ORIE 6300 Mathematical Programming I

Lecture 4

Lecturer: David P. Williamson
Scribe: Paul Upchurch

1 Introduction

Last time we talked about polyhedra and polytopes. This time we will define bounded polyhedra and discuss their relationship with polytopes. Recall from the last lecture the following definitions.

A polyhedron is $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}, A \in \mathbb{R}^{m \times n}, m \geq n$.
A polytope is $Q=\operatorname{conv}\left(v_{1}, \ldots, v_{k}\right)$ for finite k.
$x \in P$ is a vertex if $\exists c \in \mathbb{R}^{n}$ such that $c^{T} x<c^{T} y$ for all $y \in P, y \neq x$.
$x \in P$ is an extreme point if $\nexists y, z \in P \quad y, z \neq x$ such that $x=\lambda y+(1-\lambda) z, \lambda \in[0,1]$.
$x \in P$ is a basic feasible solution if $x \in P$ and it is basic (i.e., the rank of $A_{=}$is n).
Notice that the number of vertices of P is finite since given the m constraints in $A x \leq b$, we can choose n of them to be met with equality; thus there are at most $\binom{m}{n}$ basic solutions.

2 Polyhedra and Polytopes

Now we are interested in the following two questions:

- Q1: When is a polytope a polyhedron?
- A1: A polytope is always a polyhedron.
- Q2: When is a polyhedron a polytope?
- A2: A polyhedron is almost always a polytope.

We can give a counterexample to show why a polyhedron is not always but almost always a polytope: an unbounded polyhedra is not a polytope. See Figure 1.

Definition $1 A$ polyhedron P is bounded if $\exists M>0$, such that $\|x\| \leq M$ for all $x \in P$.
What we can show is this: every bounded polyhedron is a polytope, and vice versa. In this lecture, we will show one side of the proof in one direction; we will show the other direction in the next lecture. To start with, we need the following lemma.

Lemma 1 Any polyhedron $P=\left\{x \in \Re^{n}: A x \leq b\right\}$ is convex.
Proof: If $x, y \in P$, then $A x \leq b$ and $A y \leq b$. Therefore,

$$
A(\lambda x+(1-\lambda) y)=\lambda A x+(1-\lambda) A y \leq \lambda b+(1-\lambda) b=b .
$$

Thus $x+(1-\lambda) y \in P$.

Figure 1: Examples of unbounded polyhedra that are not polytopes. (left) No extreme points, (right) one extreme point.

3 Representation of Bounded Polyhedra

We can now show the following theorem.
Theorem 2 (Representation of Bounded Polyhedra) A bounded polyhedron P is the set of all convex combinations of its vertices, and is therefore a polytope.

Proof: Let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of P. Since $v_{i} \in P$ and P is convex (by previous lemma), then any convex combination $\sum_{i=1}^{k} \lambda_{i} v_{i} \in P$. So it only remains to show that any $x \in P$ can be written as $x=\sum_{i=1}^{k} \lambda_{i} v_{i}$, with $\lambda_{i} \geq 0$ and $\sum_{i=1}^{k} \lambda_{i}=1$.

Let $A_{=}$be all the constraints that x meets with equality (all rows a_{i} such that $a_{i} x=b_{i}$). Let $r a(x)$ be the rank of the corresponding $A_{=}$. Recall from last time that $r a(x)=n$ if and only if x is a vertex of P. Now we prove the theorem by induction on $n-\operatorname{ra}(x)$.

Base case: Let $n-r a(x)=0$. Then $r a(x)=n$ and since $x \in P, x$ is a basic feasible solution, and therefore a vertex of P.

Inductive Step: Suppose we have shown that for any $y \in P$ such that $n-r a(y)<\ell$ for some $\ell>0$, y can be written as a convex combination of $v_{1}, v_{2}, \ldots, v_{k}$. Consider $x \in P$ with $r a(x)=n-\ell<n$. Then the rank of $A_{=}<n$, and thus there exists z such that $A_{=} z=0$. Since P is bounded, there exist constants $\bar{\alpha}>0$ and $\underline{\alpha}<0$ such that $x+\alpha z \in P$ if and only if $\underline{\alpha} \leq \alpha \leq \bar{\alpha}$. Geometrically, this is equivalent to moving from x in the direction αz until we run into a constraint.

