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Abstract: This paper performs an asymptotic analysis of penalized spline
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used with smoothing splines. The asymptotic rates of the supremum norm
of the difference between these two estimators over compact subsets of the
interior and over the entire interval are established. It is shown that a P-
spline and a smoothing spline are asymptotically equivalent provided that
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have the same equivalent kernels for both interior points and boundary
points.
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1. Introduction

Consider the problem of estimating the function f : [0, 1] → R under a univariate
regression model

yi = f(ti) + ǫi, i = 1, . . . , n, (1)
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where the ti are pre-specified design points and the ǫi are iid normal random
variables with mean 0 and variance σ2. This paper compares Eilers and Marx’s
[7] P-spline estimator with the corresponding smoothing spline estimator, and
establishes the asymptotic rate of the supremum norm of the difference between
these two estimators. Our findings show that the P-spline and smoothing spline
estimators are asymptotically equivalent, and they have the same equivalent
kernels at both interior and boundary points, providing sufficiently large number
of knots is taken.

Penalized spline regression estimators, which use fewer knots than that of the
classic smoothing spline, have been studied at least as far back as O’Sullivan [19].
One special case is the P -spline estimator introduced by Eilers and Marx [7],
which uses a difference penalty and a flexible number of knots. Penalized spline
smoothing has become popular over the last decade and the use of low rank
bases leads to simple and highly efficient computation. (It is worth mentioning
that certain splines, such as smoothing splines, also admit efficient numerical
methods, e.g., the Kalman filter (Eubank [9]) for computation of the GCV score
for selecting the smoothing parameter.) The methodology and applications of
penalized splines are discussed extensively in Ruppert, Wand and Carroll [22],
but asymptotic properties of the penalized spline estimators have been less ex-
plored. A few exceptions include the recent papers such as Hall and Opsomer
[11], Li and Ruppert [13], and Claeskens, Krivobokova, and Opsomer [2]. Hall
and Opsomer [11] placed knots continuously over a design set and established
consistency of the estimator. Li and Ruppert [13] developed an asymptotic the-
ory of penalized splines for piecewise constant and linear B-splines with the first
and second order difference penalties. Claeskens, Krivobokova, and Opsomer [2]
studied bias, variance, and asymptotic rates of the penalized spline estimator
under different choices of the number of knots and penalty parameters. We refer
the interested reader to Wahba [25], Eubank [8], Gu [10], and Eggermont and
LaRicci [6] for extensive discussions on general spline regression.

The penalized spline model studied here approximates the regression function

by f [p](x) =
∑Kn+p

k=1 bk B
[p]
k (x), where

{
B

[p]
k : k = 1, . . . ,Kn + p

}
is the p th

degree B-spline basis with knots 0 = κ0 < κ1 < · · · < κKn
= 1. The value of

Kn will depend upon n as discussed below.

Various types of roughness penalties are in use to prevent overfitting. In
Eilers and Marx’s P-spline, the spline coefficients b̂ = {b̂k, k = 1, . . . ,Kn + p}
are subject to the mth-order difference penalty, that is, they are chosen to
minimize

n∑

i=1

{

yi −
Kn+p
∑

k=1

bkB
[p]
k (ti)

}2

+ λ∗

Kn+p
∑

k=m+1

{∆m(bk)}2 , (2)

where λ∗ > 0 and ∆ is the backward difference operator, i.e., ∆bk ≡ bk − bk−1

and

∆mbk = ∆∆m−1bk = · · · =
m∑

j=0

(−1)m−j

(
m

j

)

bk−m+j . (3)
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The P-spline estimator is given by f̂ [p](x) =
∑Kn+p

k=1 b̂kB
[p]
k (x). On the other

hand, Wand and Ormerod [26] studied splines which replace the difference
penalty in (2) by a smoothing spline type penalty, so that

n∑

i=1

[

yi −
Kn+p
∑

k=1

bkB
[p]
k (ti)

]2

+ λ̃∗

∫ 1

0

[

dm

dtm

Kn+p
∑

k=1

bkB
[p]
k (t)

]2

dt (4)

is minimized where m ≤ p and λ̃∗ > 0.
We use the name “P-spline” for the minimizer of (2), “smoothing spline” for

the minimizer of (4), and “classic smoothing spline” for the minimizer of (4)
when there is a knot at each unique design point. The term “penalized spline”
will be used for any estimator using a roughness penalty, so that penalized
splines includes P-splines and smoothing splines as special cases. It is some-
what non-standard to call the minimizer of (4) without the full set of knots a
smoothing spline, but this terminology agrees with that of the smooth.spline()
function in R.

Initially, we assume that both the design points and the knots are equally
spaced on the interval [0, 1] and n/Kn is an integer denoted by Mn; a more
general case will be discussed in Section 4.

It should be noted that other bases are often used for penalized splines; for
example, the truncated polynomials are used extensively in Ruppert et al. [22].
As discussed in Section 3.7.1 of Ruppert et al. [22], a penalized spline in one
basis will be algebraically identical to a penalized spline in a second basis, if
the two bases span the same vector space of functions and if they use identical
penalties.

