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Web Appendix A: Simulation Studies

A.1 The Infomax algorithm

We are not aware of functions or packages in R that implement the Infomax algorithm

(Bell and Sejnowski 1995). We offer an alternative to Matlab code (http://cnl.salk.

edu/~tewon/ICA/code.html), but with a few modifications that decrease computation

time. First, we use the full data (the so-called offline algorithm) in each iteration rather

than an online algorithm with batches. Secondly, we use an adaptive method to choose

the step size (based upon Bernaards and Jennrich 2005), which speeds up convergence.

We also omitted the bias term (intercept) included in the original formulation because we

centered our data. R code implementing the Infomax algorithm and example simulations

are available in <EvaluatingICA_Rsources.R> and <EvaluatingICA_Examples.R> in the

Supplementary Materials.

A.2 The ProDenICA algorithm

We made small modifications in the simulated data analysis in order to use the R-package

ProDenICA. When the IC density was heavy-tailed (e.g., t-distribution with df = 3 or
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df = 5), the algorithm sometimes failed in the density estimation step. These issues were

resolved by removing one or more of the most extreme outliers.

It should be noted that the ‘restarts’ option in the ProDenICA() function evaluates

the objective function at N random matrices, determines the matrix with the highest

negentropy, and then initiates the ProDenICA algorithm with this single matrix. We found

that ProDenICA() should instead be initiated using multiple random matrices because a

single initial value may have a relatively high initial negentropy but be in a basin with a

local maximum.

Another issue that arose is that ProDenICA() produced an error when using the whiten-

ing option with Q < Tr. This issue was resolved by supplying ProDenICA() with an initial

unmixing matrix (rather than relying upon the default).

Lastly, we found that when using the log cosh nonlinearity (ProDenICA() provides a

function that replicates fastICA()), the negentropy measure was not correct; it simply

calculated the mean of 1
α log cosh(αs). It should instead apply the formula in Equation 6

of the manuscript.

A.3 Simulated data

We simulated the mixing matrix A using the mixmat() function from the R package Pro-

DenICA (Hastie and Tibshirani 2010), which ensures the condition number is between 1

and 2 by simulating a Q × Q matrix with iid entries from a standard normal, taking the

SVD, then generating random eigenvalues from the uniform(1,2) distribution, and defining

A as the product of the left eigenvector, these new eigenvalues, and the right eigenvector.

We conducted 100 simulations with V = 1, 024 samples for each component. Twenty-five

initial values were used for the iterative methods, where initial values were randomly se-

lected from a latin hypercube using the angular (Givens) parameterization, with θq ∈ [0, π]

for q = 1, . . . , Q(Q− 1)/2− 1 and θQ(Q−1)/2 ∈ [0, π/2]. Data were simulated from eighteen

distributions using rjordan() in the ProDenICA package (Hastie and Tibshirani 2010;

Web Figure 1).
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Web Figure 1: Distributions used in simulations, which include the t-distribution with
df=3, double exponential, uniform, t-distribution with df=5, exponential, a mixture of
exponentials, and numerous mixtures of normals. Note that a, b, d, and e are super-
Gaussian, while c and f - r are sub-Gaussian.
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Web Table 1: The 0.025, 0.500, and 0.975 quantiles of computation times (in seconds)
based on 100 simulations with 25 initial values per simulation. Quantiles are based on the
pooled sample of 2,500 computation times for all methods except for JADE, which is not
initialized with multiple starting values and is consequently based on 100 samples.

Q Quantile FastICA Infomax JADE ProDenICA

5 0.025 0.01 1.28 0.02 3.43
5 0.500 0.03 3.19 0.02 5.84
5 0.975 1.58 5.95 0.05 30.67

10 0.025 0.04 5.88 0.10 11.70
10 0.500 0.34 11.69 0.17 28.75
10 0.975 2.85 13.05 0.27 267.23

20 0.025 1.11 18.75 2.41 95.66
20 0.500 7.46 25.36 3.98 544.92
20 0.975 27.07 29.02 10.00 2478.45

A.4 Notes on the minimum distance measure

We adapt the minimum distance (MD) measure (Ilmonen et al. 2010), which was defined for

some estimate Ŵ(i) when the true unmixing matrix, W, is known. We apply the measure

to two arbitrary square matrices B(i) and B(j). Let P denote the set of Q × Q signed

permutation matrices and C the set of Q×Q full-rank diagonal matrices. Then define the

set of scaled permutation matrices K = {K : K = P±C, ∀ P± ∈ P, C ∈ C}. Then the

minimum distance measure between two matrices B(i) and B(j) is

dMD(B(i),B(j)) =
1√
Q− 1

inf
K∈K

|| KB(i)B
−1
(j) − Id ||F

where || · ||F denotes the Frobenius norm. Code implementing this measure is available in

the R package JADE (Nordhausen et al. 2011).

