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Consider a primal and dual LP in the generic form in which we have been studying LPs so far
in the course, in the case when both are feasible. We know the optimal values of the LPs are equal,
but is there a good procedure to tell whether a given x is optimal?

1 Verifying optimality

Let’s look at the following LP primal and dual pair:

min cTx max yT b
s.t. Ax = b s.t. AT y = c

x ≥ 0
(1)

Answer 1 We know x is optimal if there exists a dual feasible y such that cTx = bT y, by strong
duality.

This is true as far as it goes, but it doesn’t seem that useful. Let’s think about other ways in
which we can show the optimality of x.

Let x and y be feasible for the primal and dual, respectively. Recall our proof of strong duality:

cTx =

n∑
j=1

cjxj ≥
n∑

j=1

(
m∑
i=1

aijyi

)
xj =

m∑
i=1

yi

n∑
j=1

aijxj =

m∑
i=1

yibi = bT y.

where the inequality follows from AT y ≤ c. From the strong duality theorem, we know if x and
y are optimal, then cTx = bT y. For this to be true, in the inequalities above, we need that if∑m

i=1 aijyi < cj then xj > 0. Call these conditions (∗).

Definition 1 We say that a primal feasible solution x, and a dual feasible solution y obey the
complementary slackness conditions if (∗) holds.

So we see from the above that if x and y are optimal solutions, then complementary slackness
holds. But actually we can say something stronger than this.

Lemma 1 Given a primal feasible solution x, and a dual feasible solution y, x and y are optimal
if and only if the complementary slackness conditions hold.

Hence we have another answer to our question.

Answer 2 x is optimal if there exists a dual feasible y such that the complementary slackness
conditions hold.
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This still doesn’t seem like such a useful way of verifying optimality, but it will prove to be a
step in the right direction.

So far we haven’t been taking advantage of something that we know about optimal solutions.
We’ve said that there exists an optimal solution that is a vertex, and have shown this on a problem
set for bounded polyhedra, and in a recitation for pointed polyhedra. We’ve also shown in a problem
set that if x is not a vertex, we can find a vertex x̃ such that cT x̃ ≤ cTx. So we can assume that x
is a vertex.

Recall that x is a vertex if and only if rank(A=) = n. Note that ajx = bj for j = 1, . . . ,m.
The remaining n − m inequalities met with equality (modulo linear dependence) must be of the
form xi = 0. Assume that the variables are numbered such that x1, ..., xk > 0 and xk+1, ..., xn = 0.
Then [

A

0 I

]
x =

[
b

0

]
.

This matrix, A=, has rank n, so all its columns are linearly independent. So the columns of A
corresponding to positive xi variables are linearly independent. This gives us the following lemma.

Lemma 2 A feasible solution x is a vertex iff the columns corresponding to its positive coordinates
are linearly independent.

This gives us an easy way to check if a feasible solution is a vertex or not. It’s worth encoding this
into a definition. First, we need an assumption though. We assume without loss of generality that
the m rows of A are linearly independent. It’s without loss of generality since otherwise a constraint
is redundant (if a constraint can be expressed as a linear combination of other constraints) or the
system Ax = b is infeasible (if the right-hand side of the

Definition 2 A set B of m columns of A is a basis if these columns are linearly independent.

We will focus on a subset of columns of A which correspond to a basis B.

A: m lin. ind. rows

A
Ai

  → AB

↑ ↑ ↑
m columns B

We will denote by xB the coordinates of x corresponding to basis B. We do the same for the
nonbasic variables N , which correspond to all the columns of A not in B, and define AN and xN
similarly. In the basic solution corresponding to basis B, we set the nonbasic variables to zero, so
that AN = 0.

Lemma 3 For any basis B, there is a unique corresponding basic solution to Ax = b.

Proof: To see this, notice that any such solution has to satisfy

[
ABAN

] xB−
xN

 = b

9-2



Notice that ANxN = 0, Ax = b ⇒ ABxB + ANxN = b ⇒ ABxB = b. Since AB is an m×m
matrix of rank m, the solution xB = A−1

B b is uniquely determined. �
What if xB = A−1

B b has some i ∈ B such that xi = 0?

Definition 3 x is a degenerate basic solution if xi = 0 for i ∈ B.

We can finally give another optimality criterion.

