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Abstract:

We develop regression spline meta-models to predict
the output of a cluster tool simulator. By proper selection
of the predictor variables, it is often possible to find simple
spline meta-models that predict the cluster tool output
with very little error. The statistical meta-models have
two uses. First, they can be used as a rapidly-computed
replacement of the cluster tool simulator in factory-level
simulations. Second, their component functions can be
plotted for visualization of the factors influencing cluster
tool throughput.

By examining meta-model components, we were able to
quantify several interesting characteristics of cluster tools.
In particular, we found an extreme, perhaps chaotic, sen-
sitivity of average tool cycle times to small perturbations
in individual chamber processing times. The methodol-
ogy presented in this paper can be used to quantify the
domains of applicability for different cluster tool model-
ing techniques. The indication from this study is that
the accuracy of statistical meta-models for cluster tool
performance prediction falls somewhere between simple
spread-sheet performance calculations or lookup tables
and highly accurate direct simulation.

1 DESCRIPTION OF THE
CLUSTER TOOL MODEL

In this section, we describe the cluster tool model
that we studied. The meta-model we developed is
an approximation only to this specific cluster tool
model, but the motivation of our work was to de-
velop meta-modeling techniques that can be applied
to other cluster tool models.

Our cluster tool model has five chambers arranged
in a circle. The load lock is next to chamber 1. The

robot can move from the loading dock to chamber 1,
then to chamber 2, etc., to chamber 5. However, the
robot cannot directly move from chamber 5 to cham-
ber 1. Thus, for the robot to move from chamber 5
to chamber 1 it must go back past chambers 4, 3,
and 2. The distance between chamber ¢ and cham-
ber j is (5/4)|i — j| with the load lock being denoted
as chamber 0. By changing the distance matrix, the
cluster tool simulator would allow other geometries,
e.g., ones allowing the robot arm to move past cham-
ber 5 to chamber 1. However, this is the only geom-
etry that we study in this report. The robot moves
at speed 1, so in effect the robot speed is used to de-
fine our unit of time. The result of this is that robot
move times are equal to these distances. This arbi-
trary robot speed is not material to our study. In our
experiments, we will vary chamber processing times
over a broad range so that the fraction of the cycle
time that a wafer spends waiting for the robot or in
transit ranges from insignificant to excessive.

A routing specifies the number of steps that each
wafer goes through, the processing time of each step,
the primary chamber each step is performed in, and
(possibly) alternative chambers for each step.

The total cycle time, TCT, was defined as the time
from when the cassette is put in the load lock until
the time when the last wafer is returned to the cas-
sette. The average cycle time, ACT, of the wafers
was defined as the ratio of TCT to the number of
cassettes, which in our case was always 25, so that
ACT = TCT/25.

The “predictor variables” that affect ACT (or
TCT) were pump time, vent time, and the processing
times of the steps. For simplicity, we assumed that
the processing time of each step does not depend on
the particular alternative chamber in which the step
is performed. In principle, our method of meta mod-
eling would be unchanged if we relaxed this assump-
tion by increasing the number of predictor variables.

The goal of meta-modeling is to predict ACT from
the routing and these predictor variables. Our ap-
proach to meta-modeling was to fit penalized regres-
sion splines, also known as P-splines, to experimental
data obtained from the cluster tool simulator with
the response variable being ACT. We also fit linear
regression models and semiparametric models that
combine a nonparametric P-spline model for main ef-
fects with a quadratic model for two-way interactions.
These models were fit separately to each routing us-
ing data from the cluster tool. The predictor vari-
ables were varied according to Latin hypercube ex-



perimental designs (McKay, Beckman, and Conover,
1979). In a Latin hypercube design, the values of a
single predictor are chosen to be spaced on an equally
spaced grid, with grid spacing, h, say. Then each of
these values is perturbed by added to them indepen-
dent random numbers that are uniformly distributed
on [—h/2,h/2]. Finally, these perturbed values are
randomly assigned to the runs in the experiment.
The random uniform perturbations and the random
assignments are independent between variables.

