ORIE 6300 Mathematical Programming I September 2, 2014

Lecture 3

Lecturer: David P. Williamson Scribe: Divya Singhvi

Last time we discussed how to take dual of an LP in two different ways. Today we will talk
about the geometry of linear programs.

1 Geometry of Linear Programs

First we need some definitions.

Definition 1 A set S C R" is convex if Va,y € S, dx + (1 — Ny € S, VA € [0,1].
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Figure 1: Examples of convex and non convex sets

Given a set of inequalities we define the feasible region as P = {x € R" : Az < b}. We say that
P is a polyhedron.
Which points on this figure can have the optimal value? Our intuition from last time is that

A

. /
™~ III' -
T
L/
Polyhedron of feasible /\
|- region .’\:5 .
r\ AN
/! f II" h

s I'.
S \ .,
A \ -,

v

Figure 2: Example of a polyhedron. “Circled” corners are feasible and “squared” are non feasible

optimal solutions to linear programming problems occur at “corners” of the feasible region. What
we’d like to do now is to consider formal definitions of the “corners” of the feasible region.
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One idea is that a point in the polyhedron is a corner if there is some objective function that
is minimized there uniquely.

Definition 2 z € P is a vertex of P if 3c € R" with ¢’z < ¢Ty,Vy # x,y € P.

Another idea is that a point x € P is a corner if there are no small perturbations of z that are
in P.

Definition 3 Let P be a convex set in R"™. Then x € P is an extreme point of P if x cannot be
written as Ay + (1 = N)z fory,z € P, y,z#z, 0 < A < 1.

It is interesting to note that because these definitions are generalized for all convex sets - not
just polyhedra - a point could possibly be extreme but not be a vertex. One set of examples are
the points on an oval where the line segments of the sides meet the curves of the ends.

Figure 3: Four extreme points in a two-dimensional convex set that are not vertices.

A final possible definition is an algebraic one. We note that a corner of a polyhedron is char-
acterized by a point at which several constraints are simultaneously satisfied. For any given x, let
A_ be the constraints satisfied with equality by z; (that is, a; such that a;x = b;). Let A~ be the
constraints a; such that a;x < b;.

Definition 4 Call x € R" a basic solution of P if A— has rank n. x is a basic feasible solution of
P if it also lies inside P (so each constraint is either in A— or A-).

Since there are only a finite number of constraints defining P, there are only a finite number
of ways to choose A—, and if rank(A~) = n then z is uniquely determined by A—_. So there are at

most (Tg) basic solutions. Now we want to show that all these definitions are equivalent.

Theorem 1 (Characterization of Vertices). Let P be defined as above. The following are
equivalent:

(1) = is a vertex of P.
(2) x is an extreme point of P.
(3) x is a basic feasible solution of P.

Proof: = We first prove that (1) = (2). Let = be a vertex of P and suppose by way of contradiction
that = is not an extreme point of P. Since z is a vertex, 3¢ € R™ such that ¢z < ¢y for all
y € P,y # x. Because x is not an extreme point, there exist y,z € P, y,z # x, 0 < A < 1 such that
=My + (1 —\)z. Therefore ¢’z < ¢!y and ¢’z < ¢T'z. Thus

o< Ady+ (1 -=Nclz=c"Oy+ (1 -N)z2) =cz
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This gives us a contradiction, so x must be an extreme point.

We now prove (2) = (3), by proving the contrapositive, that =(3) = —(2). If z is not a basic
feasible solution and =z € P, then the column rank of A_ is less than n. Hence there is a direction
vector 0 # y € R" such that A_y = 0 (i.e. the columns of A— are linearly dependent). We want
to show that for some € > 0, x + ey € P and x — ey € P. Then we will have shown that x can be
written as a convex combination of two other points of P, since then z = 1 (z +ey) + 1(z — ey) ,
which contradicts « being an extreme point. To show that x 4+ ey € P and x — ey € P, we want to
show that

For the first inequality we have that
A_(z+ey) =A_x+eA_y=A_x =b_

since A—y = 0. Showing the third is similar.

For proving second we can find the appropriate € > 0, we first note that since Acx < b,
bo—A_-x > 0, so we can choose a small ¢ > 0 such that eA.y < b.—A.x and —cA.y < b.—A.x.
Thus for showing the second inequality we note that

Ac(r +ey) = Aca +eAcy < Acx + (b — Acz) = be

by our choice of . Showing the fourth inequality is similar.
Finally, we prove (3) = (1). Let I = {i: a;z =b;} . Set c=—)",.;al. Then

ch:Zaix: —Zbi,

icl icl
and for any y € P,
B SRR I
ici il

by the feasibility of y. Then it must be the case that ¢’y = ¢’z only if a;y = b; for all i € I.
Thus A_y = b—. However, since x is a basic feasible solution, A— has rank n, so that A_z = b_

has a unique solution . Then if ¢z = ¢y, it must be the case that = y. Hence we have that

c'z = ¢y implies that 2 = y and ¢’ < ¢y for all y € P, and thus z is a vertex. U

2 Convex Hulls

We now look at another way of specifying a feasible region.

Definition 5 Given vy, vs,...,v € R, a convex combination of vy,vs,..., v, 18 v = Zle Aiv;
for some \; such that \; > 0 and Zle A=1.
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Definition 6 For Q = {v € R" : v is a convex combination of vi,ve,...,v;}, we say that Q is a
convex hull of vy, v, ..., vk, and we write Q = conv(vy,ve, ..., V).

Definition 7 For QQ the convex hull of a finite number of vectors vi,vs, ..., vk, Q is a polytope.
Now we will do some exercises to develop intuition about convex hulls.
Lemma 2 Q is convex.
Proof: Pick any x,y € (). This implies that
T = Zle o;v; o >0 Zle o; =1,
y=3"F B Bi=0 NI Bi=L
For X € [0, 1], then

k k
Ax + (1 — /\)y = )\Zaivi—i— (1 —)\)Zﬁﬂ}i
=1 =1

k

= > Pai+ (1= NBiu:

i=1
Then we know that Aoy + (1 — X)3; > 0 for all 4, and that
k

K
> (ai+ (1= X1)B:) :)\Zaz‘Jr(l—)\)Zﬂi =1

i=1
Thus
k
A+ (1= Ny =Y dw;,
i=1
where 6; = Aa; + (1 — \)G;, so that & > 0 for all i, and S.F_ 6, =1. Thus e+ (1 - Ny e Q. O
Observation 1 Any extreme point of a polytope Q = conv(vi,ve,...,v;) is v; for some j =
1,2,... k.
Next time we will discuss difference between polytopes and polyhedron. To get started let’s
answer the following questions:

e QQ1: Is any polytope a polyhedron?

e Al: Yes! A polytope is always a polyhedron (We will prove this in later lectures).

e (Q2: When is a polyhedron a polytope?
e A2: A polyhedron is almost always a polytope. A bounded polyhedron is a polytope.

We can give a counterexample to show why a polyhedron is not always but almost always
a polytope: an unbounded polyhedra is not a polytope. Specifically two parallel lines form a
polyhedron that is not a polytope; this polyhedron has no extreme points and so by the observation
above is not a polytope. Similarly, the positive orthant has only one extreme point, and by the
observation above is not a polytope.
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No extreme points

Cannot carrespond to
convex hull of anything

Figure 4: Examples of unbounded polyhedra
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