A.5 Computation times

We conducted our simulations on a cluster of 28 Dell PowerEdge 2650 servers with 8

processors per server, where each processor was 2.66 GHz. We used the R package snow

(Tierney et al. 2011) to conduct simulations in parallel. Computation times are presented

in Web Table 1.
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Web Appendix B: Matching ICs

Our approach to matching ICs follows a modification of the Hungarian (Kuhn-Munkres)

algorithm (Tichavsky and Koldovsky 2004), and here we describe the modification in detail.

Suppose we want to compare Ŝk(i) ∈ RV×Q and Ŝl(j) ∈ RV×Q, the ith estimate from method

k and the jth estimate from method l. Hereafter, we drop the k and l superscripts to

simplify notation, noting that the estimates may or may not be from the same method.

Assume that Ŝ(i) is in canonical form, as defined in Section 4.2. We refer to the canonically

ordered Ŝ(i) as the template. Let Ŝ(i),q be the qth column of Ŝ(i) and Ŝ(j),r be the rth

column from Ŝ(j), and let || · || denote the Euclidean norm. Create a Q×Q distance (cost)

matrix C between the components with elements

cq,r = min
(
||Ŝ(i),q − Ŝ(j),r||, ||Ŝ(i),q + Ŝ(j),r||

)
,

and define the matrix B with

bq,r =


−1 if min

(
||Ŝ(i),q − Ŝ(j),r||, ||Ŝ(i),q + Ŝ(j),r||

)
= ||Ŝ(i),q + Ŝ(j),r||,

1 if min
(
||Ŝ(i),q − Ŝ(j),r||, ||Ŝ(i),q + Ŝ(j),r||

)
= ||Ŝ(i),q − Ŝ(j),r||.

Let S be the set of all permutations of the integers 1 to Q, where for some σ ∈ S, we denote

the permutation σ = (σ(1), . . . , σ(Q)). We then use the Hungarian algorithm (Kuhn 1955)

to identify the set such that

σ∗ = argmin
σ∈S

Q∑
q=1

cq,σ(q).

Then define the signed permutation matrix P1 with entries pq,aq = bq,aq at row q and

column aq, and 0 otherwise. Note that P1 is equivalent to argmin
P±∈P

|| Ŝ(i) − Ŝ(j)P
′
± ||F .

The method used here to match ICs creates a one-to-one mapping of components. Note

that when multiple ICs are being compared, the matching algorithm may be sensitive to

the choice of template. In our application, we found that using the estimates from JADE,

Infomax, or ProDenICA as the template with one-at-a-time matching resulted in the same

ordering as using the FastICA estimate as the template. In situations in which ICs from

more than two estimates differ greatly, a method to simultaneously match all ICs could be
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Web Table 2. Subject diagnosis by site in the ADHD-200 Sample: Typ=Typically De-
veloping; ADHD-C=ADHD-Combined; ADHD-H/Im=ADHD-Hyperactive and Impulsive;
ADHD-In=ADHD-Inattentive; WH= Withheld.

Site Typ ADHD-C ADHD-H/Im ADHD-In WH

Bradley Hospital/Brown University 0 0 0 0 26
Kennedy Krieger Institute 61 16 1 5 11
NeuroIMAGE Sample 23 18 6 1 25
NYU Child Study Center 99 77 2 44 41
Oregon Health & Science University 42 23 2 12 34
Peking University 116 29 0 49 51
University of Pittsburgh 89 0 0 0 9
Washington University in St. Louis 61 0 0 0 0

Total 491 163 11 111 197

pursued.

Web Appendix C: Group ICA of the ADHD-200 Sample

C.1 Resting-state fMRI dataset

Data were selected for analysis from the ADHD-200 Data Sample, which consists of rs-

fMRI data from children and adolescents (ages 7-21) from 8 independent sites comprising

491 typically developing subjects and 285 that were diagnosed with ADHD (Web Table 1).

Subjects were diagnosed with three ADHD subtypes: Inattentive; Hyperactive and Impul-

sive; and Combined (Hyperactive/Impulsive and Inattentive). However, there were only a

total of 11 subjects with ADHD-Inattentive, and half the sites did not have subjects with

this diagnosis.

