ORIE 6300 Mathematical Programming I September 16, 2014

Lecture 7

Lecturer: David P. Williamson Scribe: Nathan Knerr

1 Review

A while back, we defined polyhedrons and polytopes as follows.
Definition 1 A Polyhedron is P = {x € R" : Az < b}

Definition 2 A Polytope is given by Q = conv(vi,va, ..., vx), where the v; are the vertices of the
polytope, for k finite.

Also recall the equivalence of extreme points, vertices and basic feasible solutions, and recall
the definition of a bounded polyhedron.

Definition 3 A polyhedron P is bounded iff IM > 0 such that ||z|] < MVz € P.

We showed bounded polyhedra were polytopes by taking the extreme points and seeing that
they were the verticies for P as a polytope.
Recall also the Separating Hyperplane Theorem from a previous lecture.

Theorem 1 (Separating Hyperplane) Let C C R™ be a closed, nonempty and convezr set. Let
y €R™ y ¢ C. Then there exists 0 # a € R, b € R such that a’y > b and a”x < b for all x € C.

2 The polar of a set

Now we want to prove that polytopes are bounded polyhedra. To do this, we need to introduce
one more concept.

Definition 4 If S C R", then its polar is S° = {z € R" : 272 < 1, Va € S}.
Lemma 2 If C is a closed convex subset of R™ with 0 € C, then C°° := (C°)° = C.

Proof:

o (D) If z € C, we want to show that € C°°, i.e., that 27z < 1 for all z € C°. But z € C°
implies 27z < 1, so this holds.

e (C) We will show that if x ¢ C, then = ¢ C°°. First note that C' is closed and convex with
atleast z = 0 € C. If x ¢ C, then by the Separating Hyperplane Theorem, there exists
0#ae€ R and b e R with a’z > b > a’z for all z € C. Since 0 € C, then b > 0. Let
@ =a/b#0. Therefore @’z > 1> a’z, for all z € C. This implies @ € C°. But @’z > 1, so
x ¢ C.

Therefore C°° = C. O
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3 Polytopes are Bounded Polyhedra

Now we can prove our result, at least sort of. We’ll assume that 0 is in the interior of the polytope.
We claim that this can be done without loss of generality; this is because we can translate the
polytope to have 0 € P, apply the following proof and then translate back if needed.

Theorem 3 If Q) C R" is a polytope with 0 in the interior of Q, then Q is a (bounded) polyhedron.

Proof: Our proof strategy is as follows. We will first show that the polar of a polytope is a
polyhedron. We then show that that since the polytope has 0 in its interior, then the polar of the
polytope is bounded. So then P = @)° is a bounded polyhedron. We know from a previous lecture
that any bounded polyhedron is a polytope, so P = )° is a polytope. But then applying the proof
that the polar of a polytope is a polyhedron, we get that P° = Q°° = @ (by the lemma above) is
a polyhedron. It is easy to prove that a polytope is bounded.

We first prove that the polar of @ is a polyhedron. Let P = Q°. Then we know that P° =
Q°° = Q. Since Q is a polytope, @ = conv{vy,...,v;} for some k finite vectors vy,...,vp € R".
Now P=Q° ={z e R : 212 < 1,Vx € Q}, sovlz = 2Tv; <1fori=1,2,...,k. For any

T EQ,xr= Zle A\v; where \; > 0,5, \; = 1. Therefore if 2Tv; <1fori=1,...,k,

k

k k
o= zT(Z Aivi) = Z)‘i(vai) < Z A= 1.
i=1 i=1

i=1

Therefore
P={zeR":vl2<1,i=1,... k},

so P is a polyhedron.
Now we need to show that the fact that () has 0 in its interior implies @° is bounded. 0 €
int(Q) = I some € > 0, all x € R" with ||z|| < eliein Q. If z € P, z # 0, then

since ||z|| < e. Then since P = Q°,

xTz§1 =

where M is the bound. Hence P is a bounded polyhedron, and from the sketch at the beginning
of the proof we get that @ is a polyhedron. O

4 Farkas’ Lemma

We are now finally almost able to prove strong duality. We will first need to show two lemmas
before we are able to do this. On a side note, Farkas means “wolf” in Hungarian. Just some trivia.

