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1 Review

A while back, we defined polyhedrons and polytopes as follows.

Definition 1 A Polyhedron is P = {x ∈ <n : Ax ≤ b}

Definition 2 A Polytope is given by Q = conv(v1, v2, ..., vk), where the vi are the vertices of the
polytope, for k finite.

Also recall the equivalence of extreme points, vertices and basic feasible solutions, and recall
the definition of a bounded polyhedron.

Definition 3 A polyhedron P is bounded iff ∃M > 0 such that ||x|| ≤M∀x ∈ P .

We showed bounded polyhedra were polytopes by taking the extreme points and seeing that
they were the verticies for P as a polytope.

Recall also the Separating Hyperplane Theorem from a previous lecture.

Theorem 1 (Separating Hyperplane) Let C ⊆ <n be a closed, nonempty and convex set. Let
y ∈ <n, y /∈ C. Then there exists 0 6= a ∈ <n, b ∈ < such that aT y > b and aTx < b for all x ∈ C.

2 The polar of a set

Now we want to prove that polytopes are bounded polyhedra. To do this, we need to introduce
one more concept.

Definition 4 If S ⊆ <n, then its polar is S◦ = {z ∈ <n : zTx ≤ 1, ∀x ∈ S}.

Lemma 2 If C is a closed convex subset of <n with 0 ∈ C, then C◦◦ := (C◦)◦ = C.

Proof:

• (⊇) If x ∈ C, we want to show that x ∈ C◦◦, i.e., that zTx ≤ 1 for all z ∈ C◦. But z ∈ C◦
implies zTx ≤ 1, so this holds.

• (⊆) We will show that if x /∈ C, then x /∈ C◦◦. First note that C is closed and convex with
atleast z = 0 ∈ C. If x /∈ C, then by the Separating Hyperplane Theorem, there exists
0 6= a ∈ <n and b ∈ < with aTx > b > aT z for all z ∈ C. Since 0 ∈ C, then b > 0. Let
ã = a/b 6= 0. Therefore ãTx > 1 > ãT z, for all z ∈ C. This implies ã ∈ C◦. But ãTx > 1, so
x /∈ C◦◦.

Therefore C◦◦ = C. �
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3 Polytopes are Bounded Polyhedra

Now we can prove our result, at least sort of. We’ll assume that 0 is in the interior of the polytope.
We claim that this can be done without loss of generality; this is because we can translate the
polytope to have 0 ∈ P , apply the following proof and then translate back if needed.

Theorem 3 If Q ⊆ <n is a polytope with 0 in the interior of Q, then Q is a (bounded) polyhedron.

Proof: Our proof strategy is as follows. We will first show that the polar of a polytope is a
polyhedron. We then show that that since the polytope has 0 in its interior, then the polar of the
polytope is bounded. So then P = Q◦ is a bounded polyhedron. We know from a previous lecture
that any bounded polyhedron is a polytope, so P = Q◦ is a polytope. But then applying the proof
that the polar of a polytope is a polyhedron, we get that P ◦ = Q◦◦ = Q (by the lemma above) is
a polyhedron. It is easy to prove that a polytope is bounded.

We first prove that the polar of Q is a polyhedron. Let P = Q◦. Then we know that P ◦ =
Q◦◦ = Q. Since Q is a polytope, Q = conv{v1, . . . , vk} for some k finite vectors v1, . . . , vk ∈ <n.
Now P = Q◦ = {z ∈ <n : xT z ≤ 1, ∀x ∈ Q}, so vTi z = zT vi ≤ 1 for i = 1, 2, . . . , k. For any

x ∈ Q, x =
∑k

i=1 λivi where λi ≥ 0,
∑

i λi = 1. Therefore if zT vi ≤ 1 for i = 1, . . . , k,

zTx = zT (
k∑
i=1

λivi) =
k∑
i=1

λi(z
T vi) ≤

k∑
i=1

λi = 1.

Therefore
P = {z ∈ <n : vTi z ≤ 1, i = 1, . . . , k},

so P is a polyhedron.
Now we need to show that the fact that Q has 0 in its interior implies Q◦ is bounded. 0 ∈

int(Q)⇒ ∃ some ε > 0, all x ∈ <n with ||x|| ≤ ε lie in Q. If z ∈ P , z 6= 0, then

x = ε
z

||z||
∈ Q.

since ||x|| ≤ ε. Then since P = Q◦,

xT z ≤ 1 ⇒ εzT z

||z||
≤ 1 ⇒ ||z|| ≤ 1

ε
≡M,

where M is the bound. Hence P is a bounded polyhedron, and from the sketch at the beginning
of the proof we get that Q is a polyhedron. �

4 Farkas’ Lemma

We are now finally almost able to prove strong duality. We will first need to show two lemmas
before we are able to do this. On a side note, Farkas means “wolf” in Hungarian. Just some trivia.