In a cluster tool, the predictor variables can in-
teract in very complex ways to determine ACT.
The P-splines models that we used have only simple
quadratic two-way interactions. The result was that
P-splines in the original predictor variables did not
predict ACT well. However, at least in for some rout-
ings, we could find functions of the original predic-
tors that greatly improved the P-spline predictions.
Specifically, when these functions were added as addi-
tional predictors, then a low-interaction model fit the
cluster tool very well. For example, in routing 1 de-
scribed below, when we added as a new predictor the
maximum of the processing times for the five steps,
then models with no interactions fit very well and a
model with quadratic interactions could predict ACT
with less than 0.1% error. However, there were rout-
ings for which we were unable to find new predictors
that give a high quality predictive model.

For cluster tool move sequencing, we considered
push, pull, and strict priority rules. In a pull policy
the next wafer to process is the one with the fewest
steps remaining. In a push policy the next wafer to
process is the one with the most steps remaining. In
a priority policy, each wafer has a priority, and next
wafer to process is the one with the highest priority.

None of these three policies can prevent deadlock.
To avoid the issue of deadlock, we only studied rout-
ings where deadlock is impossible. This restriction
to no-deadlock routings limited the complexity of the
routings we could study.

Another possible use of metamodeling is prediction
of deadlock. In this application, the response is bi-
nary (deadlock or no deadlock), so methods of binary
regression or classification are appropriate. Modeling
of deadlock is outside the scope of the present study,
but will be a topic of future research. There would be
at least two possible uses of a meta model predicting
deadlock. One would be to select routings were dead-
lock will not occur for the range of processing times
that will be used. The second use would be to devise
scheduling policies that avoid deadlock.

2 ROUTING 1:
ROUTING

A SIMPLE

We started with a simple routing where there are five
chambers and five steps, the ith step being done only
in the ith chamber, so that each wafer goes to cham-
bers 1, 2, 3, 4, and 5 in that order. Scheduling was
done by a pull policy.

First we studied the effects of varying the predic-
tor variables one at a time. Each predictor was varied
over 15 values between 1 and 100 with the other pre-
dictor variables held fixed at 50. The 15 values of
the predictor being varied were chosen from a Latin
hypercube design. For each of these 15 values, the
cluster tool simulator was run and average time ACT
was calculated. The results are in Figure 1. No-
tice that ACT increases linearly with pump time and
vent time, but the increases are slow as is to be ex-
pected since pumping and venting occur once in the
processing of an entire cassette and so are a small
part of the total cycle time (TCT). ACT is a piece-
wise linear function of each processing time with a
“kink,” i.e., change in slope, at 50. Recall that as we
vary each processing time, the other times are fixed
at 50. So the change in slope occurs when a given
processing time becomes the rate-limiting one. This
result, of course, is exactly what one might expect.
This result suggests that an important predictor is
the maximum of the step processing times.

Next we simultaneously varied all seven predictor
variables between 1 and 100 using a 5007 Latin hy-
percube. Figure 2 shows each of the seven predictor
variables and a new predictor, Max15 which is the
maximum of the processing times for step 1 through
step 5, each plotted again ACT. As can be seen, ACT
is nearly linear in Max15.

3 REGRESSION MODELS

We fit both linear regression models and spline mod-
els to the cluster tool data. The response for the ith
run, Y;, was ACT, and the predictors for the ith run,
X1,4y-.-,XK,;- were pump time, vent time, step 1
processing time, . . ., step 5 processing time, and other
predictor variables such as Max15. Here K is the
number of predictor variables. For the routing 1 data,
the predictors were pump time, vent time, step 1 pro-
cessing time, . .., step 5 processing time, and Max15
so that K = 8.



