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Abstract

We propose likelihood and restricted likelihood ratio tests for goodness-of-fit of nonlinear
regression. The first order Taylor approximation around the MLE of the regression parameters
is used to approximate the null hypothesis and the alternative is modeled nonparametrically
using penalized splines. The exact finite sample distribution of the test statistics is obtained
for the linear model approximation and can be easily simulated. We recommend using the
restricted likelihood instead of the likelihood ratio test because restricted maximum likelihood
estimates are not as severely biased as the maximum likelihood estimates in the penalized splines
framework.

Short title: LRTs for nonlinear regression

Keywords: Fan-Huang goodness-of-fit test, mixed models, Nelson-Siegel model for yield curves,
penalized splines, REML.

1 Introduction

Nonlinear regression models used in applications arise either from underlying theoretical principles

or from the trained subjective choice of the statistician. From the perspective of goodness-of-fit

testing these are null models and, once data become available, statistical testing may be used to

validate or invalidate the original assumptions.

There are three main approaches to goodness-of-fit testing of a null regression model. The

standard approach is to nest the null parametric model into a parametric supermodel (sometimes

called the “full model”) that is assumed to be true and use likelihood ratio tests (LRTs). This
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approach is very popular in linear regression and it makes sense when a correct supermodel is

available. However, in some situations it is impossible to find a correct alternative parametric

model.

A second approach is to obtain residuals from the regression analysis under the null model

and base the test statistics on the estimated residuals. Brown, Durbin and Evans (1975) proposed

the well known CUSUM statistic based on recursive residuals. Similar in spirit to the CUSUM

statistic, the QS statistic is based on the least squares residual estimates and was proposed by

Gardner (1969), extended by MacNeill (1978), and further extended by Perron (1991) for testing

departures from a polynomial trend of a time series. Stute (1997) introduced a test using a marked

empirical process based on the residuals, Diebolt and Zuber (1999) developed a test for nonlinear

heteroscedastic regression models, and He and Zhou (2003) use quantile regression based on a

CUSUM process of the gradient vector. Another class of tests based on residuals are the the Von

Neumann type statistics (Hart, 1997). The appeal of such tests is that they do not require the

specification of an alternative model and the hope is that they detect fairly general forms of lack of

fit. However, tests based only on the null hypothesis ignore information about possible alternatives

and thus may lose power with respect to parametric tests.

Our approach is to embed the parametric regression into a larger, semiparametric family

(e.g., the parametric nonlinear regression model plus a nonparametric spline). This approach has

been used for testing polynomial regressions by Cleveland and Devlin (1988), Azzalini and Bow-

man (1993), Hart (1997), Härdle, Mammen and Müller (1998), Crainiceanu and Ruppert (2004),

Crainiceanu, Ruppert, Claeskens and Wand (2004), but the extension to nonlinear regression ap-

pears to be new. The success of such an approach relies on the fact that under the null hypothesis

the fit is fully parametric and the distribution of the test statistic is usually easy to obtain. Also,

by specifying a flexible semiparametric alternative the power of tests could be improved, though a

power comparison would be needed to verify this conjecture.

In this paper we develop likelihood and restricted likelihood ratio tests, (R)LRTs, for testing the

null hypothesis of nonlinear regression against a general alternative modeled nonparametrically. By

nonlinear regression we mean that the conditional mean of the response variable given the covariates

has a known functional form that is nonlinear in the parameters. In nonparametric regression the

mean function has an unknown functional form and in this paper is modeled using basis functions

(e.g., truncated power functions or B-splines for penalized splines). We propose to use a first order
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Taylor approximation of the nonlinear function to obtain an approximate linear model and then

use a LRT or RLRT for linearity as described, for example, by Crainiceanu and Ruppert (2004).

We find that LRTs have poor power because the MLE strongly underestimates the smoothing

parameter of penalized splines. Therefore, we recommend using the RLRT rather than the LRT.

Linearization of nonlinear regression models using a first order Taylor expansion of the con-

ditional mean around the nonlinear MLE has been the standard tool for obtaining approximate

confidence intervals for regression parameters (e.g. Bates and Watts, 1988; Seber and Wild, 1988).