We restricted our analysis to (1) subjects with no recorded history of drug therapy;

(2) subjects that were right-hand dominant; (3) images with no quality control flags; and

(4) subjects that were either ADHD-Combined or ADHD-Inattentive (but not ADHD-

Hyperactive and Impulsive). Subjects were classified using either (1) the ADHD Rating

Scale IV, (2) Conner’s Parent Rating Scale-Revised (Long Version), or (3) Conner’s Rating

Scale, 3rd edition. Within these scales, there was a small degree of overlap in the inter-

mediate values between subjects diagnosed as typically developing and subjects diagnosed

with ADHD, whereas individuals with low values were strictly labeled typically developing
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Web Table 3. Subjects used in analysis. Typ=Typically Developing; ADHD-C=ADHD-
Combined; ADHD-In=ADHD-Inattentive.

Site Typ ADHD-C ADHD-H/Im ADHD-In WH

Peking University 86 13 0 19 0
Kennedy Krieger Institute 40 7 0 3 0
NYU Child Study Center 56 16 0 11 0
Oregon Health & Science University 24 8 0 1 0

Total 206 44 0 34 0

and individuals with high values were strictly diagnosed with ADHD. We excluded subjects

with scores that we deemed borderline, that is, both control and ADHD subjects that were

near the threshold at which ADHD was diagnosed. Specifically, we excluded subjects with

ADHD Rating Scale IV values between 36 and 45; Conner’s Parent Rating Scale-Revised

(Long Version) between 56 and 65; or Conner’s Rating Scale between 55 and 66 (Web Table

2).

Details of the primary image processing pipeline were previously reported (Section 2.1,

Eloyan et al. 2012). Processing followed the functional connectome processing scripts on

the FCP/INDI site (Mennes et al. 2012). In addition, we aggregated the MNI 152 T1 3 mm

template to result in 6× 6× 6 mm voxels. We retained the 6× 6× 6 mm voxels for which

all eight of the voxels in the MNI 152 T1 3mm template were brain tissue. This resulted in

V = 7, 825 for all subsequent analyses. For subjects in which there were multiple scanning

sessions, we only used the first session.

We also used our own whitening function to produce the input data for all algorithms,

as provided in <EvaluatingICA_Rsources.R>. This ensured that Ŵ and Ŝ were always

defined equivalently. Note that the functions fastICA() and JADE() automatically whiten

data; consequently, we modified the source code to prevent additional whitening.

C.2 Differences Between Algorithms

We compared the unmixing matrices from FastICA, Infomax, JADE, and ProDenICA using

the MD measure, the Amari measure, and the Frobenius distance between matched unmix-

ing matrices. To aid in our interpretation of the magnitude of differences between mixing

matrices, we simulated the distribution of these three measures for randomly generated
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orthogonal matrices using two methods. First, orthogonal matrices were generated with

columns equal to the eigenvectors from the spectral decompositions of randomly generated

matrices following a Wishart distribution with covariance equal to the identity matrix and

V degrees of freedom. Second, we simulated uniformly distributed Givens rotation angles

θi ∈ [−π, π] for i = 1, . . . , Q(Q−1)/2, and then converted the angles to orthogonal matrices

(Web Table 4).

Web Table 4. Distance and measures between unmixing matrices by method for the rs-
fMRI study. Here, the SVD mixing matrix is taken to be the identity matrix. MD =
Minimum Distance measure. Mean and 1% Wishart denote the mean and 1% quantiles,
respectively, of each measure from matrices randomly generated via the SVD of iid Wishart
matrices. Mean and 1% unif denote the corresponding statistics for matrices generated
from the angular parametrization of orthogonal matrices with angles uniformly distributed
in [−π, π].

Method.1 Method.2 Amari MD Frobenius

Mean: Wishart 1 Wishart 2 0.35 0.90 6.31
1%: Wishart 1 Wishart 2 0.31 0.88 5.92
Mean: Unif 1 Unif 2 0.26 0.85 6.32
1%: Unif 1 Unif 2 0.22 0.80 5.76
SVD fastICA 0.36 0.91 6.30
SVD Infomax 0.36 0.91 6.33
SVD JADE 0.35 0.90 6.30
SVD ProDenICA 0.33 0.89 6.29
FastICA Infomax 0.01 0.07 0.29
FastICA JADE 0.06 0.38 1.75
FastICA ProDenICA 0.06 0.41 1.89
Infomax JADE 0.06 0.39 1.80
Infomax ProDenICA 0.06 0.42 1.93
JADE ProDenICA 0.07 0.41 1.85

In Web Table 5, we present false discovery rate (FDR) adjusted p-values from two-

sample Kolmogorov-Smirnov tests for equality in distribution between ICs estimated using

the SVD, FastICA, Infomax, and ProDenICA. In multiple hypothesis testing, the FDR is

the expected proportion of false positives among the rejected null hypotheses, and control-

ling the FDR leads to more powerful testing procedures than controlling the family-wise er-

ror rate (Benjamini and Hochberg 1995). For each p-value, we calculated an FDR-adjusted

p-value, called a q-value (Storey 2002): let G denote the total number of tests and p(g)
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denote the gth order statistic from the set of all G p-values, and define the q-value

p∗(g) = min

(
G

g
p(g), p

∗
(g+1), . . . , p

∗
(G), 1

)
.