We will introduce our models using general nota-
tion which will be applicable to the other routings
that are discussed later. The simplest model is multi-
ple linear regression, denoted here as LINEAR, where

K
LINEAR: Y; =060+ Z IBka,z' + €;.
k=1

Here €; is modeling error representing the inability
of the meta-model to predict the cluster tool per-
formance exactly. This error term is purely deter-
ministic since we are modeling a simulator with set
processing and robot move times. Nevertheless, clus-
ter tool behavior is unpredictable enough to warrant
using statistical modeling protocol and analysis.

A nonparametric alternative to LINEAR is the ad-
ditive model, denoted here as ADDITIVE, which is
of the form:

K
ADDITIVE : Y;=fo+ »_ mp(Xk) + €.
k=1

Here, mg(+) is a univariate spline as described in the
Appendix. The error ¢; will, in general, be smaller
for ADDITIVE than for LINEAR, since ADDITIVE
is a more flexible model and includes LINEAR as the
special case where my(z) = Byx.

Additive models, including LINEAR, are at least
somewhat restrictive because they assume that Y; is
the sum of functions of the predictors taken one at
a time. In ADDITIVE the partial derivative of Y;
with respect to any two or more distinct predictors
is 0. We can augment these models with quadratic
interaction terms. The linear regression model with
quadratic interactions (QI) is

K
LINEAR/QL: Y; =00+ Y BiX,
k=1
K-1 K .
+ D Brw (Xni — Xi)(Xnr i — X)) + €
k=1 k'=k+1

Here X is the sample mean of {X ;}* ;. Centering
Xk,; at its mean does not change the mathematical
form of the model by induces stability, both compu-
tational and statistical.

One can also add quadratic interactions to the ad-
ditive model to get

K
ADDITIVE/QIL: Y;=fo+ Y mi(Xs,)
k=1

K-1 K

+ 0 D B (Xni = Xp)(Xui = Xir) + €.

k=1 k'=k+1

This is a semiparametric model since it combines the
nonparametric additive model for the main effects
with the parametric model for the two-way interac-
tions.

More general nonparametric interactions are also
possible. These would use bivariate splines to model
2-way interactions; see Ruppert and Carroll (1996).

3.1 Measuring the quality of a fit

The coefficients in LINEAR and LINEAR/QI can be
estimated by ordinary least squares and the coeffi-
cients in ADDITIVE and ADDITIVE/QI can be es-
timated by penalized least squares; see the Appendix.

Once estimates of the coefficients are available,
the ith predicted value, denoted by Y;, is the right
hand side of the model with the unknown coefficients
replaced by their estimates and the unknown “er-
ror” ¢; deleted. Thus, for ADDITIVE Y; = (3, +
Zszl M (Xk,s). The residual, r; = Y; —Y;, is the pre-
diction error for the ith case. Small absolute residuals
are an indication of a model that fits well. Residual
plots, such as plots of the residuals against the fitted
values or against the predictor variables, are useful
for detecting regions of poor fit and perhaps suggest-
ing reasons for lack of fit.

An indication of how well the model fits overall is
the sum of squared residuals, also called the sum of
squared errors (SSE), given by

n n

SSE =Y (v - V)2 =3k

=1 =1

SSE can be compared to the total sum of squares
(SSTO),

SSTO =) (Vi - Y)?,
i=1
where Y is the mean of the response. The squared
multiple correlation, R? is
_ SSE
SSTO"

A value of SSE that is small relative to SSTO, which
corresponds to a value of R? close to its upper bound
of 1, indicates a good predictive model.

R? =

However, models can appear to fit well simply be-
cause they have a lot of parameters and so can be



adjusted to fit any data set. Fitting a large num-
ber of meta-model parameters to a particular set of
data is called overfitting. Such meta-models can not
provide valid error estimates for future predictions
since they are tied too closely to idiosyncrasies in past
data. Therefore, a large value of R? may indicative
overfitting rather than a model with good predictive
ability. Cross-validation (CV) and generalized cross-
validation (GCV) are measures of predictive ability
that penalize overfitting. Therefore, a model that is
chosen to minimize either CV or GCV should have
good predictive power.

Cross-validation is the process of fitting a model to
a subset of the data and then testing the fit on the
data not using in fitting. The “leave-one-out” cross-
validation statistic is like SSE but Y; is from the fit
that does not use Y;.