In this paper we use the linear Taylor approximation as the null model in a goodness-of-fit testing

procedure. Deciding whether this approximation makes sense for a given data set has to be based

on parametric tests of non-nested competing models. We recommend plotting the nonlinear MLE

fit and its linear Taylor approximation on the same graph. Very often the two curves are visu-

ally indistinguishable, provided that a large enough sample is available and the nonlinear curve is

smooth enough.

2 Testing for a nonlinear regression against a general alternative

Suppose that we want to test

H0 : Y = Lγ + f(X , δ) + ε , (1)

where L is the matrix of covariates that enter the model linearly, f(X , δ) = {f(x1, δ), . . . , f(xn, δ)}T ,

f(x, δ) is a nonlinear function in the parameters δ, n is the total number of observations, X has

ith row equal xT
i which is the i-th value of the covariate x, and ε has a N(0, σ2

ε In) distribution.

Denote by β = (γT , δT )T and by β̂n =
(
γ̂T

n , δ̂
T

n

)T
the MLE of β for model (1).

Our testing methodology consists of the following steps:

Step 1. Obtain the MLEs of parameters under the nonlinear regression model (1).

Step 2. Use a first order (linear) Taylor approximation of the nonlinear regression function around

the MLEs of the parameters.

Step 3. Define the test for H0 against a general alternative as the (R)LRT for the linear approxi-

mation at Step 2 against a general alternative. The variability of MLE’s is ignored and critical

values are obtained using finite sample results derived by Crainiceanu and Ruppert (2004)

for the linear case.
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The linear Taylor approximation of f(x, δ) is

m(x, δ) = f(x, δ̂n) +
{

∂

∂δ
f

(
x, δ̂n

)}T (
δ − δ̂n

)
. (2)

The linear part of the regression described in model (1) is left unchanged because the first order

Taylor approximation does not affect linear functions. In the following we will treat δ̂n as a constant,

in which case m(x, δ) is a linear function in δ. We replace the null hypothesis (1) with

H0 : Y = Lγ + m(X , δ) + ε . (3)

where m(X , δ) = {m(x1, δ), . . . ,m(xn, δ)}T . Let t be the number of δ parameters, W the n × t

dimensional matrix with the i-th row equal to

W T
i =

{
∂

∂δ1
f(xi, δ̂n), . . . ,

∂

∂δt
f(xi, δ̂n)

}
,

and y = Y − f(X , δ̂n) + Wδ̂n. The null model (3) is approximated by the following linear model

y = Lγ + Wδ + ε . (4)

The second step is to embed the function m(x, δ) into a larger class of functions and use

R(LRT)s for testing model (3) against a general alternative. The linearization (2) is needed to

define RLRTs and could be omitted if only LRTs were used. However, as will be shown, for the

hypotheses we will consider LRTs have serious problems, and the use of RLRTs is highly desirable.

For simplicity, we now assume that the covariate is one-dimensional and denote it by x instead

of x. The extension to the multivariate case will be discussed later. To model the alternative we

consider the class of spline functions which is flexible enough to describe a large class of functions

and suitable for testing

s (x,θ) = α0 + α1x + . . . + αpx
p +

K∑

k=1

bk (x− κk)
p
+ , (5)

where θ = (α0, . . . , αp, b1, . . . , bK)T is the vector of regression coefficients, and κ1 < κ2 < . . . < κK

are fixed knots. Following Ruppert (2002), we consider a number of knots that is large enough

(typically 5 to 20) to ensure the desired flexibility, and κk is the sample quantile of x’s corresponding

to probability k/(K + 1), but results hold for any other choice of knots.

The basic idea is to test the null model (3) against the alternative model

HA : Y = Lγ + m(X , δ) + s(X , θ) + ε , (6)
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where s(X , θ) = {s(x1, θ), . . . , s(xn, θ)}T . To avoid unidentifiable models under the alternative,

the function s(x,θ) includes only those monomials that do not appear already in model (4). For

example, if Lγ contains an intercept then the spline function will not contain the monomial of

degree zero.

