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Problem:
e One has a large collection of p-values, p1,...,pn

e Need to know the proportion that came from a true Hy

— useful, e.g., to estimate the false discovery rate
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Recent paper:
Langaas, Ferkingstad, and Lindqvist (2005, JRSS-B)
e Surveys earlier work on this topic
— Estimator of Schweder and Spjgtvoll

_ #H{p; > A}
 on(1= )

T(A)

* A\ estimated by a bootstrapping (Storey, 2002) or
spline-smoothing (Storey and Tibshirani, 2003)

e Proposes new estimators

— Estimate the marginal density of the p-values at 0 by
« Grenander decreasing density estimator
x longest-constant interval estimator

x convex-decreasing estimator
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Topic of this talk — semiparametric estimator:

o {(pi, 1)}, are iid
o let
7o = P(p; € null region)

e g(u) = density of u; under Hy
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e marginal cdf of p; is
Fy(p;mo) = mop + (1 — 770)/ Fou(ps wg(p)dp (1)
0

e denote marginal pdf by f,(p;mo).
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Figure 1: Density of the p-value from a z-test of Hy : u = 0 versus
Hi:p > 0when u = 1. The lower plot zooms in on the region where

the density is concave.
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e model g as g(u; B)

— ¢g(-;+) is a known function
— B is a vector of parameters

— will use linear splines

o let F,(-;mo,B) be given by (1) with g(u) replaced by g(u; 8).
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Weighted penalized least-squares

o let [;,c;,r;, and w; = r; — [; be the left edge, center, right edge,
and width of the ¢th bin, 2 = 1,..., Npin

o let My,..., Mp,,  be the bin counts

bi
o

is an unbiased estimate of

_ Eyp(lismo, B) — Fp(ri; mo, B)

wy

mi(ﬁ()? ﬂ)

~ fp(ci;mo)
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e estimate (mg, B) by minimizing the penalized sum of squares is

Nbin

SS(mo, B;0) =D {yi - mi(mo, )} +2Q(8)  (2)

—A=0
— Q(B) is a roughness penalty
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Spline model for ¢

e g will be modeled as a linear spline and estimated using the
B-spline basis

e ¢ is assumed to have support contained in [0, p*]

e spline will have K knots, 0 = k1,...,kx = u*, equally spaced
between 0 and u*

10
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e DB-splines are normalized to be densities
— not essential, but helpful

— any convex combination is a density

o let

9 B) = 3 BiBu(u)
k=1

where 3, > 0 for all £ and 25:_11 Br = 1.

11
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Figure 2: B-splines with 7 knots and ©* = 6 used to model g. Each

B-spline is normalized to be a density. The B-spline with support

5, 6] is shown as a dashed line and is not used in the model for g

because it is discontinuous at 6.
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define 61 = mp and 01 = (1 — 7)) Bk for k=1,... K —1
define @ = (01,...,0x)"
let Z1(p) = p be the (uniform) cdf of the p-values under Hy

fork=1,...,K —1,let Zy11(p) = [ Fp.(p; 1) Br(p)dp be the
marginal cdf of a p-value if the densﬂzy of u is Bk

the marginal cdf of a p-value is modeled as

K
= k21 (p), (4)
k=1
where
K
Op >0, Vk, and Y 6p =1 (5)

k=1
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e The roughness penalty is

K-1

QO) = (201 —6:)*+ ) (0 —br41)’

(1 —m)1 3 {glmn) — glmen))?

