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Lecture 4
Lecturer: David P. Williamson Scribe: Paul Upchurch

1 Introduction

Last time we talked about polyhedra and polytopes. This time we will define bounded polyhedra
and discuss their relationship with polytopes. Recall from the last lecture the following definitions.

A polyhedron is P = {x € R" : Az < b}, A € R™* " m > n.

A polytope is Q = conv(vy, ..., vg) for finite k.

x € P is a vertex if 3¢ € R” such that ¢’z < cT'y for all y € P, y # .

x € P is an extreme point if By, z € P y,z # x such that 2 = Ay + (1 — \)z, A € [0, 1].
x € P is a basic feasible solution if x € P and it is basic (i.e., the rank of A— is n).

Notice that the number of vertices of P is finite since given the m constraints in Az < b, we can
choose n of them to be met with equality; thus there are at most (Z‘) basic solutions.

2 Polyhedra and Polytopes

Now we are interested in the following two questions:
e Q1: When is a polytope a polyhedron?

e Al: A polytope is always a polyhedron.

e (Q2: When is a polyhedron a polytope?
e A2: A polyhedron is almost always a polytope.

We can give a counterexample to show why a polyhedron is not always but almost always a
polytope: an unbounded polyhedra is not a polytope. See Figure 1.

Definition 1 A polyhedron P is bounded if M > 0, such that ||x|| < M for all x € P.

What we can show is this: every bounded polyhedron is a polytope, and vice versa. In this
lecture, we will show one side of the proof in one direction; we will show the other direction in the
next lecture. To start with, we need the following lemma.

Lemma 1 Any polyhedron P = {z € R" : Ax < b} is conver.
Proof: If x,y € P, then Az < b and Ay < b. Therefore,
AXz+ (1 =Ny) =AMz + (1 - NAy <X+ (1—-Nb=b.
Thus z+ (1 — \)y € P. O
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Figure 1: Examples of unbounded polyhedra that are not polytopes. (left) No extreme points,
(right) one extreme point.

3 Representation of Bounded Polyhedra

We can now show the following theorem.

Theorem 2 (Representation of Bounded Polyhedra) A bounded polyhedron P is the set of
all convex combinations of its vertices, and is therefore a polytope.

Proof: Let v1,v9,...,vr be the vertices of P. Since v; € P and P is convex (by previous
lemma), then any convex combination Zle Aiv; € P. So it only remains to show that any z € P
can be written as z = Zle A;v;, with A; > 0 and Zle o= 1.

Let A_ be all the constraints that = meets with equality (all rows a; such that a;xz = b;). Let
ra(x) be the rank of the corresponding A—. Recall from last time that ra(z) = n if and only if =
is a vertex of P. Now we prove the theorem by induction on n — ra(x).

Base case: Let n — ra(x) = 0. Then ra(z) = n and since x € P, x is a basic feasible solution, and
therefore a vertex of P.

Inductive Step: Suppose we have shown that for any y € P such that n —ra(y) < ¢ for some ¢ > 0,
y can be written as a convex combination of vy, v, ..., v;. Consider z € P with ra(z) =n—/{ < n.
Then the rank of A_ < n, and thus there exists z such that A_z = 0. Since P is bounded, there
exist constants @ > 0 and o < 0 such that x + az € P if and only if a < a < @. Geometrically,
this is equivalent to moving from z in the direction az until we run into a constraint.

Then we can express x as

o _
x—a_a(x—l—gz)—i—a_g(x—}—az).

Therefore, x is a convex combinations of two points in P. Now all we need to show is that x+az and
x+az are convex combinations of vertices. Since x+az € P, but x+az ¢ P for a > @, there exists
some constraint a; such that a;x < bj, but a;(x+a@z) = b;. This implies that ra(z+az) > ra(x), so
then n—ra(z+a@z) < n—ra(z) = {. Therefore, x +az can be expressed as a convex combination of
vertices vy, va, ..., v; by induction; we suppose x +az = Zle o;v;, where a; > 0 and Zle a; = 1.
Similarly, it must be the case that  + az is a convex combination of the vertices, and we can write
T+ az = Zle Biv;, where 8; > 0 and Zle B; = 1.



Therefore, we have

x = (x+az)+ (z +az)
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Thus z is a convex combination of the vertices. O

4 Separating Hyperplane Theorem

To begin showing the proof in the opposite direction (that is, showing that every polytope is a
bounded polyhedron), we will need a theorem called the separating hyperplane theorem. To prove
the theorem, we will use the following theorem from analysis, which we give without proof.

Theorem 3 (Weierstrass) Let C C R" be a closed, non-empty and bounded set. Let f : C' — R
be continuous on C. Then f attains a mazimum (and a minimum) on some point of C'.

Suppose f(z) = %Hx —yl|, for all z € C. We'd like to apply Weierstrass’ theorem to find the

minimizer of f in C, but C' may not be bounded. To get around this, we pick some ¢ € C, which we
can do since C is non-empty. Then, let C' = {z € C: ||¢ —y| > ||z — y||}. C is closed, non-empty
and bounded; we see that C' is bounded since for z € C, we have ||z| < |ly|| + ||y — z|| by the
triangle inequality and ||y|| 4 ||y — =/ < ||ly|| + |l¢ — y|| by the definition of C; both |jy|| and ||g — y||
are constant terms. Now we can apply Weierstrass’ theorem on C to find a point z that minimizes

f.
Theorem 4 (Separating Hyperplane) Let C C R" be closed, non-empty and convex set. Let

y & C, then there exists a hyperplane a # 0, a € R", b € R, such that a’y > b and a’z < b, for all
xzeC.
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a'z=b

Figure 2: Separating hyperplane

Proof: Define
fz) = 3z —yl]?
C={zeC:llg—yll >Ilg— =}

Apply Weierstrass’ theorem. Let z be the minimizer of f in C. Note that for any z € C — C,
f(2) < flq) < f(z), and therefore z minimizes f over all of C, since any z ¢ C must have been
further away from y than q.

Let a =y — z. Then a # 0, since z € C,y ¢ C. Let b= 1(a”y + a’'2). Then,

T

T(y—z):aTy—a z

0<ala=a
so then
aly>adlz = 2d7y>dly+adz = ay> %(aTy +al2) =b.
It remains to show that a’z < bforallz € C. Let x) = (1—\)z+ Az € C for 0 < A < 1. Since
z minimizes f over C, f(z) < f(zx). Thus,

fl@) =31 =Nz+ Az =) (L=Nz+ Az —y) = 5(z—y+Ae—2)" (z—y+ Az~ 2)

(z—y)"(z—y) = f(2).
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al(z —2) > —1Xz - 2)T(z - 2).

But we can take A — 0 arbitrarily small, so a’ (z —x) > 0 which implies a” z > a”z. Using the fact
that a”z < a”y,

b=3(a'y+a'z) > 5(2a"z) =a’z > a'x.
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