To avoid overfitting the data, the criterion to be minimized is a penalized sum of squares
n∑

i=1

{
yi −LT

i γ −W T
i δ − s (xi, θ)

}2
+

1
λ

θT Dθ , (7)

where y = (y1, . . . , yn), λ is the smoothing parameter, LT
i is the i-th row of the matrix L, and D is

a known positive semi-definite matrix. The penalty
∫ {

m(2)(x,θ)
}2

dx used for smoothing splines

can be achieved with D equal to the sample second moment matrix of the second derivatives of

the spline basis functions. However, in this paper we focus on matrices D of the form

D =
[

0p+1×p+1 0p+1×K

0K×p+1 Σ−1

]
,

where Σ is a known positive definite matrix and 0ml is an m × l matrix of zeros. This type of

matrix D penalizes the coefficients of the spline basis functions (x− κk)
p
+ only and will be used in

the remainder of the paper. A standard choice is Σ = IK but other matrices can be used according

to the specific application.

Let X be the n × (p + 1) matrix with the i-th row Xi = (1, xi, . . . , x
p
i ) with some of the

columns possibly deleted if they already appear in L, and Z be the n ×K matrix with i-th row

Zi =
{
(xi − κ1)

p
+ , . . . , (xi − κK)p

+

}
containing truncated power functions of xi. Observe that the

penalized spline fitting criterion (7) when divided by the variance of the error process, σ2
ε , can be

written as
1
σ2

ε

‖y −Lγ −Wδ −Xα−Zb‖2 +
1

λσ2
ε

bTΣ−1b , (8)

where α = (α0, . . . , αp)
T and b = (b1, . . . , bK)T . Define σ2

b = λσ2
ε , consider the vectors γ, δ and α

as unknown fixed parameters and the vector b as a set of random parameters with E(b) = 0 and

cov(b) = σ2
bΣ. If (bT , εT )T is a normal random vector and b and ε are independent then model (6)

has a linear mixed model (LMM) representation (Brumback et al., 1999):

y = Lγ + Wδ + Xβ + Zb + ε, cov
(

b
ε

)
=

[
σ2

bΣ 0
0 σ2

ε In

]
. (9)

For this model E(y) = Lγ + Wγ + Xα and cov(y) = σ2
ε V λ, where

V λ = In + λZΣZT .
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In the LMM described in (9) L, W and X correspond to fixed effects and Z corresponds to random

effects or parameters. Also, (8) is, up to an additive constant, twice the negative log-likelihood.

3 Likelihood Ratio Tests

In Section 2 we described how we can approximate testing for nonlinear regression by testing the

null

H0 : Y = Lγ + m(x, δ) + ε ⇔ y = Lγ + Wδ + ε (10)

against the alternative

HA : Y = Lγ + m(x, δ) + s(x, θ) + ε ⇔ y = Lγ + Wδ + Xα + Zb + ε , (11)

where b and ε are independent and have N(0, σ2
bIK) and N(0, σ2

ε In) distributions respectively.

The null and alternative hypotheses can be written as

H0 : α = 0 and σ2
b = 0 vs. HA : α 6= 0 or σ2

b > 0 , (12)

which is testing for a null hypothesis that includes the assumption of zero random effects variance,

σ2
b = 0 in a LMM with one random effects variance component. Crainiceanu and Ruppert (2004)

defined likelihood ratio and restricted likelihood ratio tests for these type of hypotheses in the

framework of LMMs with one variance component and derived their finite sample and asymptotic

distributions.

Denote by X = [L|W |X] the design matrix of fixed effects under the alternative, by P =

In−X (X T X )−1 X T and by µs,n and ξs,n the K eigenvalues of the K×K matrices Σ1/2ZT PZΣ1/2

and Σ1/2ZT ZΣ1/2 respectively. Then for testing hypotheses described in equation (12) the null

finite sample distribution of the LRT is

LRTn
D= n

(
1 +

∑p+1
s=1 u2

s∑n−d
s=1 w2

s

)
+ sup

λ≥0
fn(λ), (13)

where us for s = 1, . . . ,K, ws for s = 1, . . . , n−d, are independent N(0, 1), the notation D= denotes

equality in distribution,

fn(λ) = n log
{

1 +
Nn(λ)
Dn(λ)

}
−

K∑

s=1

log(1 + λξs,n),
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and

Nn(λ) =
K∑

s=1

λµs,n

1 + λµs,n
w2

s , Dn(λ) =
K∑

s=1

w2
s

1 + λµs,n
+

n−d∑

s=K+1

w2
s .

Here d is the number of columns of X and p + 1 is the number of columns of X.

