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Lecture 14
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1 Simplex Issues: Number of Pivots

Question: How many pivots does the simplex algorithm need to take to find an optimal solution?
Answer: If we use a pivot rule that prevents cycling, like Bland’s rule, we know that the simplex
algorithm never revisits a basis. Therefore the number of pivots is bounded by the number of basis,

which is no larger than

(
n

m

)
. In practice, however the simplex algorithm seems to perform O(m)

pivots.
For most known pivot rules, there have been examples devised where 2n − 1 pivots are taken.

This work was started by Klee and Minty (1970).
Idea: Consider n-dimensional cube

0 ≤ xi ≤ 1,∀i = 1, 2, . . . , n

There is a Hamiltonian path in any n-dimensional cube. This path starts at x = 0 and visits every
vertex exactly once.

Examples:

0 0

The idea now is to perturb the costs and the constraints slightly so that the simplex algorithm
follows the Hamiltonian path. Thus it performs 2n − 1 pivots. Observe, however that in such a
case, only one pivot is necessary to reach the optimal solution!!!

Most pivoting rules used in practice have been shown to have an exponential number of pivots in
the worst case by an example similar to the ones given by Klee and Minty (often called Klee-Minty
cubes). Until recently, two exceptions to this were Zadeh’s rule and randomized pivoting rules.
Zadeh’s rule chooses the entering variable that has entered the basis the least often so far. It was
shown by Friedmann (IPCO 2011) that this rule can also take an exponential number of pivots
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to reach the optimal solution. Randomized pivoting rules choose the entering variable randomly,
and certain classes of this rule have also been shown to be exponential by Friedmann, Hansen, and
Zwick (STOC 2011).

Suppose now that P is a bounded polyhedron and we have two vertices of P , x and y. Let
d(x, y) be the least number of nondegenerate pivots needed to go from x to y. Let

D(P ) = max
vertices: x,y

d(x, y)

be the diameter of P . Let
∆(n,m) = max

P∈S
D(P ),

where S is the set of all bounded polyhedra in Rn with m constraints. Note that ∆(n,m) gives a
lower bound on the number of pivots we might need for a bounded polyhedron with n variables
and m constraints (assuming we start at the worst-case x and the optimal is at the worst-case y).
The following was conjectured by Hirsch in 1957.

Claim 1 (Hirsch Conjecture): ∆(n,m) ≤ m− n

The conjecture is now known to be false. Santos (2011) showed that ∆(43, 86) > 43, and in general,
∆(n,m) ≥ 21

20(m− n) for n and m sufficiently large. Kalai and Kleitman (1992) showed the bound

∆(n,m) ≤ m2+log2 n, and the best upper bound known is ∆(n,m) ≤ (m− n)log2 n (Todd 2014).

2 Types of Simplex Method

2.1 Revised Simplex Method

This is an implementation of the simplex algorithm in which we maintain a basis B and compute
all other information from it during each iteration. What we have called the simplex method
throughout the semester thus far.

2.2 Standard Simplex Method

In this implementation of the simplex algorithm, we maintain a full tableau throughout the algo-
rithm.

Tableau:

c− AT (AT
B)

−1cB−b(AT
B)

−1cB

A−1
B b A−1

B A
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– The top left hand corner has the negative value of the objective function. Recall that c̄x =
cTx − bT y = cTx − bT (AT

B)−1cB. But c̄x = 0, since c̄B = 0 and xN = 0. Therefore cTx =
bT (AT

B)−1cB.

– The bottom left hand corner has the values of the basic variables.

– The top right hand corner has the reduced cost vector.

– The bottom right hand corner has a modified constrant matrix with the property that the
submatrix consisting of the columns indexed by B is the identity I

Example of the standard Simplex Method

min −x1 +2x2 −x3
s.t. x1 + x4 = 4

x2 + x5 = 4
x1 +x2 + x6 = 6
−x1 + 2x3 + x7 = 4

x1, . . . , x7 ≥ 0

0 -1 2 -1 0 0 0 0

x4=4 1 0 0 1 0 0 0
x5=4 0 1 0 0 1 0 0
x6=6 1 1 0 0 0 1 0
x7=4 -1 0 2 0 0 0 1
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During this iteration, x1 enters the basis and x4 leaves the basis. To do an update take row
defining the pivot, do Gaussian elimination to make the new basis submatrix into the Identity
matrix. Also use this row to eliminate x1 from the reduced costs.

4 0 2 -1 1 0 0 0

x1=4 1 0 0 1 0 0 0
x5=4 0 1 0 0 1 0 0
x6=2 0 1 0 -1 0 1 0
x7=8 0 0 2 1 0 0 1

During this iteration, x3 enters the basis and x7 leaves.

8 0 2 0 1.5 0 0 0.5

x1=4 1 0 0 1 0 0 0
x5=4 0 1 0 0 1 0 0
x6=2 0 1 0 -1 0 1 0
x3=4 0 0 1 0.5 0 0 0.5

We found the optimal solution, since the reduced costs vector has nonnegative entries. The
value of the LP is −8 and the optimal solution is [4,0,4,0,4,2,0].

2.3 Capacitated Simplex

We consider an LP of the following form.

min cTx
s.t. Ax = b

l ≤ x ≤ u

Question: How do we solve such an LP?

Idea 1: Put into standard form. Let z = x− l and b̃ = b−Al. The new LP is

min cT z

s.t. Az = b̃
0 ≤ z ≤ u− l

Now we can convert z ≤ u− l to equality constraints by adding slack variables. Thus the number
of costraints in the constraint matrix and the number of variables are increased by n. Since we
typically have that n >> m, this alteration could cause the complexity of the algorithm to increase
significantly.
Idea 2: Modify the Simplex Method! We will maintain three sets of variables: B (basic), L, and
U . Then

j ∈ L =⇒ xj = lj

j ∈ U =⇒ xj = uj

If we take the dual of the original LP, we get

max bT y − uT v + lTw
s.t. AT y − v + w = c

v, w ≥ 0
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Notice that for any y, there exists a dual feasible solution; namely

v = max(0, AT y − c)

w = max(0, c−AT y)

We can set y = (AT
B)−1cB as usual and compute reduced costs, c̄ = c−AT y. Let’s now consider a

solution to the primal, x.
ABxB + ALxL + AUxU = b

ABxB = b−ALxL −AUxU

xB = A−1B b−A−1B ALxL −A−1B AUxU

If x satisfies the above equation and lB ≤ xB ≤ uB, then it is primal feasible. Furthermore, it is
optimal if it is primal feasible and c̄j ≥ 0 for all j ∈ L, and c̄j ≤ 0 for all j ∈ U . This follows since
if c̄j ≥ 0 then AT

j y ≤ cj =⇒ vj = 0 and wj ≥ 0. Therefore complementary slackness is obeyed since

wj > 0 =⇒ xj = lj . If c̄j ≤ 0 then AT
j y ≥ cj =⇒ wj = 0 and vj ≥ 0. Therefore complementary

slackness is obeyed since vj > 0 =⇒ xj = lj .
Suppose these optimality conditions did not hold, i.e., either c̄j < 0 for some j ∈ L or c̄j > 0

for some j ∈ U . This would motivate increasing or decreasing xj , respectively.
The rest of the details of the capacitated simplex method will be given as a homework problem.
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