Theorem 4 (Farkas’ Lemma) Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following
two condition holds for a given A, b:
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(1) ∃x ∈ Rn such that Ax = b, x ≥ 0;

(2) ∃ y ∈ Rm such that AT y ≥ 0, yT b < 0.

Proof: First we show that we can’t have both (1) and (2). Assume for contradiction ∃x̂ such
that Ax̂ = b, x̂ ≥ 0, and ∃ŷ such that AT ŷ ≥ 0, yT b ≤ 0. Note that ŷTAx̂ = ŷT (Ax̂) = ŷT b < 0
since by (1), Ax̂ = b and by (2) ŷT b < 0. But also ŷTAx̂ = (ŷTA)x̂ = (AT ŷ)T x̂ ≥ 0 since by (2)
AT ŷ ≥ 0 and by (1) x̂ ≥ 0.

Now we must show that if (1) doesn’t hold, then (2) does. To do this, let v1, v2, . . . , vn be the
columns of A. Define

Q = cone(v1, . . . , vn) ≡ {s ∈ <m : s =

n∑
i=1

λivi, λi ≥ 0, ∀i}.

This is a conic combination of the columns of A, which differs from a convex combination since we
don’t require that

∑n
i=1 λi = 1. Then Ax =

∑n
i=1 xivi, there exists an x such that Ax = b and

x ≥ 0 if and only if b ∈ Q as x’s are weights λi.
So if (1) does not hold then b /∈ Q. We show that condition (2) must hold. We know that Q is

nonempty (since 0 ∈ Q), closed, and convex, so we can apply the separating hyperplane theorem.
The theorem implies that there exists α ∈ <m, α 6= 0, and β such that αT b > β and αT s < β for all
s ∈ Q. Since 0 ∈ Q, we know that β > 0. Note also that λvi ∈ Q for all λ > 0. Then since αT s < β
for all s ∈ Q, we have αT (λvi) ∈ Q for all λ > 0, so that αT vi < β/λ for all λ > 0. Since β > 0, as
λ → ∞, we have that αT vi ≤ 0. Thus by setting y = −α, we obtain yT b < 0 and yT vi ≥ 0 for all
i. Since the vi are the columns of A, we get that AT y ≥ 0. Thus condition (2) holds. �

Now will show the equivalence of a variant on Farkas’ Lemma.

Theorem 5 (Farkas’ Lemma′) Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following
two condition holds:

(1′) ∃x ∈ Rn such that Ax ≤ b;

(2′) ∃ y ∈ Rm such that AT y = 0, yT b < 0, y ≥ 0.

The following condition is equivalent to (2′):

(2′′) ∃ y ∈ Rm such that yA = 0, yT b = −1, y ≥ 0.

Proof: First we prove that (2′) if and only if (2′′). Clearly if (2′′) is true, then (2′) is true. If
(2′) is true, let ŷ = − 1

yT b
y. Then ŷ ≥ 0 since y ≥ 0 and yT b < 0. Also

ŷT b = −y
T b

yT b
= −1,

and

AT ŷ =
−1

yT b
(AT y) = 0,

where the last equation follows from AT y = 0 in (2′′).
As before, we cannot have both (1′) and (2′). Suppose otherwise. Then ∃x such that Ax ≤ b

and ∃y such that AT y = 0 and yT b < 0. Then as before yTAx = yT (Ax) ≤ yT b < 0, since Ax = b
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and yT b < 0, and also yTAx = (yTA)x = (AT y)Tx = 0, since AT y = 0. This gives the desired
contradiction.

Now suppose (2′) does not hold, so (2′′) does not hold either; want to show (1′) holds. Rewrite
the system AT y = 0, yT b = −1 as:

Ā =

[
AT

bT

]
b̄ =


0
...
0
−1

 .
Then since (2′′) does not hold, there does not exist z ∈ <m such that z ≥ 0 and Āz = b̄. This is just
a rewriting of condition (1) of the original Farkas’ Lemma such that (1) does not hold. Therefore
condition (2) must hold, which implies that there exists s such that ĀT s ≥ 0 and b̄T s < 0. Set

s =

[
x
λ

]
for x ∈ <n and λ ∈ <. Then b̄T s < 0 implies that

0
...
0
−1


T [

x
λ

]
< 0,

which implies that λ > 0. Also, ĀT s ≥ 0 implies that[
AT

bT

]T [
x
λ

]
≥ 0,

which implies that [
A b

] [x
λ

]
≥ 0,

or that Ax + λb ≥ 0, or that Ax ≥ −λb, or that A(−xλ ) ≤ b. Therefore −x/λ satisfies (1′) and
implies it’s true. This concludes our proofs of the Farkas’ Lemmas. �
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