In typical applications, p∗(g) is an estimate of the minimum proportion of false positives given

that at least one rejection occurs, where the minimum is taken over all rejection regions

containing [0, p(g)]. Here, we use the FDR-adjusted p-values as a measure of the difference

between IC distributions since the test statistics were based on spatially dependent data.

Web Table 5. FDR-adjusted p-values from two-sample Kolmogorov-Smirnov statistics.
Blank entries indicate FDR-adjusted p < 0.0001.

Method1 Method2 IC 1 IC 2 IC 3 IC 4 IC 5 IC 6 IC 7 IC 8 IC 9 IC 10

SVD FastICA
SVD Infomax
SVD JADE
SVD ProDenICA
FastICA Infomax 0.9826 0.2733 0.1277 0.0556 0.5650 0.3543 0.4036 0.1105 0.9481
FastICA JADE 0.6165 0.0101 0.4788 0.2421 0.0001 0.0004 0.0222 0.0003 0.0129
FastICA ProDenICA 0.0658 0.0166 0.0451 0.1277 0.0002 0.0053 0.0129
Infomax JADE 0.4688 0.1574 0.0556 0.0004 0.0024
Infomax ProDenICA 0.1370 0.2660 0.2354 0.1811 0.0005 0.0254 0.0027
JADE ProDenICA 0.2807 0.0254 0.0002 0.0265 0.1415

Method1 Method2 IC 11 IC 12 IC 13 IC 14 IC 15 IC 16 IC 17 IC 18 IC 19 IC 20

SVD FastICA 0.0004
SVD Infomax 0.0003
SVD JADE 0.0002
SVD ProDenICA 0.0018
FastICA Infomax 0.0878 0.4890 0.3943 0.3851 0.9826 0.4225 0.7906 0.9826 0.2867 0.4130
FastICA JADE 0.2136 0.0380 0.1068 0.0101 0.1866 0.0006
FastICA ProDenICA
Infomax JADE 0.9826 0.0112 0.0433 0.0002 0.0348 0.0002
Infomax ProDenICA
JADE ProDenICA 0.2867 0.0304

We also present density plots for each IC and each method. Densities were estimated

using a Gaussian kernel. For each component, a bandwidth was determined for the estimate

from FastICA, Infomax, JADE, and ProDenICA, respectively, using the method of Sheather

and Jones (1991), and then these four bandwidths were averaged, and finally the densities

were estimated with bandwidth fixed at this average. Thus, for a given component, the

densities for each of the methods were estimated using the same bandwidth.
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Web Figure 2. Density plots of ICs for FastICA, Infomax, JADE, and ProDenICA. Values
on the x-axis correspond to the standardized BOLD signal. The sample skewness and
kurtosis from the FastICA estimates are included in the plot area.
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Web Figure 3. Estimated ICs. Clockwise from the top-left: IC 3 (parts of default network),
IC 4 (parts of the visual cortex), IC 13 (strong lateralization for FastICA and Infomax
but not JADE and ProDenICA), and IC 20 (strong lateralization in all methods; areas
associated with memory).

fastICA Infomax JADE ProDenICA fastICA Infomax JADE ProDenICA

fastICA Infomax JADE ProDenICA fastICA Infomax JADE ProDenICA

Selected resting-state networks

Web Figure 3 presents images for selected ICs from the group ICA of the ADHD-200 Data

Sample. Images were thresholded to retain voxels with values greater than the 97.5%

quantile. Slices were chosen to approximately maximize the number of visible activated

voxels.

We estimated ICs from a single individual randomly chosen from the ADHD-200 data

(subject ID 3446674.1.1.pek2). We matched the FastICA estimates from this individual to

the skewness-ordered FastICA estimates of the group ICs, and then matched the ICs from

Infomax, JADE, and ProDenICA to these re-ordered FastICA results. Selected ICs are

presented in Web Figure 4.
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Web Figure 4. Estimated ICs for a single subject randomly chosen from the ADHD200
dataset (subject ID 3446674.1.1.pek2). Clockwise from the top-left: IC 3 (parts of default
network), IC 4 (medial areas of the visual cortex), IC 13, and IC 20 (strong lateralization
in all methods; areas associated with memory).

fastICA Infomax JADE ProDenICA fastICA Infomax JADE ProDenICA

fastICA Infomax JADE ProDenICA fastICA Infomax JADE ProDenICA
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