Generalized cross-validition, which is an eas-
ily computed approximation to leave-one-out cross-
validation, minimizes the criterion

SSE

GOV = n(1 — DF/n)2’

where DF is the number of degrees of freedom in the
model. For fitting with OLS, DF is simply the num-
ber of parameters in the model. For penalized least-
squares and other fitting methods which produce a
smoother fit than OLS by penalizing overfitting, DF
is defined differently. In such cases, DF need not be
an integer and is smaller than the number of param-
eters in the model because of the overfitting penalty;
see Hastie and Tibshirani (1990) and the Appendix.
A small value of GCV indicates a good predictive
model.

CV and GCV were developed for model selection
when the errors are random and independent. In this
research, we used GCV under deterministic errors.
The results here suggest that GCV can be used suc-
cessfully under deterministic errors, at least of the
types we encountered.

4 FITTING THE MODELS
TO THE ROUTING 1 DATA

Table 1 gives the results of fitting the four models to
the routing 1 data. The most complex of the four
models, ADDITIVE/Q1, fits best by all three crite-
ria, SSE, R?, and GCV. Its superiority according to
SSE and R? is simply a result of having more param-

eters, but the fact that ADDITIVE/Q1 minimizes
GCYV indicates that it has good predictive power.

Figure 4 is a plot of the residuals from the ADDI-
TIVE model versus the predictor variables. In that
plot the residuals tend to be small relative to typi-
cal values of ACT, which are around 80. Also, there
are no patterns in the residual plot. Patterns in the
residual plots, if present, might suggest ways to im-
prove the models, since residuals are the prediction
errors.

Figure 3 plots components of the ADDITIVE
model. Each subplot shows ACT as a function of one
predictor with the other predictors held fixed at their
mean values. If the other predictors were fixed at
values other then their means, then the curves would
shift up or down but otherwise would be unchanged.
(This would not be true if the model had interac-
tions.)

Notice in Table 1 that all models have very large
values of R2. The linear regression model with no in-
teractions has the smallest R? value, yet its R? value
is .9988 so there is about an overall 0.1% error in
prediction.

5 ROUTING 2

Routing 2 has four steps. Step 1 is processed in cham-
ber 1, step 2 in chamber 2, and step 3 in chamber 3.
Step 4 can be processed in either chamber 4 or cham-
ber 5. With this routing, step 4 is not a bottleneck
unless its processing time is quite large, at least twice
as large as the larest of the other processing step
times. As in routing 1, a pull scheduling policy was
used.

We simulated this routing 300 times with pump
time, vent time, and the four step processing times
varied between 1 and 100 according to a 300 row
Latin hypercube design.

As potential predictor variables, besides the pump,
vent, and step processing times, we considered
Max13 and Max14 where Max13 was the max-
imum of the processing times for steps 1 to 3 and
Max14 was the maximum of Max13 and half the
processing time for step 4. The processing time for
step 4 was halved since this step can be processed in
either of two chambers.

The raw data are shown in Figure 5; ACT is plotted
against each of the predictor variables. One can see



the small effects of pump and vent time and that
the processing times for steps 1 to 3 provide lower
bounds for ACT. Max13 alone is a good predictor of
ACT except for a few simulation runs. These are the
cases where Max14 is larger than Max13 because
the step 4 processing time is over twice as large as the
processing times of all other steps. Thus, these are
the rare cases where step 4 is the bottleneck. Max14
is an excellent predictor of ACT in all cases. We did
not use Max13 in modeling since Max14 seemed to
be a better predictor.

The summaries of the fits to the four models are
in Table 2. Clearly all four models fit extremely well,
all predicting ACT with at most 0.01% error. AD-
DITIVE and LINEAR give essentially the same fits.
The addition of interactions improves the fits some-
what, but there really isn’t much room for improve-
ment over LINEAR.