Theorem 4 (Farkas’ Lemma) Let A € R™*™ and b € R™. Then exactly one of the following
two condition holds for a given A, b:
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(1) 3z € R™  such that Az =b, x > 0;
(2) 3y € R™  such that ATy >0, y'b < 0.

Proof:  First we show that we can’t have both (1) and (2). Assume for contradiction 3% such
that A% = b,2 > 0, and 3§ such that AT > 0, y'b < 0. Note that §7 Az = §7(A%) = §7b < 0
since by (1), A% = b and by (2) §7b < 0. But also 7 432 = (7 A)2 = (AT9)T2 > 0 since by (2)
ATH >0 and by (1) & > 0.

Now we must show that if (1) doesn’t hold, then (2) does. To do this, let vy, va,..., v, be the
columns of A. Define

n
Q = cone(vy,...,v,) ={seRN" :s= Zx\ivi,/\i >0,Vi}.
i=1
This is a conic combination of the columns of A, which differs from a convex combination since we
don’t require that Zyzl A;i = 1. Then Ax = Z?:l x;v;, there exists an x such that Az = b and
x > 0if and only if b € Q as x’s are weights \;.

So if (1) does not hold then b ¢ Q). We show that condition (2) must hold. We know that @ is
nonempty (since 0 € @), closed, and convex, so we can apply the separating hyperplane theorem.
The theorem implies that there exists a € R™, o # 0, and /3 such that a”b > 3 and of's < 3 for all
s € Q. Since 0 € @, we know that 3 > 0. Note also that Av; € @ for all A > 0. Then since a’'s < 3
for all s € Q, we have o (\v;) € Q for all A > 0, so that a”v; < 8/ for all A > 0. Since 8 > 0, as
A — 0o, we have that a’v; < 0. Thus by setting y = —a, we obtain y7b < 0 and y v; > 0 for all
i. Since the v; are the columns of A, we get that A7y > 0. Thus condition (2) holds. O

Now will show the equivalence of a variant on Farkas’ Lemma.

Theorem 5 (Farkas’ Lemma’) Let A € R™*™ and b € R™. Then exactly one of the following
two condition holds:

(1) 3z € R™  such that Az < b;

(2)) Iy e R™  such that ATy =0, y"b <0, y > 0.
The following condition is equivalent to (2'):

(2") Iy € R™  such that yA =0, y'b=—1,y > 0.

Proof:  First we prove that (2) if and only if (2”). Clearly if (2”) is true, then (2') is true. If
(2) is true, let § = —ﬁy. Then ¢ > 0 since y > 0 and y”b < 0. Also

T
T ) b
b: _——_— = —1
y yTb )
and 1
ATg=—ATy) =0

where the last equation follows from ATy = 0 in (2”).
As before, we cannot have both (1’) and (2'). Suppose otherwise. Then 3z such that Ax < b
and Jy such that ATy = 0 and y*b < 0. Then as before y* Az = 7 (Az) < yTb < 0, since Ax =b
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and y7b < 0, and also y" Az = (yTA)x = (ATy)Tx = 0, since ATy = 0. This gives the desired
contradiction.

Now suppose (2') does not hold, so (2”) does not hold either; want to show (1’) holds. Rewrite
the system ATy =0, y7b = —1 as:

Then since (2”) does not hold, there does not exist z € R™ such that z > 0 and Az = b. This is just
a rewriting of condition (1) of the original Farkas’ Lemma such that (1) does not hold. Therefore
condition (2) must hold, which implies that there exists s such that A”s > 0 and b%s < 0. Set

-H

for € R and X\ € R. Then b’'s < 0 implies that

0 T

which implies that A > 0. Also, A”s > 0 implies that

AT 2]
>
EARHE
which implies that o
x
>
4 0l [5| =0
or that Az + X\b > 0, or that Az > —Ab, or that A(5%) < b. Therefore —x/\ satisfies (1) and
implies it’s true. This concludes our proofs of the Farkas’ Lemmas. O
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