
ORIE 6300 Mathematical Programming I September 18, 2014

Lecture 8

Lecturer: David P. Williamson Scribe: Kevin Kircher

1 Strong duality

Recall the two versions of Farkas’ Lemma proved in the last lecture:

Theorem 1 (Farkas’ Lemma) Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following
two condition holds:

(1) ∃x ∈ Rn such that Ax = b, x ≥ 0;

(2) ∃ y ∈ Rm such that AT y ≥ 0, yT b < 0.

Theorem 2 (Farkas’ Lemma′) Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following
two condition holds:

(1′) ∃x ∈ Rn such that Ax ≤ b;

(2′) ∃ y ∈ Rm such that AT y = 0, yT b < 0, y ≥ 0.

The following condition is equivalent to (2′):

(2′′) ∃ y ∈ Rm such that AT y = 0, yT b = −1, y ≥ 0.

These results lead to strong duality, which we will prove in the context of the following primal-
dual pair of LPs:

max cTx min bT y
s.t. Ax ≤ b s.t. AT y = c

y ≥ 0
(1)

Theorem 3 (Strong Duality) There are four possibilities:

1. Both primal and dual have no feasible solutions (are infeasible).

2. The primal is infeasible and the dual unbounded.

3. The dual is infeasible and the primal unbounded.

4. Both primal and dual have feasible solutions and their values are equal.

Proof: There are four possible cases:
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Case 1: Infeasible primal, infeasible dual.

We showed in problem 1 of the second homework that it is possible for both the primal and
dual to be infeasible.

Case 2: Infeasible primal, feasible dual.

Let ȳ be a feasible solution for the dual and assume the primal is infeasible. Condition (1′)
of Farkas’ Lemma′ does not hold, so (2′) must hold, i.e. there exists ŷ such that AT ŷ = 0,
ŷT b < 0, and ŷ ≥ 0. Consider the family of solutions y = ȳ + λŷ, λ ≥ 0. For each λ, y is
dual-feasible since

AT y = AT (ȳ + λŷ) = c+ λ · 0 = c

and
y = ȳ + λŷ ≥ 0.

The objective value of y is

yT b = (ȳ + λŷ)T b = ȳT b+ λŷT b.

Since ŷT b < 0, limλ→∞ y
T b = −∞. Thus, if the primal is infeasible, then the dual is un-

bounded.

Case 3: Infeasible dual, feasible primal.

Let x̄ be a feasible solution for the primal and assume the dual is infeasible, so that there
does not exist y such that AT y = c, y ≥ 0. Condition (1) of the original Farkas’ Lemma (with
renamed symbols A → AT , x → y, b → c) does not hold, so (2) must hold, i.e. there exists
an x̂ such that Ax̂ ≥ 0, cT x̂ < 0. Consider the solution x = x̄− λx̂ for λ ≥ 0. For each λ, x
is primal-feasible:

Ax = A(x̄− λx̂) ≤ b− λAx̂ ≤ b,

The objective value of x is

cTx = cT (x̄− λx̂) = cT x̄− λcT x̂.

Since cT x̂ < 0, limλ→∞ c
Tx = +∞. Thus, if the dual is infeasible, then the primal is

unbounded.

Case 4: Feasible primal, feasible dual.

Let x̄ and ȳ be feasible solutions to the primal and dual, respectively. By weak duality,
cT x̄ ≤ ȳT b, so both the primal and dual are bounded. Let γ be the optimal value of the dual.
Suppose that the optimal value of the primal were less than γ, that is, suppose 6 ∃x satisfying

Ax ≤ b, cTx ≥ γ ⇐⇒
[
A
−cT

]
x ≤

[
b
−γ

]
This is equivalent to the statement that condition (1′) of Farkas’ Lemma′ does not hold, so
condition (2′) must hold. Thus, there exists a vector (call it [yT , λ]T , where λ ∈ R) satisfying[

A
−cT

]T [
y
λ

]
= 0,

[
b
−γ

]T [
y
λ

]
< 0,

[
y
λ

]
≥ 0
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We would like to divide by λ ∈ R, which requires showing that λ 6= 0. To see this, suppose
λ = 0. This implies that AT y = 0, bT y < 0, and y ≥ 0, meaning condition (2′) of Farkas’
Lemma′ holds.Therefore, condition (1′) must not hold,i.e. there does not exist x such that
Ax ≤ b. This contradicts the assumption of primal feasibility, however, so λ > 0.

The vector
( y
λ

)
is dual-feasible, because

( y
λ

)
≥ 0 and

AT y − λc = 0 ⇒ AT
(y
λ

)
= c.

However, bT y−λγ < 0, so bT
( y
λ

)
< γ, which contradicts the assumption that γ is the optimal

value of the dual. Thus, if the primal and dual are both feasible, then their optimal values
are equal.

�

2 Optimality conditions

Consider the primal-dual pair of LPs in standard form:

min cTx max bT y
s.t. Ax = b s.t. AT y ≤ c

x ≥ 0
(2)

Given a primal-feasible x, how can one tell whether x is optimal?

Answer 1 By strong duality, x is optimal if there exists a dual-feasible y such that cTx = bT y.

This is true as far as it goes, but it doesn’t seem that useful. Let’s think about other ways in
which we can show the optimality of x.

Let x and y be feasible for the primal and dual, respectively. Recall the proof of weak duality:

cTx =
n∑
j=1

cjxj ≥
n∑
j=1

(
m∑
i=1

aijyi

)
xj

=
m∑
i=1

yi

 n∑
j=1

aijxj

 =
m∑
i=1

yibi = bT y

where the inequality follows from AT y ≤ c. By strong duality, if x and y are optimal, then cTx =
bT y, i.e. each of the n inequalities above must be binding. This occurs iff, for all j ∈ {1, . . . , n},
either xj = 0 or

∑m
i=1 aijyi = cj . Call these conditions (∗).

Definition 1 We say that a primal-feasible x and a dual-feasible y obey the complementary slack-
ness conditions if (∗) holds.

So we see from the above that if x and y are optimal solutions, then complementary slackness
holds. But actually we can say something stronger than this.
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Lemma 4 Given a primal-feasible solution x and a dual-feasible solution y, x and y are optimal
if and only if the complementary slackness conditions hold.

Hence we have another answer to our question.

Answer 2 x is optimal if there exists a dual-feasible y such that the complementary slackness
conditions hold.

This still doesn’t seem like such a useful way of verifying optimality, but it will prove to be a
step in the right direction.

So far we haven’t been taking advantage of something that we know about optimal solutions,
namely that there exists an optimal solution that is a vertex. We’ve also shown in a problem set
that if x is not a vertex, we can find a vertex x̃ such that cT x̃ ≤ cTx. So we can assume that x is
a vertex.

Recall that x is a vertex if and only if rank(A=) = n. Note that m inequalities are necessarily
binding, since aTj x = bj for all j ∈ {1, . . . ,m}, where aTj is the jth row of A. The remaining n−m
binding inequalities (modulo linear dependence) must be of the form xi = 0. Assume that the
variables are numbered such that x1, ..., xk > 0 and xk+1, ..., xn = 0. Then[

A

0 I

]
x =

[
b

0

]
.

The matrix A= ∈ R(m+n−k)×n has rank n, so all its columns are linearly independent. Therefore,
the columns of A corresponding to positive xi variables must also be linearly independent. This
gives us the following lemma.

Lemma 5 A feasible solution x is a vertex iff the columns of A corresponding to the positive
components of x are linearly independent.

Definition 2 A set B of m columns of A is a basis if these columns are linearly independent.
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