Figure 6 shows the components of the ADDITIVE
fit to the routing 2 data. Clearly, Max14 alone has a
very large influence on ACT. The residuals from the
ADDITIVE fit are plotted in Figure 7. Most absolute
residuals are less that 0.5, which is reasonably small
compared to the typical value of ACT which is around
80.

Figure 7 shows some evidence that the absolute
residuals are larger when Max14 is small. However,
the size of the absolute residuals is difficult to ascer-
tain when only the raw residuals are plotted. More-
over, regions of high data density often appear more
dispersed. Carroll and Ruppert (1988) recommend
that to check for variable dispersion, one plot abso-
lute residuals and fit a smooth curve through them.
In Figure 8 the absolute residuals are plotted and a
spline fit to the absolute residuals is superimposed.
In that plot, there is clear evidence that the absolute
residuals are larger when Max14 is smaller. In other
words, throughput is more difficult to predict when
Max14 is small.

Figure 8 illustrates the effect of a distinctive char-
acteristic of cluster tools. In a cluster tool, indi-
vidual wafer cycle times are dependent on one an-
other because they may need to wait for the shared
robot(s). A relatively fast robot would usually be
available when a wafer is ready to be moved; queue-
ing is minimal. In this situation, the total wafer cycle
times are nearly independent and easier to predict. In
fact, if there were no queueing for the robot, individ-
ual wafer cycle times would simply be the sum of all
their processing and move times. On the other hand,
when the processing times are relatively short, as re-

flected here by a small value of Max14, then waiting
for the robot can account for a substantial portion of
a wafer’s total cycle time. This results in the wafer
cycle times being smaller, dependent, and harder to
predict. They are no longer just the sum of their in-
dividual processing and move times. This is further
complicated by the potentially chaotic movement of
the robot when it is very busy. A more complete
analysis of absolute residuals like the one presented
in Figure 8 should help quantify the domain of appli-
cability for statistical meta-models for actual cluster
tool performance. It is reasonable to conjecture that
for a specific tool configuration and recipe there is
a critical ratio of robot speed to maximum chamber
processing time below which only direct simulation
can provide accurate predictions.

6 ROUTING 3

Routing 3 has four steps. For i = 1,...,4, the ith
step can be processed in either the ith chamber or in
the fifth chamber. Routing 3 was studied using the
same design as used in routing 2; this was possible
since each routing has four steps. As in routings 1
and 2, a pull scheduling policy was used.

Table 3 gives the goodness-of-fit statistics for the
four models. ADDITIVE/QL1 fits best, but no model
predicts nearly as well as in routing 1 and 2.

Figures 9, 10, and 11 show the raw data, compo-
nents of the ADDITIVE fit, and residuals, respec-
tively. The residual plot shows that prediction errors
as large as 20, approximately a 25% relative error,
are frequent.

The predictor variable Max14 here is the maxi-
mum of the four step processing times. It certainly
is a useful predictor. However, as can be seen in Fig-
ure 9 it provides an upper bound for ACT, but not
a good prediction for ACT. Even with the other pre-
dictor variables and their interactions added to the
model, the best R? is .88 indicating that typical pre-
diction errors are around 12%.

Since the cluster tool is deterministic, in principle
ACT can be predicted perfectly. What seems needed
here is a better understanding of the routes that the
wafers take through the cluster tool. This informa-
tion would help us understand how the complex inter-
actions between the step processing times and robot
movements influence ACT.