The RLRTn is defined like the LRTn using the restricted likelihood (Patterson and Thompson,

1971) instead of the likelihood function. Because this requires computing the likelihood of residuals

after fitting the fixed effects, RLRTn is appropriate only if the fixed effects are the same under the

null and alternative, that is if we test for σ2
b = 0 only. This requirement is met when the linear

part of the regression function already contains the monomials that appear in the spline function.

For example, in many cases the regression function contains at least an intercept and the RLRTn

can be used with penalized piecewise constant splines. When the regression function does not

contain an intercept, one can drop the intercept from the spline model as well; an example where

this is appropriate is given in Section 7. Another option is to add an intercept and possibly other

monomials to the regression function, at least for the purpose of testing goodness-of-fit; see the

discussion of the three models in (15) in Section 4.

Crainiceanu and Ruppert (2004) showed that in this case

RLRTn
D= sup

λ≥0

[
(n− p) log

{
1 +

Nn(λ)
Dn(λ)

}
−

K∑

s=1

log(1 + λµs,n)

]
, (14)

where notations are the same with the ones in equation (13). The equations (13) and (14) provide

the spectral decompositions of the finite sample distributions of (R)LRTn statistics in terms of

the eigenvalues µs,n and ξs,n and independent N(0, 1) random variables. While the form of these

expressions may seem complex, both finite sample distributions are, in fact, very easy to simulate.

Crainiceanu and Ruppert (2004) provided a fast simulation algorithm for these distributions and

showed that the finite sample and asymptotic results differ from the results of Self and Liang (1987)

and Stram and Lee (1994) derived for data that can be partitioned into a large number of i.i.d.

subvectors.

4 Choosing the test: likelihood or restricted likelihood?

In the context of penalized splines, Crainiceanu, Ruppert and Vogelsang (2003) showed that the

ML estimator of σ2
b has a strong downward bias, thus suggesting that LRTn tends to favor the null

model too often, which negatively affects its power. REML is also biased but the bias is less severe
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than for ML. Crainiceanu, Ruppert, Claeskens and Wand (2004) showed in a simulation study that

LRTn has indeed less power than RLRTn when testing for polynomial regression against a general

alternative.

As an example of exactly how severe the effects of bias can be, consider the case of testing linear

regression

H0 : Y = γ0 + γ1x + ε

versus a general alternative modeled by a linear spline

HA : Y = γ0 + γ1x +
K∑

k=1

bk(x− κk)+ + ε .

Following a procedure similar to the one described in Section 2 this may be reduced to testing

H0 : σ2
b = 0 vs. HA : σ2

b > 0 .

It can be shown that the null distribution of LRTn in this case is practically point mass at zero.

This is a consequence of the MLE property of correctly identifying the null model almost 100% of

the time. Crainiceanu, Ruppert and Vogelsang (2003) calculated the probability mass at zero of

LRTn when σ2
ε remains constant and σ2

b > 0 increases (the true model is in the alternative) and

showed that this probability decreases very slowly to zero. This property is not desirable because it

means that, with high probability, the ML mistakenly identifies the null model as the true model.

A related problem is that it is difficult to propose α-level tests when the null distribution of the test

is very nearly point mass at zero. One solution would be to model the alternative as a quadratic

instead of a linear spline

HA : Y = γ0 + γ1x + α2x
2 +

K∑

k=1

bk(x− κk)2+ + ε

and transform the problem into testing

H0 : α2 = 0, σ2
b = 0 vs. HA : α2 6= 0, σ2

b > 0 .

In this case it can be shown that the finite sample distribution of LRTn is well approximated by a

chi-squared distribution with one degree of freedom. While this solves the problem of designing an

α-level test, the bias introduced by ML estimation will continue to affect the power of the test.

In contrast, REML is less biased than ML and the power of RLRTn is better than the power of

LRTn. Because REML has better properties than ML and can only be defined for linear models,
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we prefer to first linearize the model (1) and then embed it in a LMM’s. However, by inspecting

the hypotheses (12) we see that the null contains restrictions on the fixed effects parameters. More

precisely, the coefficients of the monomials in the spline function that are not already contained in

the linear part of the regression are constrained to zero under the null. There are two ways to use

RLRTn in this situation. One way is to ensure that there are no restrictions on the parameters

α. This can be achieved if all parameters α are already contained in the regression. For example

if the nonlinear regression contains an intercept and a piecewise constant spline (p = 0) is used to

model the alternative then no restrictions are imposed on the α parameters. If the null regression

contains a linear trend the same property can be achieved using a linear spline. When this strategy

does not work testing (10) versus (11) can be done, testing sequentially model M2 versus model

M3 and model M1 versus M2 where

M1 : y = Lγ + Wδ + ε
M2 : y = Lγ + Wδ + Xα + ε
M3 : y = Lγ + Wδ + Xα + Zb + ε .

