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Lecture 5
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In previous lectures, we studied the standard form LP: min(cTx,Ax = b, x > 0). We also
considered two methods, by reduction and by bounding, of taking the dual.

In this lecture, we will study some combinatorial applications of duality. Let’s start with the
covering problem. In a covering problem, we are given sets, S1, . . . , Sm, each of which is a subset
of {1, . . . , n} for some n. The covering problem is to choose X ⊆ {1, . . . , n} that hits the sets
S1, . . . , Sm (we say X hits set Sj if X ∩ Sj 6= ∅) such that |X| is minimized. This problem is also
called the hitting set problem.) We can formulate this covering problem as an integer program,
i.e., a linear program where the variables are required to be integer. We will have variables xi
associated with element i = 1, . . . , n. We think of setting xi = 1 if i ∈ X, otherwise xi = 0. Thus,
we get the following integer program:

min
n∑
i=1

xi

xi ≥ 0 for each i = 1, . . . , n (integer covering problem)∑
i∈Sj

xi ≥ 1 for each j = 1, . . . ,m

xi ∈ {0, 1}

If we delete the integer constraints in the above problem, we get the fractional covering problem.
Note that in an optimum solution we will have xi ≤ 1 for each i (as otherwise replacing xi by
min(1, xi) gives a better solution with smaller objective function value).

Instead of the integer covering problem we will consider the fractional covering problem.
Note that a fractional covering problem is an LP with a 0-1 matrix A of the form min(1x :

Ax ≥ 1), where 1 denotes the vector with all coordinates 1. Any LP of this form is a fractional
covering problem: the elements correspond to the columns of A. The rows define the sets: set Sj
contains all elements where row j has a 1.

We take the linear programming dual of this problem using the method of taking duals of linear
programs of general form that was discussed at the end of last lecture. The variables of the dual
correspond to the rows of the primal matrix. In our case variables correspond to the sets.

max

m∑
j=1

yj

yj ≥ 0 for each j = 1, . . . ,m (fractional packing problem)∑
j:i∈Sj

yj ≤ 1 for each i = 1, . . . , n

5-1



To understand the meaning of this linear program, we will first consider the integer solutions to
this dual LP. Note that no variables can be above 1 due to the constraints. So the integer version
of this linear program selects a maximum number of sets (i.e., the sets with Sj that have yj = 1),
subject to constraints. The constraints require that the sets selected must be disjoint: for each
element i the number of sets selected that contains i is at most 1. This problem is traditionally
called the integer set packing problem (we want to pack as many disjoint sets as possible). The
linear program is then named the fractional set packing problem.

Lemma 1 The fractional set packing and fractional set covering problems are duals of each other.

Next, we will derive a famous theorem from networks, the max flow-min cut theorem, from
LP duality. The maximum flow problem is defined by a directed graph G = (V,A), and two
distinguished nodes, s (the source) and t (the sink). The graph has directed arcs, (u, v), which go
from a vertex u to another vertex v. Note that the arcs are directed, i.e., an arc (u, v) going from
u to v is different from an arc (v, u) going from v to u. The goal of the problem is to send as much
flow as possible from the source to the sink such that each arc carries at most one unit of flow, and
for every node of the graph other that the source and sink, the total amount of flow entering the
node is equal to the amount leaving the node.

We formulate the maximum flow problem as a linear program where the variables correspond
to paths from s to t. For each such path, P , we will have a variable xP . Note that this is an
unusual formulation, as there can be exponentially many paths in a graph; our LP can have very
many variables. For now, do not worry about this. We will only need the duality theorem, which
is true no matter how many variables we have.

For the linear programming formulation, we will use P to denote paths from s to t; we let A
denote the set of all edges, and let P denote the set of all paths from s to t. The variable xP states
how much flow is sent from the source to the sink on path P . The constraints express that for each
arc (u, v) ∈ A, at most one unit of flow can be sent through arc (u, v):

max
∑
P∈P

xP

xP ≥ 0 for each path P ∈ P∑
P :(u,v)∈P

xP ≤ 1 for each arc (u, v) ∈ A

Note that the flow problem is exactly a fractional set packing problem, where the elements are
edges of the graph, and the sets are the paths from s to t. In the integer packing problem, we want
to find as many disjoint paths from s to t as possible.

From the above general discussion of packing and covering problems, we know that the dual of
this packing problem is a covering problem with the paths as sets and the edges as elements:

min
∑

(u,v)∈E

zuv

zuv ≥ 0 for each arc (u, v) ∈ A∑
(u,v)∈P

zuv ≥ 1 for each path P ∈ P
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For the maximum flow problem defined above, we define an s-t cut as a set S of nodes that
contains s and does not contain t. An arc (u, v) is in the cut if it leaves S, i.e., u is in S and v is
not. Note that every s-t cut gives an integer solution to the dual of the maximum flow problem
by setting zuv = 1 if e leaves set S, and 0 otherwise. All paths from s to t must leave set S at
some point, hence they must contain at least one arc (u, v) with zuv = 1. (Note that a path can
leave S more than once, assuming it entered S again in between the two). Hence, this dual variable
assignment is dual-feasible.

