Lecture 7

Lecturer: David P. Williamson
Scribe: Nathan Knerr

1 Review

A while back, we defined polyhedrons and polytopes as follows.
Definition $1 A$ Polyhedron is $P=\left\{x \in \Re^{n}: A x \leq b\right\}$
Definition $2 A$ Polytope is given by $Q=\operatorname{conv}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$, where the v_{i} are the vertices of the polytope, for k finite.

Also recall the equivalence of extreme points, vertices and basic feasible solutions, and recall the definition of a bounded polyhedron.

Definition 3 A polyhedron P is bounded iff $\exists M>0$ such that $\|x\| \leq M \forall x \in P$.
We showed bounded polyhedra were polytopes by taking the extreme points and seeing that they were the verticies for P as a polytope.

Recall also the Separating Hyperplane Theorem from a previous lecture.
Theorem 1 (Separating Hyperplane) Let $C \subseteq \Re^{n}$ be a closed, nonempty and convex set. Let $y \in \Re^{n}, y \notin C$. Then there exists $0 \neq a \in \Re^{n}, b \in \Re$ such that $a^{T} y>b$ and $a^{T} x<b$ for all $x \in C$.

2 The polar of a set

Now we want to prove that polytopes are bounded polyhedra. To do this, we need to introduce one more concept.
Definition 4 If $S \subseteq \Re^{n}$, then its polar is $S^{\circ}=\left\{z \in \Re^{n}: z^{T} x \leq 1, \forall x \in S\right\}$.
Lemma 2 If C is a closed convex subset of \Re^{n} with $0 \in C$, then $C^{\circ \circ}:=\left(C^{\circ}\right)^{\circ}=C$.

Proof:

- (〇) If $x \in C$, we want to show that $x \in C^{\circ}$, i.e., that $z^{T} x \leq 1$ for all $z \in C^{\circ}$. But $z \in C^{\circ}$ implies $z^{T} x \leq 1$, so this holds.
- (\subseteq) We will show that if $x \notin C$, then $x \notin C^{\circ \circ}$. First note that C is closed and convex with atleast $z=0 \in C$. If $x \notin C$, then by the Separating Hyperplane Theorem, there exists $0 \neq a \in \Re^{n}$ and $b \in \Re$ with $a^{T} x>b>a^{T} z$ for all $z \in C$. Since $0 \in C$, then $b>0$. Let $\tilde{a}=a / b \neq 0$. Therefore $\tilde{a}^{T} x>1>\tilde{a}^{T} z$, for all $z \in C$. This implies $\tilde{a} \in C^{\circ}$. But $\tilde{a}^{T} x>1$, so $x \notin C^{\circ \circ}$.

Therefore $C^{\circ \circ}=C$.

3 Polytopes are Bounded Polyhedra

Now we can prove our result, at least sort of. We'll assume that 0 is in the interior of the polytope. We claim that this can be done without loss of generality; this is because we can translate the polytope to have $0 \in P$, apply the following proof and then translate back if needed.

Theorem 3 If $Q \subseteq \Re^{n}$ is a polytope with 0 in the interior of Q, then Q is a (bounded) polyhedron.
Proof: Our proof strategy is as follows. We will first show that the polar of a polytope is a polyhedron. We then show that that since the polytope has 0 in its interior, then the polar of the polytope is bounded. So then $P=Q^{\circ}$ is a bounded polyhedron. We know from a previous lecture that any bounded polyhedron is a polytope, so $P=Q^{\circ}$ is a polytope. But then applying the proof that the polar of a polytope is a polyhedron, we get that $P^{\circ}=Q^{\circ \circ}=Q$ (by the lemma above) is a polyhedron. It is easy to prove that a polytope is bounded.