(15)

where γ, δ, α are fixed effects parameters and b ∼ N(0, σ2
b ) are random effects or parameters.

Both M1 and M2 are fixed effects linear models with M1 nested within M2. Therefore, standard

LRTn (or the equivalent F-test) can be used to test M1 versus M2. M3 is a linear mixed model

and testing M2 versus M3 is equivalent to testing whether the random effects variance σ2
b is zero.

Unlike the case of testing directly M1 versus M3, testing M2 versus M3 does not involve restrictions

on the fixed effects parameters and RLRTn can be used.

5 Testing for an exponential regression function

Suppose that we are interested in testing the null of exponential regression

H0 : Yi = γ1 + δ1 exp (δ2xi) + εi . (16)

This regression is a particular case of the regression equation (1) where the L matrix is simply

an n× 1 column of ones, γ = γ1, δ = (δ1, δ2)T and

f(x, δ) = δ1 exp (δ2x) .

As discussed in Section 2 we first linearize the nonlinear part of the regression. Note that

∂

∂δ1
f(x, δ) = exp(δ2x) ,

∂

∂δ2
f(x, δ) = δ1x exp(δ2x) .
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For a given set of data, let (γ̂1, δ̂1, δ̂2)T be the MLE of (γ1, δ1, δ2)T for model (16). We approximate

the null hypothesis (16) with its linearized version

H0 : Yi = γ1 + m(xi, δ) + εi , (17)

where

m(x, δ) = δ̂1 exp
(
δ̂2x

)
+ exp

(
δ̂2x

)
(δ1 − δ̂1) + δ̂1x exp

(
δ̂2x

)
(δ2 − δ̂2) ,

and δ̂ is treated as constant, just like it would be treated in a parametric bootstrap. We can model

the alternative using a piecewise constant spline

HA : Yi = γ1 + m(xi, δ) +
K∑

k=1

biI(xi > κk) + εi , (18)

where I(·) denotes the indicator function, bi are i.i.d. N(0, σ2
b ) independent of εi which are i.i.d.

N(0, σ2
ε ). We do not need to add an α parameter for the zero degree monomial of the spline because

the null model already contains the intercept γ1.

Let L be an n× 1 column of ones corresponding to the intercept, W be the n× 2 matrix with

the i-th row

W T
i =

{
exp

(
δ̂2xi

)
δ̂1xi exp

(
δ̂2xi

)}
,

yi = Y i − f(xi, δ̂) + W T
i δ̂ ,

and Z be the n×K matrix with the i-th row

Zi = {I(xi > κ1), . . . , I(xi > κK)} .

The alternative model can be written as

y = Lγ1 + Wδ + Zb + ε,

and testing the null (17) versus the alternative (18) is reduced to testing

H0 : σ2
b = 0 vs. HA : σ2

b > 0 ,

and RLRTn of these hypotheses can be used. Define X = [L|W ] and let µs,n be the K eigenvalues of

the matrix ZT PZ. The finite sample distribution of RLRTn can be obtained using the simulation

of its spectral decomposition (14).
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As examples we considered testing the null hypothesis of exponential regression (16) with n =

100, γ1 = 1, δ1 = 1, δ2 = −1, σε = 0.05. We used four sets of x’s in [0, 1] one for each of the

following distributions: equally spaced, uniform, BETA(5, 1) and BETA(1, 5). For each set of x’s

we simulated once a set of Y ’s from (16) and obtained the MLE of the parameters in the nonlinear

regression (16). We then obtained 100, 000 simulations from the distributions of LRTn and RLRTn

statistics using (13) and (14).