This implies that each cut defines an integer solution to the dual LP, and the value of this
solution is the number of edges leaving the cut. For a cut S, let n(S) denote the number of edges
leaving the cut. The minimum s-t cut problem is to find the cut S with n(S) as small as possible.
We saw that cuts are integer solutions to this LP, so the LP minimum, min

∑
(u,v)∈A zuv, is at most

the size of the minimum cut.

Lemma 2 The maximum flow value is at most the minimum cut value.

Proof: This is easy to see directly, but also follows from weak duality: all cut values are values of
dual feasible solutions, and so are upper bounds on the maximum flow value. Hence, the maximum
flow value is upper bounded by the minimum cut value. �

We will prove that the minimum s-t cut is equal to optimal dual solution. We will prove the
equality by showing that for any optimal solution to the dual problem, there is a cut S such that
n(S) is less than or equal to the value of the solution. By strong duality, we know that the maximum
flow is equal to optimal dual solution. Therefore, we prove that the maximum flow is equal to the
minimum s-t cut.

To do this we need some observations and definitions. Let z∗ be an optimal dual solution in
what follows. Let cost(s, w) for a node v mean the minimum, over all s to w paths P , of the sum
of the optimal dual variable values for the edges on that path:

cost(s, w) = mins→w path P

∑
(u,v)∈P

z∗uv.

We will consider the following sets Sρ = {v : cost(s, v) ≤ ρ}. The following observations will be
useful.

• The constraints in the linear program require that cost(s, t) ≥ 1.

• From this, we get that, for each ρ < 1, we have that t 6∈ Sρ.

• For each ρ ≥ 0, we have that s ∈ Sρ. This is true essentially by definition. The empty path
from s to s has no edges, so the sum of z values along the edges is an empty sum, and hence
has value 0.

So far, we see that Sρ defines an s-t cut for each 0 ≤ ρ < 1. In addition, we will need the following
inequality, which is often referred to as the triangle inequality:

Lemma 3 For each arc (u, v) ∈ A, we have that cost(s, v) ≤ cost(s, u) + z∗uv,

Proof: The inequality follows from the fact the path from s to w consisting of the minimum-
cost path from s to v followed by arc (u, v) has cost exactly cost(s, v) + z∗uv. The cost(s, w) is the
minimum cost of a path from s to w and so is no greater than this quantity. �
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We want to show that there exists a value of ρ such that the corresponding cut Sρ is sufficiently
small. What we need to prove the theorem is to show exhibit a cut of value at most

∑
(u,v)∈A z

∗
uv.

We will do this by selecting one of the cuts Sρ at random, by selecting ρ uniformly at random from
the interval [0, 1). The value of this cut is a random variable, and we will show that its expected
value is at most

∑
(u,v)∈A z

∗
uv, and hence there must exist at least one such cut that achieves this

bound.

Lemma 4
Eρ[n(Sρ)] ≤

∑
(u,v)∈A

z∗uv.

Proof: We want to compute the expected number of edges leaving the cut Sρ. To compute
this expectation, first consider the probability that a given directed edge (u, v) leaves the randomly
selected cut Sρ. Edge (u, v) leaves Sρ if and only if u is in Sρ and v is not in Sρ. This happens
if and only if cost(s, u) ≤ ρ < cost(s, v). If cost(s, u) < cost(s, v), then the probability that edge
(u, v) leaves the randomly selected Sρ is exactly cost(s, v) − cost(s, u). Note that, by the lemma
above, we get that cost(s, v) − cost(s, u) ≤ z∗uv; hence the probability that edge (u, v) leaves the
selected set is at most z∗uv.

Now, we compute the expected number of edges leaving the set. We can do this by introducing
an indicator variable I(u, v, ρ), which is equal to 1 if (u, v) leaves Sρ, and is 0 otherwise. Then, we
have that

n(Sρ) =
∑

(u,v)∈A

I(u, v, ρ).

By the linearity of expectation (that is, the expectation of a sum is the sum of the expectations),
the expected value of n(Sρ) is equal to the sum, over all edges (u, v) ∈ A, of the expectation of
I(u, v, ρ). Since I(u, v, ρ) is a 0-1 random variable, its expectation is equal to the probability that
this variables is equal to 1; that is, the probability that edge (u, v) leaves the cut Sρ, which is
exactly what we bounded above. More precisely,

Eρ[n(Sρ)] = Eρ[
∑

(u,v)∈A

I(u, v, ρ)]

=
∑

(u,v)∈A

Eρ[I(u, v, ρ)]

=
∑

(u,v)∈A

Pr[(u, v) in the cut Sρ]

≤
∑

(u,v)∈A

z∗uv,

as desired. �
Since we know that the expected value of the cuts given our choice of ρ is at most the dual

objective value, there must exist some ρ∗ such that n(Sρ∗) is at most the dual objective value and
we are done.
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