14
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e the sum of squares is

Niin K—1 2
SS(0;\) = Z {yz — Z ekZz',k—i—l}
i—1 k—0

+ A {(292 — 05)° + i (6, — ekﬂ)?}

k=3
= |y —Z0]*> + 0" {(DA)"DA} 9,

where

Y = (Y15 YNpa) '

Z is the Ny;, X K matrix whose 7, jth element is

Zij =Zj(ri) — Z;(li) }w;

A = diag(0,2,1,...,1)

D is a (K —2) x K “differencing matrix” whose ith row has
+1 in column ¢ 4+ 1, —1 in column 7 4 2, 0 elsewhere

15
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e minimizing SS(@; \) is equivalent to minimizing
f10+050"HO (6)
where

~f=-y'Z
~H=Z7Z"Z+ ) ATD'DA,

e the constraints are
0 >0and1'0=1, (7)
— 1 is a K-dimensional vector of ones

e approximate GCV — use GCV for the unconstrained estimator

16
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Two semiparametric estimators of 6:

® Togem,1 — 01

o ﬂsem,Q = estimated density at 1 Recall:

K
Fo(p;0) = 0k Zk(p)
k=1
Therefore,

K
7/Tasem,Q — Z 012} (D)
k=1 p=1

17
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Recall:

e 7Z1(p) = p is the (uniform) cdf of the p-values under H

o fork=1,...,K —1,let Zy41(p) = [ Fp(p; ) Br(p)dp is the
marginal cdf of a p-value if the densﬂzy of u is Bk

e therefore

> 7TO.fsem 1
p=1

Tosem,2 = 01 + ZHk/fpm p; 1) B (1) dpe

k=2
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Simulation study

e one-side z-test

— p =0 versus p > 0 based on Z ~ N(u,1)

® g 1S beta(bl, b2> on [,uminnumax]

e Gr-M and LCI-M are the Grenander and longest constant
interval estimator estimators using M equally-spaced order
statistics

— M = n gives standard Grenander and LCI estimators

19
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Gr-50 | Gr-500 | Gr-5000 || LCI-50 | LCI-500 | LCI-5000

3.0231 | 23.3634 | 95.7562 || 1.9185 4.2623 12.6780

Table 1: 1000 x MSE for six estimators with n = 5000, 7wy = 0.8000,
tmin = 0, max = 4, by = 2, and by = 2. Each MSE is based on
25 Monte Carlo simulations. The standard errors of the MSE values

are roughly 1/2 the MSE values themselves or smaller.
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Figure 3: Comparison of Gr-25, Gr-1000, LCI-25, LCI-1000 estima-
tors. The top and bottom rows are different data sets, both from

Case #3.
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——Cases 1,3
0.5 - - -Cases 2,4/
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Figure 4: The two non-null densities of 1 used in the simulations.
Their values of (ftmin, max, 01, 02) are (0, 4, 1, 2) for Cases 1 and 3,
and (0.5, 4.5, 3, 2) for Cases 2 and 4.

22
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Case #1 Case #2 | Case #3 Case #4

o 0.95 0.95 0.7 0.7

[bmin, Mmax, 01, b2 0,4,1,2 | 0.5,4.5,3,2 | 0,4,1,2 | 0.5,4.5, 3, 2
%Bsem,la K =8, wt 0.3759 0.3555 1.6042 0.8240
ﬁasem,Zv K =8, wt 0.3014 0.1878 2.3984 0.3466
ﬁsem,l»K = 16, wt 0.4694 0.2974 1.8562 1.0424
ﬁsem,%K = 16, wt 0.2961 0.1635 2.5801 0.4004
Gr-10 0.6609 0.8513 4.4478 0.4323

Gr-50 4.0509 4.4439 2.5229 2.3228
Gr-250 16.8678 17.7898 6.5489 9.6928
LCI-10 0.7541 0.7012 4.6142 0.4575
LCI-50 2.2739 1.6569 5.4461 1.4849
LCI-250 3.1757 2.3155 10.2505 2.1253

Table 2: 1000 x MSE. 1500 Monte Carlo samples per case.
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Figure 5: Semiparametric estimates of f,, the density of the p-values,
from six independent data sets from Cases #3 and #4.
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Features of semiparametric estimators:
e accurate (small MSE and bias)
e shape-preserving
e fully automatic

e can be computed very rapidly

25



