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Example | (courtesy of Rich Canfield, Nutrition, Cornell)
@ blood lead and intelligence measured on children
@ Question: how do low doses of lead affect 1Q?

o important since doses are decreasing with lead now out of
gasoline

o several IQ measurements per child
e so longitudinal

o Examples

@ nine “confounders”
e e. g, maternal IQ
o need to adjust for them

o effect of lead appears nonlinear
e important conclusion



Two Examples
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Thanks to Rich Canfield for data and estimates

Example Il (in Ruppert, Wand, Carroll (2003), Semiparametric
Regression

Two Examples

© age and spinal bone mineral density measured on girls and
young women
@ several measurements on each subject

@ increasing but nonlinear curves



Spinal bone mineral density data
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What is needed to accommodate these examples

We need a model with
@ potentially many variables

@ possibility of nonlinear effects

Introduction

o random subject-specific effects

The model should be one that can be fit with readily available
software such as SAS, Splus, or R.




Underlying philosophy

Linear

@ minimalist statistics

o keep it as simple as possible
Introduction @ build on classical parametric statistics
© modular methodology

@ so we can add components to accommodate special
features in data sets

Outline of the approach

@ Start with linear mixed model
o allows random subject-specific effects
e fine for variables that enter linearly
o Expand the basis for those variables that have nonlinear
effects
Introduction o we will use a spline basis
o treat the spline coefficients as random effects to induce
empirical Bayes shrinkage = smoothing
o End result
o linear mixed model from a software perspective, but
o nonlinear from a modeling perspective

(Much like polynomial regression, but without the drawbacks of
polynomials.)
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Examples of predictor variables:
@ X;1 = blood lead concentration of ith child
o Xpp = Xfl
o X;3 = 1if ith child lives with both parents (is 0 otherwise)

In the standard linear model:

® €1,...,€, are independent with a constant variance

Y = o+ B1Xi + B X2 + - - + B, X} + other variables + ¢;

o This is an example of basis expansion

@ But polynomials are not nearly as good as splines at
approximating other nonlinear functions



Example: pig weights (random effects)

Example IIl (from Ruppert, Wand, and Carroll (2003))
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Random intercept model

Yy = (Bo + boi) + fiweek;

o Yy = weight of ith pig at the jth week

@ [Jy is the average intercept for pigs

@ by; is an offset for ith pig

@ So (8 + boi) is the intercept for the ith pig




Are random intercepts enough?

Example IlI
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Random lines model

Yij = (Bo + boi) + (B1 + bii) week;

@ (3 is the average slope

@ by is an adjustment to slope of the ith pig
@ So (81 + bi;) is the slope for the ith pig

@ by; and by; seem positively correlated

o makes sense: faster growing pigs should be larger at the
start of data collection




General form of linear mixed model

o X; = (Xi,...,Xyp) and Z; = (Zu, . .., Zi;) are vectors of
predictor variables

o B =(f1....,0B,) is a vector of fixed effects
o b= (by,...,by) is a vector of random effects

o b~ MVN{0,5(0)}

o 0 is a vector of variance components
o Model is:

Y, =X]B+Zb+e¢

o Note use of inner product notation:

P q
X[B=> XyB and Zib ="y Zyb;

=1 j=1

Estimation in linear mixed models

o 3 and @ are the parameter vectors
o estimated by
e ML (maximum likelihood), or
e REML (maximum likelihood with degrees of freedom
correction)
@ b is a vector of random variables
o predicted by a BLUP (Best linear unbiased predictor)
e BLUP is shrunk towards zero (mean of b)
o amount of shrinkage depends on 0




Estimation in linear mixed models, cont.

@ Random intercepts example:

Yij = (Bo + boi) + Prweek;

o high variability among the intercepts = less shrinkage of
by; towards 0
o extreme case: intercepts are fixed effects
o low variability among the intercepts = more shrinkage
@ extreme case: common intercept (another fixed effects
model)

Comparison between fixed and random effects
modeling

o fixed effects models allow only the two extremes:
e no shrinkage
e maximal shrinkage to a common intercept
o mixed effects modeling allows all possibilities between
these extremes



Splines

Linear

@ polynomials are excellent for local approximation of
functions

@ in practice, polynomials are relatively poor at global
approximation

@ a spline is made by joining polynomials together

o takes advantage of polynomials strengths without
inheriting their weaknesses

@ splines have "maximal smoothness"

Splines have "maximal smoothness"

Is this a linear spline?

NO: has a jump.

15
L

0.0
n

0.0 0.2 0.4 0.6 0.8 1.0

YES: kink s okay

0.2 0.4 0.6 0.8 1.0




Is this a quadratic spline?