We first prove that the polar of Q is a polyhedron. Let $P=Q^{\circ}$. Then we know that $P^{\circ}=$ $Q^{\circ \circ}=Q$. Since Q is a polytope, $Q=\operatorname{conv}\left\{v_{1}, \ldots, v_{k}\right\}$ for some k finite vectors $v_{1}, \ldots, v_{k} \in \Re^{n}$. Now $P=Q^{\circ}=\left\{z \in \Re^{n}: x^{T} z \leq 1, \forall x \in Q\right\}$, so $v_{i}^{T} z=z^{T} v_{i} \leq 1$ for $i=1,2, \ldots, k$. For any $x \in Q, x=\sum_{i=1}^{k} \lambda_{i} v_{i}$ where $\lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1$. Therefore if $z^{T} v_{i} \leq 1$ for $i=1, \ldots, k$,

$$
z^{T} x=z^{T}\left(\sum_{i=1}^{k} \lambda_{i} v_{i}\right)=\sum_{i=1}^{k} \lambda_{i}\left(z^{T} v_{i}\right) \leq \sum_{i=1}^{k} \lambda_{i}=1 .
$$

Therefore

$$
P=\left\{z \in \Re^{n}: v_{i}^{T} z \leq 1, i=1, \ldots, k\right\},
$$

so P is a polyhedron.
Now we need to show that the fact that Q has 0 in its interior implies Q° is bounded. $0 \in$ $\operatorname{int}(Q) \Rightarrow \exists$ some $\epsilon>0$, all $x \in \Re^{n}$ with $\|x\| \leq \epsilon$ lie in Q. If $z \in P, z \neq 0$, then

$$
x=\epsilon \frac{z}{\|z\|} \in Q
$$

since $\|x\| \leq \epsilon$. Then since $P=Q^{\circ}$,

$$
x^{T} z \leq 1 \quad \Rightarrow \quad \frac{\epsilon z^{T} z}{\|z\|} \leq 1 \quad \Rightarrow \quad\|z\| \leq \frac{1}{\epsilon} \equiv M
$$

where M is the bound. Hence P is a bounded polyhedron, and from the sketch at the beginning of the proof we get that Q is a polyhedron.

4 Farkas' Lemma

We are now finally almost able to prove strong duality. We will first need to show two lemmas before we are able to do this. On a side note, Farkas means "wolf" in Hungarian. Just some trivia.

Theorem 4 (Farkas' Lemma) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then exactly one of the following two condition holds for a given A, b :
(1) $\exists x \in \mathbb{R}^{n} \quad$ such that $A x=b, x \geq 0$;
(2) $\exists y \in \mathbb{R}^{m}$ such that $A^{T} y \geq 0, y^{T} b<0$.

Proof: First we show that we can’t have both (1) and (2). Assume for contradiction $\exists \hat{x}$ such that $A \hat{x}=b, \hat{x} \geq 0$, and $\exists \hat{y}$ such that $A^{T} \hat{y} \geq 0, y^{T} b \leq 0$. Note that $\hat{y}^{T} A \hat{x}=\hat{y}^{T}(A \hat{x})=\hat{y}^{T} b<0$ since by (1), $A \hat{x}=b$ and by (2) $\hat{y}^{T} b<0$. But also $\hat{y}^{T} A \hat{x}=\left(\hat{y}^{T} A\right) \hat{x}=\left(A^{T} \hat{y}\right)^{T} \hat{x} \geq 0$ since by (2) $A^{T} \hat{y} \geq 0$ and by (1) $\hat{x} \geq 0$.

Now we must show that if (1) doesn't hold, then (2) does. To do this, let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of A. Define

$$
Q=\operatorname{cone}\left(v_{1}, \ldots, v_{n}\right) \equiv\left\{s \in \Re^{m}: s=\sum_{i=1}^{n} \lambda_{i} v_{i}, \lambda_{i} \geq 0, \forall i\right\} .
$$

This is a conic combination of the columns of A, which differs from a convex combination since we don't require that $\sum_{i=1}^{n} \lambda_{i}=1$. Then $A x=\sum_{i=1}^{n} x_{i} v_{i}$, there exists an x such that $A x=b$ and $x \geq 0$ if and only if $b \in Q$ as x 's are weights λ_{i}.