Not surprisingly, the null distribution of the LRTn has more than 0.99 mass at zero for each of

the four cases, which is consistent with our discussion in Section 4. The null distribution of RLRTn

changed very little over the four cases considered and had p0 = 0.6 probability mass at zero and

the 0.9, 0.95 and 0.99 quantiles of the distribution were approximately q0.9 = 1.23, q0.95 = 2.22 and

q0.99 = 4.82 respectively. In comparison, the quantiles for the 50 : 50 χ2
0 and χ2

1 are q0.9 = 1.64,

q0.95 = 2.71 and q0.99 = 5.41.

While the simulation results are enough to compute p-values for testing the exponential regres-

sion it may be helpful to have a theoretical distribution that provides tail probabilities. Consider

the two-parameter family of distributions of the random variables

a× U ×D

where a > 0 is an unknown parameter, U has a Bernoulli distribution with P (U = 0) = p and D is

a random variable with a χ2
1 distribution. To find a distribution that approximates well the finite

sample distributions of RLRTn we match the quantiles corresponding to probabilities 0.6 and 0.9

and obtain p = 0.6 and a = 0.93.

6 Level and power of the tests

Our proposed tests involve two approximations that can influence their size under the null: replacing

the nonlinear by a linear model and assuming that the MLE β̂ is fixed. We investigate the effect

of these approximations in the case of testing for an exponential regression, as described in Section

5. We compare our test with the TAN,1
n test of Fan and Huang (2001) both in terms of size under

the null and power. Note that if the null hypothesis is linear in the parameters, then our tests are

exact but TAN,1
n is not. Here the subscript n denotes the sample size.

We now investigate the size of these tests when the null is the exponential regression described

in equation (16). We use the RLRT described in Section 5 with equally spaced covariates in [0, 1]
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and the alternative modeled by a piecewise constant spline with K = 15 knots. We used 10, 000

simulations from the model (16) with γ1 = 1, δ1 = 1, δ2 = −1, σε = 0.05 and calculated RLRTn

and TAN,1
n . For RLRTn and TAN,1

n Table 1 reports the frequencies of exceeding the 1− α quantile

for different values of α. For TAN,1
n we used the upper quantile Table 1 from Fan and Huang

(2001). The worst Monte Carlo standard error is approximately
√

(0.1)(0.9)/10000 ≈ 0.3%. For

these examples, the approximate level of the RLRTn tends to be much closer to the true level than

for TAN,1
n , especially for smaller values of n.

Table 1: Level of tests in 10, 000 simulations

α TAN,1
50 TAN,1

50 LRT50 RLRT100

0.01 0.007 0.020 0.010 0.011
0.05 0.029 0.044 0.049 0.052
0.10 0.054 0.073 0.100 0.110

In a simulation study Fan and Huang (2001) showed that the TAN,1
n test performs well against

a variety of alternatives and we compare the power of this test with the power of the RLRTn where

the alternative is

Yi = γ1 + δ1 exp(δ2xi + dx2
i ) + εi (19)

and d = 0 corresponds to the null hypothesis. Figure 1–(a), (b) shows the power of TAN,1
n adjusted

and unadjusted for size compared with the power of the RLRTn. The unadjusted test uses the

critical values given by Fan and Huang (2001). The adjusted test uses critical values found by

simulation and therefore is exact. We used level α = 0.05 tests under the null. For RLRTn the

power curve adjusted for size is indistinguishable from the unadjusted curve. In both cases the

RLRTn test is more powerful than TAN,1
n over the relevant range of values of d.

In addition to this simulation study, Crainiceanu et al., (2004) provide a comparative simulation

power study for tests of linearity, including F, F-type, and Von-Neuman type tests in addition to

LRTn and RLRTn, the main conclusion being that RLRTn is easy to use and has good power

properties, while LRTn is less powerful due to large ML estimation bias in the variance component.
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7 Example: Price of zero-coupon bonds

An important problem in finance is to estimate spot rates from bond prices. We will use zero-coupon

bonds which pay no principal or interest until maturity and at maturity pay a fixed amount called

the par value. Let P (t) be the price of a zero-coupon bond maturing at time t expressed as a

percentage of the par value. Let r(t) be the spot rate, or yield, and let

D(t) = e−tr(t)

be the discount function. The yield r(t) is the average interest earned on a zero-coupon bond

maturing at time t. A commonly used model, e.g., by James and Webber (2000), is

P (ti)
100

= D(ti) + εi . (20)

The noise εi is due to a number of factors. For example, prices are from the last sale of a bond and

will be somewhat stale, with the prices of less liquid bonds typically being the most stale. Also,

some bonds sell at a premium because of special liquidity or other advantages but these effects

are not considered to be part of the yield function r(t) but rather are defined as noise (Tuckman,

2002).