NO: has a jump NO: has a kink
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“Positive part” notation:

zp = x, ifz>0 (1)
= 0,ifz<0 ()

Linear spline:

m(z) = {0 +,31I} + {bi(@ = K1)y + -+ br(z — HK)+}

@ K1,..., kK are “knots”
@ by,..., bk are the spline coefficients



m(x) = fo+ Sz + bi(z — K1) + -+ bk (z — KK )+

o slope jumps by b, at kg, k=1,..., K



m(x) = fo + iz + -+ Bpa’
+bi(z— k)] + -+ bz — kg)Y

o pth derivative jumps by p! by, at Ky

o first p — 1 derivatives are continuous



Quadratic “plus” function
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LIDAR data: ordinary Least Squares
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LIDAR data: penalized least-squares

N
Mi Is
Sempees @ Use matrix notation:
R

m(X;) = Bo+ B Xi+ -+ BpX]
Fh1(Xi = k) 4+ b (K = )L
=X]Bx+B(X)b
e Minimize
n

3 { Y, — (XIByx + BT(X,-)b)}Z +AbTDb.

i=1

Penalized least-squares, cont.

N
CE 3 o From previous slide: minimize

Semipara-

R

- T T 2 T
> {¥i- (XTBx +BT(X)b)} +Ab'Db.
i=1
o Ab'Db is a penalty that prevents overfitting
o D is a positive semidefinite matrix
e so the penalty is non-negative
o Example:
D=1
@ \ controls that amount of penalization

@ the choice of A is crucial
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The smoothing parameter A can be chosen automatically using
mixed model software

From earlier slide:

> {¥ ~ XTByx +BT(xXgm)}" + AbTDB.

i=1

Let X have row (X7 BT(X;)). Then

3 —1
</%X> = {XTX + A blockdiag(0, D)} ATY.

o This is a ridge regression estimator

@ Also, as we will see, it is a BLUP in a mixed model and an
empirical Bayes estimator



@ Assume the linear mixed model:
Y=XB+Zb+e

where
o bis N(0,07%;)
o €is N(0,0%1)
o XJ3 are the “fixed effects”
e Zb are the “random effects”

e Henderson’s equations.

B\ (X'x X'z \ ' /XTY
b)  \Z'X ZTZ+)%;! z'y )

From previous slides:
Ridge regression: Let X' have row (XT BT(X;)). Then

3 -1
<ﬂgx> - {XTX £ blockdiag(0,0,D)} XTY.
Linear mixed model:
B\ (x'x X'z \'/XTy
b)  \2™X Z7Z+az;! VARG

-{x 2" (x Z)+)\blockdiag(0,2;1)}7l x 2"y



To choose A use:
@ one of several model selection criteria:
o cross-validation (CV)
o generalized cross-validation (GCV)
e AIC
o Cp

@ ML or REML in mixed model framework

For the jth measurements on the ith subject:

1Qy = by + m(leady) + B X} + - + BLXE + e

o m(-) is a spline
o include the population average intercept
@ b; is a random subject-specific intercept
o E(b;)=0
o model assumes parallel curves
° Xf} is the value of the ¢th confounder, £ =1,...,L



10

Spinal bone minera densiy

SBMD; ; = U; + m(age; ;) + €ij,

i=1,....,m=230, j=i... n.
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Random effects

Linear
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Variability bars on 7 and estimated density of U;

Broken down by ethnicity
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SBMD; = Ui+ m(age;) + fiblack; + (rhispanic;
+0swhite; +e5, 1<j<mn;, 1<i<m.

Asian is the reference group.

Only requires an expansion of the fixed effects by adding the
columns

black; hispanic; white;
black; hispanic; white;
black,, hispanic,, white,,

black,, hispanic,, white,



010

005

contrast with Asian subjects

00

Black Hispanic White

o In this model, the age effects curve for the four ethnic
groups are parallel.

o Could we model them as non-parallel?

o Might be problematic in this example because of the small
values of the n;.

o But the methodology should be useful in other contexts.



Bivariate Additive model:

Yi = m(Xi) + ma(Z) + e

o Generalizes easily to more than two predictors

o No interactions: so easy to interpret

Bo
BeaXi+ bei(Xi — kz1)y + - 4 bk (Xi — Kok, )+
Be1Zi+ boi(Zi — k21) 4+ + bk (Zi — Kok +

€

+ o+ o+



no need for backfitting

o
@ computation very rapid
@ no identifiability issues
o inference is simple

Data:
o daily mortality
o daily weather variables
o TSP = total suspended particulate matter

Additive Model:

\/mortality, = fy+ BTSP,+ fi(t)+ fo(temperature,)
+ f3(humidity,) + ¢
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generalized regression
e response is not Gaussian
e e. g., logistic regression for a binary response
@ variance functions
o for nonconstant response variance
@ measurement error
o when X is measured with error
@ bivariate smoothing
e e. g., for spatial data
o spatially adaptive smoothing
o where there are regions of high and of low curvature



Summary

!
Mi

i o Mixed models allow subject-specific effects to be

R similar but not the same

@ Splines are excellent at approximating nonlinear
functions

o Splines can be embedded in mixed models by treating
the spline coefficients as random effects

o The amount of smoothing can be determined
automatically by REML

o Modular statistical methodology is essential in practice
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