So if (1) does not hold then $b \notin Q$. We show that condition (2) must hold. We know that Q is nonempty (since $0 \in Q$), closed, and convex, so we can apply the separating hyperplane theorem. The theorem implies that there exists $\alpha \in \Re^{m}, \alpha \neq 0$, and β such that $\alpha^{T} b>\beta$ and $\alpha^{T} s<\beta$ for all $s \in Q$. Since $0 \in Q$, we know that $\beta>0$. Note also that $\lambda v_{i} \in Q$ for all $\lambda>0$. Then since $\alpha^{T} s<\beta$ for all $s \in Q$, we have $\alpha^{T}\left(\lambda v_{i}\right) \in Q$ for all $\lambda>0$, so that $\alpha^{T} v_{i}<\beta / \lambda$ for all $\lambda>0$. Since $\beta>0$, as $\lambda \rightarrow \infty$, we have that $\alpha^{T} v_{i} \leq 0$. Thus by setting $y=-\alpha$, we obtain $y^{T} b<0$ and $y^{T} v_{i} \geq 0$ for all i. Since the v_{i} are the columns of A, we get that $A^{T} y \geq 0$. Thus condition (2) holds.

Now will show the equivalence of a variant on Farkas' Lemma.
Theorem 5 (Farkas' Lemma') Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then exactly one of the following two condition holds:
(1') $\exists x \in \mathbb{R}^{n} \quad$ such that $A x \leq b$;
(2') $\exists y \in \mathbb{R}^{m} \quad$ such that $\quad A^{T} y=0, y^{T} b<0, y \geq 0$.
The following condition is equivalent to (2^{\prime}):
$\left(2^{\prime \prime}\right) \exists y \in \mathbb{R}^{m} \quad$ such that $y A=0, y^{T} b=-1, y \geq 0$.
Proof: First we prove that $\left(2^{\prime}\right)$ if and only if $\left(2^{\prime \prime}\right)$. Clearly if $\left(2^{\prime \prime}\right)$ is true, then $\left(2^{\prime}\right)$ is true. If $\left(2^{\prime}\right)$ is true, let $\hat{y}=-\frac{1}{y^{T} b} y$. Then $\hat{y} \geq 0$ since $y \geq 0$ and $y^{T} b<0$. Also

$$
\hat{y}^{T} b=-\frac{y^{T} b}{y^{T} b}=-1,
$$

and

$$
A^{T} \hat{y}=\frac{-1}{y^{T} b}\left(A^{T} y\right)=0
$$

where the last equation follows from $A^{T} y=0$ in $\left(2^{\prime \prime}\right)$.
As before, we cannot have both (1^{\prime}) and (2^{\prime}). Suppose otherwise. Then $\exists x$ such that $A x \leq b$ and $\exists y$ such that $A^{T} y=0$ and $y^{T} b<0$. Then as before $y^{T} A x=y^{T}(A x) \leq y^{T} b<0$, since $A x=b$
and $y^{T} b<0$, and also $y^{T} A x=\left(y^{T} A\right) x=\left(A^{T} y\right)^{T} x=0$, since $A^{T} y=0$. This gives the desired contradiction.

Now suppose (2^{\prime}) does not hold, so ($2^{\prime \prime}$) does not hold either; want to show (1^{\prime}) holds. Rewrite the system $A^{T} y=0, y^{T} b=-1$ as:

$$
\bar{A}=\left[\begin{array}{c}
A^{T} \\
b^{T}
\end{array}\right] \quad \bar{b}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
-1
\end{array}\right]
$$

Then since ($2^{\prime \prime}$) does not hold, there does not exist $z \in \Re^{m}$ such that $z \geq 0$ and $\bar{A} z=\bar{b}$. This is just a rewriting of condition (1) of the original Farkas' Lemma such that (1) does not hold. Therefore condition (2) must hold, which implies that there exists s such that $\bar{A}^{T} s \geq 0$ and $\bar{b}^{T} s<0$. Set

$$
s=\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]
$$

for $x \in \Re^{n}$ and $\lambda \in \Re$. Then $\bar{b}^{T} s<0$ implies that

$$
\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
-1
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]<0
$$

which implies that $\lambda>0$. Also, $\bar{A}^{T} s \geq 0$ implies that

$$
\left[\begin{array}{l}
A^{T} \\
b^{T}
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
\lambda
\end{array}\right] \geq 0
$$

which implies that

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right] \geq 0,
$$

or that $A x+\lambda b \geq 0$, or that $A x \geq-\lambda b$, or that $A\left(\frac{-x}{\lambda}\right) \leq b$. Therefore $-x / \lambda$ satisfies (1^{\prime}) and implies it's true. This concludes our proofs of the Farkas' Lemmas.