A series of parametric models have been proposed to model the spot rate, and implicitly the

discount function. To illustrate our methodology we will use the STRIPS prices at the end of June

1994. The sample size of the data is n = 116. “STRIPS” is an acronym meaning “Separate Trading

of Registered Interest and Principal of Securities,” and a STRIPS is a synthetic zero-coupon bond

constructed from the coupon or principal payments of Treasury bonds (Tuckman, 2002). The data

come from the fixed income data base (Warga, 1995). As an illustration, we will test whether the

spot rate curve is given by the Nelson and Siegel (1985) model which is

r(t, δ) = δ0 + (δ1 + δ2t) e−δ3t . (21)

(As James and Webber (2000) mention, the Nelson and Siegel curve is suitable as a model for either

the spot rate or the forward rate which is the d/dt{t r(t)}. Here we are using the Nelson/Siegel

curve to model the spot rate.) To obtain starting values for the parameters δ for model (20) we

use the following fitting procedure proposed by Tuckman (2002)

− log {P (ti)/100}
ti

= δ0 + δ1e
−δ3t + δ2te

−δ3t + ei . (22)
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Division by ti creates severe heteroscedasticity, so estimates from (22) will be inefficient, but they

are satisfactory as starting values. For the parameter δ3 we considered a grid of 100 points equally

spaced on the log scale between [−3.5, 1.5 ]. For each fixed value of the δ3 on this grid, model (22)

is linear so the profile likelihood of δ3 can be computed easily. The initial parameter estimates

are obtained by maximizing the profile likelihood function over this grid of values for δ3 and then

obtaining the linear least-squares estimates of δ1 and δ2 corresponding to the maximizing value of

δ3. Figure 2 displays −log {P (t)/100}/t recorded in June 1994 versus time to maturity t for 116

bonds, as well as the estimated spot rates using model (21) using these estimates.

The estimated parameters using the grid search are used as initial values in the nonlinear

maximization algorithm of the likelihood of model (20) using the parametric form (21) for the spot

rate function. The residuals for this model are plotted in Figure 3. If δ̂ denotes the MLE of δ for

model (20) then the first order Taylor approximation is

P (ti)
100

= exp
{
−tir(ti, δ̂)

}
−W T

i δ̂ + W T
i δ + εi , (23)

where

W i =
{

∂D

∂δ0
(ti, δ̂),

∂D

∂δ1
(ti, δ̂),

∂D

∂δ2
(ti, δ̂),

∂D

∂δ3
(ti, δ̂)

}
.

As we discussed in Section 2 we treat δ̂ as fixed and fit model (23) as a linear model in δ. The

residuals from this fit are also presented in Figure 3.

To model the alternative for model (23) we used a penalized linear spline with K = 10 knots,

where the kth knot was the sample quantile of observed times to maturity corresponding to prob-

ability k/(K + 1). Thus, the alternative model was

P (ti)
100

= exp
{
−tir(ti, δ̂)

}
−W T

i δ̂ + W T
i δ + s(ti,θ) + εi , (24)

where s(ti,θ) is a spline function. Because the discount function D(·) has the property that

D(0) = 1 we used a spline function without intercept

s(t,θ) = α1t +
K∑

k=1

bk(t− κk)+ .

Using the same notations as elsewhere in the paper, note that the matrix L is the empty matrix

and we have the following three nested models

M1 : y = Wδ + ε
M2 : y = Wδ + Xα + ε
M3 : y = Wδ + Xα + Zb + ε ,

(25)
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where y is defined like in Section 5, X is an n× 1 vector with the i-th entry equal to ti, and Z is

an n×K matrix corresponding to random effects with the i-th row

Zi = {(ti − κ1)+, . . . , (ti − κK)+} .

Models M1 and M2 contain only fixed effects whereas M3 contains random effects b. Figure 3 shows

the residuals for model M3 which corresponds to the spline regression using REML estimation of

the smoothing parameter. Also, Figure 4 zooms in on the residuals for model M3, indicating that

the spline model can safely be considered as the full model.

