get a dual feasible solution for the new
LP and can carry out dual simplex.
This is frequently used in solving integer programming.

2 Sensitivity Analysis

In sensitivity analysis, we ask the question: How do solutions z and y change as input data (A, b,
¢) changes? We’ll look at small, local changes of each of these in turn.

2.1 Changes in b

Suppose we increase b; by 6. b — b+de; (e; is a vector of Os with 1 in i*" place.) Then y = (Ag)*ch
stays the same and feasible. Let xny =0, x5 = Agl(b + de;), then complimentary slackness is still
obeyed. If we also have xp > 0, then x is feasible. Thus = and y are optimal solutions.

How does optimal objective funtion value change?

AC = C%(AIEB) = 5(6%14;161) = 5((A£)_ICB)T61' = 5yTei = 5y1

So the optimal dual variable y; gives the change in cost as we perturb the RHS b;.
y; is shadow price/marginal cost of b;.

Now suppose we change b to b — b + §b. Then y = (Ag)_ch stays feasible. Let xny = 0,
rp = A]_S,l(b + 53) Then z and y stay optimal if xp > 0. The objective function changes by

Ne = cE(Dag) = 6(c5EAZD) = 5((A5)ep)Th = 6yTh.

2.2 Changes in ¢
Suppose we change c¢; — ¢; + 9. Then x stays feasible. There are now two cases:

1. j € N. The objective function stays the same, since z; = 0. cp is unchanged, soy = (AL) tep
stays the same, and therefore complementary slackness still holds. Is y feasible? Yes, if
A]Ty < ¢j + 9. If so, then z,y are still optimal.
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2. j € B. Then cg — cp + de; and then y = (AL)"leg — § = (AL)"lep + dej). This new y is
feasible if A{g <¢ forall ke N, ie. if Agy + 6ATk(A§)_lej < ¢k. So there are bounds on
0 such that y stays feasible. Note that the objective function changes by dx;.

2.3 Changes in A

Now suppose we change a single entry of the constraint matrix A; suppose a;; — a;; + d. Once
again there are two cases:

1. j € N. In this case, = stays feasible (since z; = 0). Then y = (A%)"!cp stays the same, so
that complementary slackness still holds. y is feasible if AJTy +dy; < ¢j.

2. j € B. In this case, both zp = Ap~'b and y = (AL)"!cp change. We need to check
whether Apg + 561‘6? remains singular! If so, we can solve for both x and y and check whether
they remain feasible; if so, they will be optimal because they both still obey complementary
slackness.

15-4