To investigate the behavior of this routing, we



looked at the effects of step 3 processing time, but
restricting the other predictor variables to the range
{50, 51,52} while the step 3 processing time varied
from 1 to 100. The raw data are plotted in Figure 12.
When the step 3 processing is less than 50, ACT in-
creases slowly and linearly in that time. When the
step 3 processing time exceed 52, the graph of ACT as
a function of that time bifurcates. One fork continues
the slow linear increase, while the other fork increases
more quickly and is less linear. The second fork con-
tains a smaller percentage of the data than the first.
What causes some observations to fall on the upper
fork with large ACT values? The problem is that the
pull policy is not optimal. Small changes in timings
can affect which wafer is processed next by a pull
policy. Such a change in routing can have large ef-
fects on throughput as the pull policy either becomes
closer or less close to the optimal policy. Notice as
well that in the left, middle row plot, ACT versus
step 2 processing time, we see that the upper fork
occurs only if the step 2 processing time is 51 or 53,
not 52. Thus, we have the paradoxical behavior that
throughput can decrease if the step 2 processing time
is increased from 51 to 52. This odd behavior occurs
because wafer move sequencing policies are only op-
timal over a narrow range of processing times. An
optimal sequencing policy for one set of processing
times may become very poor when there are small
perturbation in these times. This indicates that the
robustness of a cluster tool dispatching policy may
be much more important than its optimality for a
particular recipe.

In particular, having seen an example of extreme,
perhaps chaotic, sensitivity of cycle times to process-
ing times in this study, it may be more important for
wafer sequencing rules to have uniformly good perfor-
mance over a wide range of processing times than to
be truly optimal over a narrower range. The method-
ologies employed in this study can be used to quantify
the domain of applicability of statistical meta-models
or static look-up tables for use in factory-level sim-
ulations. The indication from this study is that the
accuracy of statistical meta-models for cluster tool
performance prediction falls somewhere between sim-
ple spread-sheet performance calculations or lookup
tables (valid only with fast or numerous robots) and
highly accurate direct simulation.

7 DISCUSSION

Parametric regression and P-spline meta-models can
be very effective for at least some cluster tool mod-
els. However, neither parametric regression nor P-
splines can be used blindly. It is necessary to choose
the “right” predictor variables. In some cases, such
as routing 2 and 3, the right predictor variables are
rather obvious. In other cases, e.g., routing 3, we
were unable to find highly effective predictor vari-
ables and ACT prediction error average about 10%
with the meta-models we developed.

Meta models such as we have developed have many
possible applications. The most obvious is to replace
the cluster tool itself when modeling factories. This
can only be done when the meta model is highly ac-
curate such as with Routings 1 and 2. Another use
of meta models is as a visualization tool to provide
insight into the behavior of the cluster tool and to
generate new research questions.

APPENDIX: P-SPLINES

Univariate P-splines

The material in this Appendix is adopted from Rup-
pert and Carroll (1996 and 2000).

Suppose that we have data (X;,Y;) where X; =
X1,; is the sole predictor variable,
Y =m(X;) + €, 1)

and m is a smooth function giving the conditional
mean of Y; given X;. The ¢;’s are errors. To estimate

m we can let B3 = (Bo,---,8p,Bpt1s---:Bprn)T and
use a regression spline model

N
m(z; B) = Bo+ Prx + - - - + Bpa? + Zﬂp-kl(m —f1)h
I=1

(2)
where p > 1 is an integer, (u)f = uPI(u > 0), and
k1 < ... < kpn are fixed knots.

Model (2) is a piecewise polynomial, since m(zx; 3)
is a pth degree polynomial between any two adja-
cent knots. Moreover, m(z; 3) has (p — 1) continuous
derivatives at each knot. If the number of knots, IV,
is large, then the ordinary least squares fit of (2) to
data will tend to interpolate the data, i.e., the fit will
follow the noise and will have a rough appearance.



This phenomenon of fitting the noise is called over-
fitting.

The traditional method of avoiding overfitting is
knot selection, that is, selection of a subset of the
knots such that the ordinary least squares fit follows
the signal in the data but not the noise. In this report
we use a different approach by allowing N to be large
and retaining all knots, but using a roughness penalty
on {Bpt+r}_, which is the set of jumps in the pth
derivative of m(z;3). We could view this method
as a penalty on the (p + 1)th derivative of m(x;3)
where that derivative is a generalized function. We
recommend N between 5 and 40 and letting x, be the
k/(N +1)th sample quantile of the X;’s—we call this
choice of knots “equally-spaced sample quantiles.”