Then we can express x as

$$
x=\frac{\bar{\alpha}}{\bar{\alpha}-\underline{\alpha}}(x+\underline{\alpha} z)+\frac{-\underline{\alpha}}{\bar{\alpha}-\underline{\alpha}}(x+\bar{\alpha} z) .
$$

Therefore, x is a convex combinations of two points in P. Now all we need to show is that $x+\underline{\alpha} z$ and $x+\bar{\alpha} z$ are convex combinations of vertices. Since $x+\bar{\alpha} z \in P$, but $x+\alpha z \notin P$ for $\alpha>\bar{\alpha}$, there exists some constraint a_{j} such that $a_{j} x<b_{j}$, but $a_{j}(x+\bar{\alpha} z)=b_{j}$. This implies that $r a(x+\bar{\alpha} z)>r a(x)$, so then $n-r a(x+\bar{\alpha} z)<n-r a(x)=\ell$. Therefore, $x+\bar{\alpha} z$ can be expressed as a convex combination of vertices $v_{1}, v_{2}, \ldots, v_{k}$ by induction; we suppose $x+\bar{\alpha} z=\sum_{i=1}^{k} \alpha_{i} v_{i}$, where $\alpha_{i} \geq 0$ and $\sum_{i=1}^{k} \alpha_{i}=1$. Similarly, it must be the case that $x+\underline{\alpha} z$ is a convex combination of the vertices, and we can write $x+\underline{\alpha} z=\sum_{i=1}^{k} \beta_{i} v_{i}$, where $\beta_{i} \geq 0$ and $\sum_{i=1}^{k} \beta_{i}=1$.

Therefore, we have

$$
\begin{aligned}
x & =\frac{\bar{\alpha}}{\bar{\alpha}-\underline{\alpha}}(x+\underline{\alpha} z)+\frac{-\underline{\alpha}}{\bar{\alpha}-\underline{\alpha}}(x+\bar{\alpha} z) \\
& =\frac{\bar{\alpha}}{\bar{\alpha}-\underline{\alpha}} \sum_{i=1}^{k} \alpha_{i} v_{i}+\frac{-\underline{\alpha}}{\bar{\alpha}-\underline{\alpha}} \sum_{i=1}^{k} \beta_{i} v_{i} \\
& =\sum_{i=1}^{k}\left(\frac{\bar{\alpha}}{\bar{\alpha}-\underline{\alpha}} \alpha_{i}+\frac{-\underline{\alpha}}{\bar{\alpha}-\underline{\alpha}} \beta_{i}\right) v_{i} \\
& =\sum_{i=1}^{k} \delta_{i} v_{i},
\end{aligned}
$$

where $\delta_{i}=\frac{\bar{\alpha}}{\bar{\alpha}-\underline{\alpha}} \alpha_{i}+\frac{-\underline{\alpha}}{\bar{\alpha}-\underline{\alpha}} \beta_{i} \geq 0$ and

$$
\begin{aligned}
\sum_{i=1}^{k} \delta_{i} & =\sum_{i=1}^{k}\left(\frac{\bar{\alpha}}{\bar{\alpha}-\underline{\alpha}} \alpha_{i}+\frac{-\underline{\alpha}}{\bar{\alpha}-\underline{\alpha}} \beta_{i}\right) \\
& =\frac{\bar{\alpha}}{\bar{\alpha}-\underline{\alpha}} \sum_{i=1}^{k} \alpha_{i}+\frac{-\underline{\alpha}}{\bar{\alpha}-\underline{\alpha}} \sum_{i=1}^{k} \beta_{i} \\
& =\frac{\bar{\alpha}}{\bar{\alpha}-\underline{\alpha}}+\frac{-\underline{\alpha}}{\bar{\alpha}-\underline{\alpha}}=1 .
\end{aligned}
$$

Thus x is a convex combination of the vertices.

4 Separating Hyperplane Theorem

To begin showing the proof in the opposite direction (that is, showing that every polytope is a bounded polyhedron), we will need a theorem called the separating hyperplane theorem. To prove the theorem, we will use the following theorem from analysis, which we give without proof.