Lemma 4 Let x be a basic feasible solution and let B be the associated basis. Then:

1. If there is a solution y to the system AT y = cB such that AT y ≤ c, then x is optimal.

2. If x is nondegenerate and optimal, then there is a y such that AT
By = cB and AT y ≤ c.

Proof: Suppose we have a y such that AT
By = cB and AT y ≤ c. Then for all i ∈ B,

∑m
i=1 aijyi =

ci. Note that xj = 0 for all j ∈ N . Thus for all i such that xi > 0, we have
∑m

i=1 aijyi = ci.
Therefore since x is primal feasible and y is dual feasible and the complementary slackness conditions
are obeyed, then x and y must be optimal.

If x is optimal, then there is a dual feasible solution y such that complementary slackness
conditions are obeyed. Thus xi > 0 implies that

∑m
i=1 aijyi = ci. Because x is nondegenerate,

xi > 0 for all i ∈ B. Thus
∑m

i=1 aijyi = ci for all i ∈ B, and AT y = cB. Since y is dual feasible, it
is also the case that AT y ≤ c. �

This brings us to our final answer on how to determine if x is optimal. Since AB is an m×m
matrix of rank m, (AT

B)−1 exists. So we can solve AT
By = cB for y by setting y = (AT

B)−1cB. If y
is dual feasible, then the lemma above tells us that x must be optimal.

Answer 3 Given a basic feasible solution x and associated basis B, if y = AT
B)−1cB is dual feasible

(AT y ≤ c), then x must be optimal.

Call such an y a “verifying y”.
Finally, this seems like an answer such that we can actually carry out a reasonably short

computation and determine if x is optimal. The real question then is what do we do if x is not
optimal.

2 Rewriting the Optimality Condition

Here we introduce the idea of reduced costs, which will be very useful later.

Definition 4 For any y ∈ Rm, the reduced cost c̄ with respect to y is c̄ = c−AT y.

Observation 1 Reduced costs c̄ ≥ 0 with respect to y iff y is dual feasible.

Lemma 5 Consider the LP [min cTx s.t. Ax = b, x ≥ 0] and the alternative LP [min c̄Tx s.t.
Ax = b, x ≥ 0] for some y ∈ Rm. Then x̂ is an optimal solution for one iff it is optimal for the
other.
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Proof: We have

c̄Tx = (c−AT y)Tx = cTx− yTAx = cTx− yT b

since x satisfies Ax = b. So cTx− c̄Tx = yT b, which is constant since both y and b are given. Since
the objective function is just shifted from the other by some constant, an optimal solution for one
must be optimal for the other. �

Note 1 What we have just proved is rather remarkable, for any feasible x the objective function
values cTx and c̄Tx move in tandem, hence minimizing one of them also minimizes the other.

3 Finding a Better Solution

The main idea now is that given some feasible solution x associated with some basis B, set y =
(AT

B)−1cB. We are now interested in solving the linear problem with the new cost c̄:

min c̄Tx
s.t. Ax = b

x ≥ 0

Let us rewrite in terms of the basis B:

min c̄TBxB + c̄TNxN
s.t. ABxB + ANxN = b

x ≥ 0

We can multiply the first set of constraints with A−1
B to yield

min c̄TBxB + c̄TNxN
s.t. IxB + A−1

B ANxN = A−1
B b

x ≥ 0.

Since by definition c̄B = cB − AT
By and because we set y = (AT

B)−1cB, we have that c̄B = cB −
AT

B(AT
B)−1cB = 0. We can again rewrite the linear program as the following.

min 0xB + c̄TNxN
s.t. IxB + A−1

B ANxN = A−1
B b

x ≥ 0.

(2)

Next, we simplify the LP by letting Ā = A−1
B AN and b̄ = A−1

B b. Now we can do the opposite of what
we usually do when starting with inequality constraints. View the variables xB as slack variables
that are constrained to be non-negative and transform the equality constraints into inequality
constraints to yield the equivalent minimization problem

min c̄TNxN
s.t. ĀxN ≤ b̄

xN ≥ 0.
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To get a solution of the same value for the previous LP, we set xB = b̄ − ĀxN , which implies the
constraint xB ≥ 0. We now have a couple of cases.

First, if b̄ ≥ 0 and c̄ ≥ 0, then xN = 0 is optimal because it is feasible and minimizes c̄TNxN ≥ 0.
As a result, xB = b̄ = A−1

B b. xB is feasible since by assumption b̄ ≥ 0. Thus the solution x
associated with B is feasible and x is optimal since c̄ ≥ 0.

For the second case, suppose c̄ � 0, then there must exist some j ∈ N such that c̄j < 0. This
means that if we increase xj and keep all other variables in xN set to zero, we can decrease the
value of the solution. How much can we increase xj? We will look at this problem next time.
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