We define B(a) to be the minimizer of

n

2 N
Z{Yz —m(x;ﬂ)} +a2/612)+k;3 (3)
k=1

i=1

where a is a smoothing parameter. Because a con-
trols the amount of smoothing, the value of N is not
crucial. For typical mean functions, N = 10 and
N = 40, say, produce very similiar estimates, pro-
vided that « is selected appropriately for each N and
that p > 2. Selection of a will be by GCV.

Let Y = (Y1,...,Y,)T and X be the “design ma-
trix” for the regression spline so that the ith row of
X is

Xi = (17X’L:7sz:(Xz _Rl)ﬁ—a

s (X = 6n)G). (4)

Also, let D be a diagonal matrix whose first (1 + p)
diagonal elements are 0 and whose remaining diag-
onal elements are 1. Then simple calculations show
that B(a) is given by

3 T T

Bla) = (X X + aD) x7y. (5)
This is a ridge regression estimator that shrinks the
regression spline towards the least-squares fit to a

pth degree polynomial model (Hastie and Tibshirani,
1990, Section 9.3.6).

Computing (5) is extremely quick, even for a rel-
atively large number, say 30, values of a. The com-
putational time for the matrices X7 X and XY is
linear in n, but these matrices need only be computed
once. As Eilers and Marx (1996) mention, after these
matrices are computed, only N x N matrices need
to be manipulated. This allows rapid selection of «

by techniques such as minimizing C, or generalized
cross-validation when 3(a) is calculated over a grid
of values of a.

For a linear model fit by ordinary least squares,
the degrees of freedom (DF) of the model is defined
to be the number of parameters in the model. Thus,
the DF of the polynomial spline is 1 4+ p+ N if fit by
ordinary least squares. If we drop all of the piecewise
polynomial terms and fit by ordinary least squares,
then DF is only 1+ p. For penalized least squares fit-
ting, the concept of degrees of freedom does not apply
exactly. However, there is the idea of the “effective
degrees of freedom” and this is defined as

DF(a) = Tt (X(XTX + aD)’lXT),

where Tr(A) is the trace of a square matrix A. It
can be shown that DF(0) = 1+ p + N as it should
since @ = 0 gives an ordinary least squares fit to the
spline model. Similarly, DF(co) = 1+ p since a = oo
gives an ordinary least squares fit to a pth degree
polynomial model. For a between 0 and oo, DF ()
is between 1 + p and 1+ p + N and need not be an
integer.

Multivariate splines

Recall that (X1,,...,X K,,-)T is the vector of predic-
tor variables. Suppose now that K > 1. As we
will see, a full multivariate model for m can be con-
structed using tensor-product regression splines. For
k=1,...,N,let {r;;}}, be a set of knots for the
kth predictor. In practice, N could vary with &, but
for ease of notation NV will be independent of k in this
exposition. The basis functions for regression splines
in the kth predictor, Xy, are

B(k) ={1,zk,...,2%, (xr—Kr1)4s - (T —Kr,N)8 )
(6)
Here 1 is the function that is identically 1. The

tensor-product regression spline basis is
B,...,K) =45 B(1)® --- ® B(K),

i.e., the set of all products b(1) ---b(K) where b(k) €
B(k). We use the notation “a =gy b” to mean that
a equals b by definition of a. The dimension of this
basis, (1 +p + N)X, grows geometrically in K.

Additive models

As just described, when K is large, the number of
tensor-product basis functions is enormous, a prob-



lem often called the “curse of dimensionality.” To
overcome this difficulty, we can use an appropriate
subset of the tensor-product spline basis giving, for
example, an additive model or a low-order interaction
model. The idea is analogous to setting interactions,
or at least higher order interactions, to 0 when fit-
ting a factorial model. For simplicity, in this report
we have only used additive spline models. Any inter-
actions were modeled parametrically, not as splines.
In this section, we describe additive spline models.

