
ORIE 6300 Mathematical Programming I September 26, 2014

Lecture 10

Lecturer: David P. Williamson Scribe: Yuhang Ma

1 From last class

Last time, we introduced the simplex method. In this class we are going to prove that the simplex
method indeed works.

Let us first recall what the simplex method does. Consider the standard primal and its dual
linear programs:

min cTx

s.t. Ax = b

x ≥ 0

max yT b

s.t. AT y ≤ c

Define a basis B as the set of indices of m linearly independent columns of A. Then define

AB = (Ai), for i ∈ B

Similarly we have xB and cB. Let N denote the set of indices of columns not in B, so that we also
have AN ,xN ,cN .

Suppose we have a basic feasible solution x with associated basis B, so that

xN = 0, xB = A−1
B b ≥ 0.

Now we consider y = (AT
B)−1cB. We showed last time that if y is dual feasible (i.e. AT y ≤ c)

then x is an optimal solution to the primal. In the case that y is not dual feasible we introduced
the concept of reduced cost:

Definition 1 For any y ∈ Rm, the reduced cost c̄, with respect to y, is c̄ = c−AT y.

c̄ ≥ 0 iff y is dual feasible.

We also showed last time that minimizing c̄Tx s.t. Ax = b, x ≥ 0, has the same optimal solution
as original primal problem.

So the primal LP can be rewritten as:

min c̄TBxB + c̄TNxN

s.t. ABxB + ANxN = b

x ≥ 0.
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Multiplying A−1
B on the both sides of the equality constraints, we get

min c̄TBxB + c̄TNxN

s.t. IxB + A−1
B ANxN = A−1

B b

x ≥ 0.

Last time we noticed that c̄B = 0. Set Ā = A−1
B AN ,b̄ = A−1

B b. Then we have

min c̄TNxN

s.t. IxB + ĀxN = b̄

x ≥ 0.

By setting xB = b̄− ĀxN , then we turn the primal LP problem into the following form:

min c̄TNxN

s.t. ĀxN ≤ b̄

xN ≥ 0.

Note that this program is equivalent to the original primal.
We considered different cases. If xN = 0, xB = b̄ = A−1

B b, and c̄ ≥ 0, then this solution is an
optimal solution to this new LP and therefore x is an optimal solution to the original primal.

In the case that c̄ � 0, since c̄B = 0, it means that there exists a j ∈ N , such that cj < 0. If we
increase xj and keep all other variables in xN at zero, we can decrease the value of the solution.
How much can we increase xj? We need to keep the solution feasible, that means that we need to
maintain the constraints Āijxj ≤ b̄i, ∀i.

If Āij ≤ 0 for all i, then as we increase xj , x remains feasible, so as xj → ∞, the value of the
solution goes to −∞. Therefore the LP is unbounded.

Now suppose there exists some i such that Aij > 0. Then xj can be no larger than
b̄i
Āij

for any

i, where Āij > 0. Thus we increase xj to the maximum feasible value:

ε = min
i:Āij>0

b̄i
Āij

.

Let i∗ be the index that achieves the minimum. Recall xB = b̄− ĀxN . Setting xj = ε implies
that some variable in xB will be driven down to 0. In other words, after increasing xj as much as
possible, we will have xi∗ = 0 for i∗ ∈ B.

Since we now have the same number of variables set to 0 as when we began, this suggests that
we have moved to a new “basis”

B̂ = B − {i∗} ∪ j.

We will show in the next section that B̂ is indeed a basis. From this new basis, we get a new
associated solution x̂. We will also show that this x̂ is exactly the solution we constructed by
increasing xj as much as possible. The process of switching bases is called “pivoting”. Repeatedly
doing this gives us an algorithm for solving LPs, called the simplex method, which is due to George
Dantzig.
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Summarize the above idea as the following steps:

If c̄ � 0, ∃ j s.t. cj < 0, j ∈ N .
(Check for unboundedness)

If Āij ≤ 0, ∀i, then primal LP unbounded.
(Ratio Test)

Compute ε = mini:Āij>0

b̄i
Āij

Increase xj by ε
Let i∗ be the i that attains the minimum. Since xB = b̄− ĀN (εej)⇒ xi∗ = 0, for i∗ ∈ B.