Theorem 3 (Weierstrass) Let $C \subseteq \Re^{n}$ be a closed, non-empty and bounded set. Let $f: C \rightarrow \Re$ be continuous on C. Then f attains a maximum (and a minimum) on some point of C.

Suppose $f(x)=\frac{1}{2}\|x-y\|$, for all $x \in C$. We'd like to apply Weierstrass' theorem to find the minimizer of f in C, but C may not be bounded. To get around this, we pick some $q \in C$, which we can do since C is non-empty. Then, let $\hat{C}=\{x \in C:\|q-y\| \geq\|x-y\|\} . \hat{C}$ is closed, non-empty and bounded; we see that \hat{C} is bounded since for $x \in \hat{C}$, we have $\|x\| \leq\|y\|+\|y-x\|$ by the triangle inequality and $\|y\|+\|y-x\| \leq\|y\|+\|q-y\|$ by the definition of \hat{C}; both $\|y\|$ and $\|q-y\|$ are constant terms. Now we can apply Weierstrass' theorem on \hat{C} to find a point z that minimizes f.

Theorem 4 (Separating Hyperplane) Let $C \subseteq \Re^{n}$ be closed, non-empty and convex set. Let $y \notin C$, then there exists a hyperplane $a \neq 0, a \in \Re^{n}, b \in \Re$, such that $a^{T} y>b$ and $a^{T} x<b$, for all $x \in C$.

Figure 2: Separating hyperplane

Proof: Define

$$
\begin{gathered}
f(x)=\frac{1}{2}\|x-y\|^{2} \\
\hat{C}=\{x \in C:\|q-y\| \geq\|q-x\|\} .
\end{gathered}
$$

Apply Weierstrass' theorem. Let z be the minimizer of f in \hat{C}. Note that for any $x \in C-\hat{C}$, $f(z) \leq f(q)<f(x)$, and therefore z minimizes f over all of C, since any $x \notin \hat{C}$ must have been further away from y than q.

Let $a=y-z$. Then $a \neq 0$, since $z \in C, y \notin C$. Let $b=\frac{1}{2}\left(a^{T} y+a^{T} z\right)$. Then,

$$
0<a^{T} a=a^{T}(y-z)=a^{T} y-a^{T} z
$$

so then

$$
a^{T} y>a^{T} z \quad \Rightarrow \quad 2 a^{T} y>a^{T} y+a^{T} z \quad \Rightarrow \quad a^{T} y>\frac{1}{2}\left(a^{T} y+a^{T} z\right)=b .
$$

It remains to show that $a^{T} x<b$ for all $x \in C$. Let $x_{\lambda}=(1-\lambda) z+\lambda x \in C$ for $0<\lambda \leq 1$. Since z minimizes f over $C, f(z) \leq f\left(x_{\lambda}\right)$. Thus,

$$
\begin{aligned}
f\left(x_{\lambda}\right)=\frac{1}{2}((1-\lambda) z+\lambda x-y)^{T}((1-\lambda) z+\lambda x-y) & =\frac{1}{2}(z-y+\lambda(x-z))^{T}(z-y+\lambda(x-z)) \\
& \geq \frac{1}{2}(z-y)^{T}(z-y)=f(z) .
\end{aligned}
$$

Rewriting, we obtain

$$
\begin{aligned}
\frac{1}{2}\left[2(z-y)^{T} \lambda(x-z)+\lambda^{2}(x-z)^{T}(x-z)\right] & \geq 0 \\
(z-y)^{T}(x-z)+\frac{1}{2} \lambda(x-z)^{T}(x-z) & \geq 0 \\
a^{T}(z-x)+\frac{1}{2} \lambda(x-z)^{T}(x-z) & \geq 0
\end{aligned}
$$

or

$$
a^{T}(z-x) \geq-\frac{1}{2} \lambda(x-z)^{T}(x-z) .
$$

But we can take $\lambda \rightarrow 0$ arbitrarily small, so $a^{T}(z-x) \geq 0$ which implies $a^{T} z \geq a^{T} x$. Using the fact that $a^{T} z<a^{T} y$,

$$
b=\frac{1}{2}\left(a^{T} y+a^{T} z\right) \geq \frac{1}{2}\left(2 a^{T} z\right)=a^{T} z>a^{T} x .
$$