Our goal is to test model M1 versus model M3. Table 2 indicates strong evidence against model

M1 because for this data set LRTn = 356.60 with a null finite sample distribution that can be well

approximated by a χ2
1 distribution. It may be surprising that the null distribution of LRTn when

testing M1 versus M3, that is testing α1 = 0 and σ2
b = 0, is well approximated by χ2

1 rather than

a 50:50 mixture of χ2
0 and χ2

1. It may be even more surprising that the distribution of LRTn when

testing M2 versus M3, that is testing σ2
b = 0, is practically the Dirac measure at zero. These results

are due to the strong downward bias of the MLE of σ2
b , and can influence the power of the test. In

this particular example LRTn rejects the null because there is so much evidence against the null.

However, LRTn should be used carefully in cases when the null is not rejected. RLRTn can be used

to test only model M2 versus M3 because both models have the same fixed effects and in this case

RLRTn rejects M2 in favor of M3. We used one million simulations to estimate relevant quantiles

of the null finite sample distribution of RLRTn as described in Section 3. Using the same quantile

matching technique described in Section 5 we found that the finite sample distribution of RLRTn

can be well approximated by the distribution of 0.90 UD, where U has a Bernoulli distribution with

P (U = 0) = 0.63 and D has a χ2
1 distribution, independent of U . In Table 2 this distribution is

denoted by 0.63χ2
0 : 0.37(0.90χ2

1).

8 Multidimensional Covariates

The case where x is one-dimensional (and then denoted here as x) is quite common in nonlinear

regression, but there are many applications where x is multivariate in which case the linearization

(2) is unchanged, but the spline model (5) needs to changed. One possibility would be to use a

fully multivariate spline, either a tensor product spline or radial basis functions (Ruppert, Wand,

and Carroll, 2003). However, this degree of complication is probably not needed for goodness-of-fit
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Table 2: LRTn and RLRTn and null finite sample distributions for testing the null of model (20)
with the parametric form for the spot rate described by (21). The alternative is modeled by
penalized splines. Zero-Coupon Bond Prices: June 1994.

LRTn RLRTn

Models Value Appoximate Null Value Approximate Null
Tested Distribution Distribution
M1/M2 218.69 χ2

1

M2/M3 137.91 χ2
0 159.53 0.63χ2

0 : 0.37(0.90χ2
1)

M1/M3 356.60 χ2
1

testing and we recommend instead an additive spline model consisting of a sum of models of form

(5), one for each component of x. For optimal fitting of such a model, one might use a separate

variance component for each component of x which would take into account differing amounts

of roughness among the components. However, for goodness-of-fit testing a common variance

component should be adequate, though more research on this question would be useful. With a

common variance component, (8) would still be used with some obvious changes: X and Z would

be expanded to contain, respectively, monomials in all of the components of x and truncated power

functions in all of the components of x. There would be corresponding changes in α and b.

9 Summary

We described (R)LRT for testing the null hypothesis of nonlinear regression versus a general al-

ternative modeled by penalized splines. The proposed strategy is to use a first order Taylor ap-

proximation of the nonlinear conditional mean around the MLE as the null model and penalized

splines to describe a flexible alternative. We discuss why in this framework LRTs have poor power

properties and we propose RLRTs instead. The linearization procedure allows the use of RLRT,

because REML is only defined for linear regression models.

This testing strategy can be viewed as testing for a null hypothesis that includes zero random

effects variance in a LMM with one random effects variance component. The spectral decomposition

of the test statistics is used as the basis of a fast simulation algorithm that provides the exact finite

sample distributions.
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Figure 1: Power of RLRTn “– –”, size adjusted TAN,1
n “–”, unadjusted TAN,1

n “. . .” for testing null
hypothesis (16) against the alternative (19).
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Figure 2: Plot of −log {P (ti)/100}/ti versus time to maturity – “*”. Plot of estimated spot rates
using model (21) – “•”.
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Figure 3: Residuals for model (20) using the parametric form (21) for spot rates – “*”. Residuals
for first order Taylor approximation of the model (20) – “o”. Residuals for the alternative modeled
by a linear penalized spline with K = 10 knots using REML estimation of the smoothing parameter
– “+”
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Figure 4: Zoom-in on the residuals for Model M3 using REML estimation of the smoothing pa-
rameter.
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