(Update basis)
B̂ ← B ∪ {j} − {i∗}
We say j enters the basis, i∗ leaves the basis

2 Some details

Let x̂ be the new solution found by the method described above, i.e. x̂j = ε, x̂k = 0, for all
k ∈ N, k 6= j, and x̂B = b̄ − Āx̂N . Now we want to prove that the simplex method, under some
mild conditions, leads to the optimal solution. In order to do this we are going to show 4 claims:

1. cT x̂ ≤ cTx i.e. the new solution is not worse than the old solution;

2. If x is nondegenerate, then ε > 0, i.e. we make progress in our algorithm;

3. The updated basis B̂ after a pivot is indeed a basis;

4. x̂ is the unique solution corresponding to B̂.

Claim 1 c̄Tx ≤ cTx

Proof: Since we already know c̄TB = 0, xN = 0, x̂j = ε, x̂k = 0, for all k ∈ N, k 6= j,

c̄T x̂ = c̄TBx̂B + c̄TN x̂N = c̄jε ≤ 0 = c̄TBxB + c̄TNxN = c̄Tx

where the inequality holds because c̄j < 0 and ε ≥ 0. 2

This means that at least our solution value does not decrease by applying the simplex method,
but do we in fact make progress? In fact, if ε > 0, then the inequality holds strict: c̄Tx < cTx.

Claim 2 If x is nondegenerate, then ε > 0 and thus c̄Tx < cTx.

Proof: Since x is a nondegenerate basic solution, we know that xj > 0 for all j ∈ B, i.e. xB > 0.
Recall

xB = A−1
B b = b̄ > 0,

then
b̄i
Āij

> 0

for all i with Āij , therefore ε > 0. 2

Let us for now assume that all basic feasible solutions are nondegenerate. We will treat the case
of degenerate solutions in a later lecture. So far, we know that we make progress with the simplex
method, but what do we get after making a pivot?
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Claim 3 The set B̂ after a pivot is a basis.

Proof: By definition of a basis, B̂ is a basis if and only if AB̂ has full rank. To get AB̂ we
substituted the jth column of A for the i∗th column into AB.

AB̂ = [ old columns|Aj | old columns ]

= AB


1 0 . . .
0 1
...

...
. . .

0 0
0 0 . . .

∣∣∣∣∣∣∣∣∣∣∣
A−1

B Aj

∣∣∣∣∣∣∣∣∣∣∣

. . . 0 0
0 0

. . .
...

...
1 0

. . . 0 1



= AB


1 0 . . .
0 1
...

...
. . .

0 0
0 0 . . .

∣∣∣∣∣∣∣∣∣∣∣

Ā1j

Ā2j
...

Ā(n−1)j

Ānj

∣∣∣∣∣∣∣∣∣∣∣

. . . 0 0
0 0

. . .
...

...
1 0

. . . 0 1

 ,

recalling that Ā = A−1
B AN . B is a basis so AB is non-singular. In order to show that AB̂ is

non-singular we need to show that the big matrix on the righthand-side is non-singular. But we
chose i∗ in the ε ratio such that Āi∗j > 0 and therefore the matrix is non-singular and B̂ is a basis.

2

Lemma 4 The new solution x̂ is the solution corresponding to B̂.

Proof: We want to show that x̂ is the solution we get by setting xN̂ = 0, xB̂ = A−1

B̂
b.

Note x̂k = 0 for all k /∈ B̂ (i.e. for all k ∈ N − {j} ∪ {i∗}). We have

Āx̂N + Ix̂B = Ā(εej) + I(b̄− Ā(εej)) = b̄

Recall that Ā = A−1
B AN , b̄ = A−1

B b, and therefore

AN x̂N + ABx̂B = b

and we get Ax̂ = b, x̂ ≥ 0, so x̂ is a feasible solution with corresponding basis B̂. 2

3 Some Issues to Deal with

There are some issues we have to address when using the simplex method. We will go over these
issues in the coming lectures.

1. About running time:

(a) How much work is involved in every pivot step?

(b) How many pivots do we need to reach the optimal solution?

(If all solutions encountered are nongenerate, then from Claim 2, we know that each

basis encountered is unique ⇒ # of pivots ≤ # of bases=

(
n
m

)
)
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2. Starting point: We assume that we have a feasible solution to begin our algorithm, but how
do we find such a initial feasible solution?

3. How can we guarantee progress towards optimality, if x is degenerate?

4. Assume we are in the case where c̄ � 0, i.e. there exists j such that cj < 0. Which one of
these cj ’s do we choose?

(a) j that gives the most improvement?

(b) First j such that c̄j < 0?

(c) j such that c̄j most negative?
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