A function m of ¢ = (z1,...,7x)7 is said to be
additive if m(x) = Zszl my(xy) for univariate func-
tions my, k = 1,..., K. An additive model restricts

m in (1) to be an additive function. Additive models
can be fit using the basis

B(1)U---UB(K), (7
that is, the union of the the univariate bases. Notice
that the dimension of B(1)U---UB(K) is 1+ K (p+N)
which grows only linearly, not exponentially, in the
number of predictors K. Thus, additive models do
not suffer from the curse of dimensionality.

The simplest method of penalization for additive
models is to use the same value of the penalty pa-
rameter « for each predictor variable. This approach
works well when all of the component functions, my,
have roughly the same amount of curvature as one
would expect for cluster tool meta modeling. This
is the penalization method used in this report. In
other situations, where some component functions
have much more curvature than others, the value of «
should vary with k. In this case, K values of o must
be chosen by GCV. See Ruppert and Carroll (2000).

Once the coefficients of the additive model ba-
sis functions have been estimated by penalized least
squares, the component functions of m(z) = 8y +

mi(z1) + -+ + mi(xk) can be estimated by Gy and

P N
i (x) = Y Brawh + D Brpri(zk — i)k,
=1 =1
k=1,...,K,

where Blk is the estimated coefficient of xi, etc.
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R2
.9988
9990
.9991
.9994

Model
LINEAR
LINEAR/Q1
ADDITIVE
ADDITIVE/Q1

SSE
127.6
106.4
101.7

61.7

GCV DF
0.265 9
0.235 24
0.226 254
0.152  50.0

Table 1: Routing 1. Summary of fits to four models.

R2
.9999
.9999
.9999
.9999

Model

LINEAR
LINEAR/Q1
ADDITIVE
ADDITIVE/Q1

SSE
14.05
12.74
14.05
13.57

GCV DF
0.049 8
0.048 18
0.049  8.00
0.094 18.00

Table 2: Routing 2. Summary of fits to four models.

Model R?
LINEAR .76
LINEAR/Q1 .84
ADDITIVE .82
ADDITIVE/Q1 .88

SSE
2.81 x10°%
1.92 x10*
2.17 x104
1.37 x10*

GCV DF
99.0 8
72.6 18
82.7 19.6
55.6 30.9

Table 3: Routing 3. Summary of fits to four models.
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Figure 1: Routing #1. Plot of average cycle time
(ACT) versus pump time, vent time, and each of five
processing times. In each plot, the variable on the
horizontal axis is varied while the other variables are
fized at 50 time units.
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Figure 2: Routing #1. Plot of average cycle time
(ACT) versus pump time, vent time, and each of five
processing times and versus the mazimum processing
time, Max15.
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Figure 3: Routing #1. Plot of additve spline fit to
average cycle time (ACT) with the following predic-
tors: pump time, vent time, each of five processing
times, and the mazimum processing time, Max15.
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Figure 4: Routing #1. Plot of residuals versus pump
time, vent time, and each of five processing times and
versus the mazximum processing time.
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Figure 5: Routing #2. Plot of average cycle time
(ACT) versus pump time, vent time, each of four pro-
cessing times, Max13, and Max14.
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Figure 6: Routing #2. Plot of additve spline fit to
average cycle time (ACT) with the following predic-
tors: pump time, vent time, each of four processing
times, and Max14.
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Figure 7: Routing #2. Plot of residuals versus pump
time, vent time, each of four processing times and
Max14.
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Figure 8: Routing #2. Plot of absolute residuals ver-

sus Max14 with a spline fit.
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Figure 9: Routing #3. Plot of average cycle time
(ACT) versus pump time, vent time, each of four pro-
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Figure 10: Routing #3. Plot of additve spline fit to
average cycle time (ACT) with the following predic-
tors: pump time, vent time, each of four processing
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Figure 11: Routing #38. Plot of residuals versus pump
time, vent time, each of four processing times, and
Max14.
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Figure 12: Routing #3. Plot of average cycle time
(ACT) versus pump time, vent time, each of four pro-
cessing times, and Max14. In this data set, all pre-
dictors except the step 3 processing time are restricted
to the set {50,51,52}.
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