The contributions of the present paper are twofold: (i) The paper provides
a rigorous proof that penalized splines and smoothing splines are asymptot-
ically equivalent, and they have the same equivalent kernels at both interior
and boundary points. Therefore, both the estimators have the same asymp-
totic distribution for all t ∈ [0, 1] under the optimal choices of Kn and λ∗. The
asymptotic distribution of the general penalized spline estimator can be easily
obtained by using the existing results on smoothing splines. It is worth mention-
ing that using equivalent kernels to perform asymptotic analysis of smoothing
splines has been studied by Rice and Rosenblatt [20], Silverman [23], Messer
[16], Nychka [18], and Abramovich and Grinshtein [1]. (ii) Compared with the
results based on matrix techniques, e.g. Li and Ruppert [13], our approach con-
siderably simplifies the development and yields an instrumental alternative to
establish the equivalent kernels for general penalized splines. Moreover, our ap-
proach also leads to the observation that the convergence rates are independent
of the splines’ degrees and the number of knots for an arbitrary penalized spline
estimator. While this observation was pointed out by Li and Ruppert [13] for
piecewise constant and piecewise linear P-splines and was conjectured for general
penalized splines, no rigorous justification has been given for general penalized
splines; the current paper offers a satisfactory answer to this issue in a general
setting and, in particular, provides results for the common choices of quadratic
and cubic splines which Li and Ruppert did not analyze.
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The paper is organized as follows. In Section 2, we give the characterization
of the penalized spline estimator, and state the main result that establishes the
asymptotic equivalence between the penalized spline estimator and the smooth-
ing spline estimator. The asymptotic distributions for the cases of p = m and
p 6= m are presented in Section 3. Discussions are given in Section 4. The Ap-
pendix contains proofs for all technical developments.

2. Main results

We first focus on the case when p = m. This is the easiest case to analyze, and
splines with p 6= m will be studied later by approximating them using splines
with p = m; see Lemma 3.1. It follows from the following derivative formula for
B-spline functions (de Boor [3])

d l

dxl

Kn+p
∑

k=1

bkB
[m]
k (x) =

Kn+m∑

k=l+1

K l
n∆

lbk B
[m−l]
k−l (x), l ≤ m, (5)

that

∆mbm+k =
1

Km
n

dm

dxm
f [m](x), x ∈ (κk−1, κk], k = 1, . . . ,Kn. (6)

Therefore, when p = m, the problems (2) and (4) are equivalent if we use equally
spaced knots. Both optimization problems can be written as

minimize
1

n

n∑

i=1

[

yi − f(ti)
]2

+ λ

∫ 1

0

[
f (m)(t)

]2
dt over all f ∈ Sm, (7)

where λ = λ∗/(nKm−1
n ) and Sm = span{B[m]

k : k = 1, . . . ,Kn + m} is the B-
spline space of order m. Let Wm

2 =
{
f : f (m−1) absolutely continuous and f (m)

∈ L2[0, 1]
}
be the Sobolev space of order m. The smoothing spline estimator is

the function φ ∈ Wm
2 that minimizes the functional

1

n

n∑

i=1

[yi − φ(ti)]
2 + λ

∫ 1

0

[
φ(m)(t)

]2
dt. (8)

Let f̂ [m] and φ̂ be the optimal solutions for (7) and (8), respectively. For a
function h : [0, 1] → R, define ‖h‖ ≡ supt∈[0,1] |h(t)| and the subsequent norms
are defined in the same way.

It is easy to see that the optimal solution f̂ [m] exists and is unique for any
given data. To characterize f̂ [m], we will show that f̂ [m] is an approximate
solution to a certain differential equation (see Theorem 2.1), and to do this we
introduce some variables and functions. Let ω1 be the uniform distribution on
{t1, . . . , tn} and ω2 be the uniform distribution on {κ1, . . . , κKn

}. Let g be a
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piecewise constant function for which g(xk) = yk for k = 1, . . . , n. Define

G1(x) =

∫ x

0

g(t)dω1(t) =
1

n

n∑

i=1

yiI{ti ≤ x},

F̌1(x) =

∫ x

0

f̂ [m](t)dω1(t) =
1

n

n∑

i=1

f̂ [m](ti)I{ti ≤ x},

where I is the indicator function of a set, and for k ≥ 2, define

Gk(x) =

∫ x

0

Gk−1(t)dω2(t) =
1

Kn

Kn∑

j=1

Gk−1(κj)I{κj ≤ x},

F̌k(x) =

∫ x

0

F̌k−1(t)dω2(t) =
1

Kn

Kn∑

j=1

F̌k−1(κj)I{κj ≤ x}.

We also define

F̂1(x) =

∫ x

0

f̂ [m](t)dt, F̂k(x) =

∫ x

0

F̂k−1(t)dt, k ≥ 2.

Let X = [Bk(xi)] ∈ R
n×(Kn+p) be the design matrix, and let Dm ∈

R
(Kn+p−m)×(Kn+p) be the mth-order difference matrix such that

Dmb = [∆m(bm+1), . . . ,∆
m(bKn+p)]

T .

The minimizer b̂ of (2) is given by

(XTX + λ∗DT
mDm)b̂ = XT y, (9)

where y = (y1, . . . , yn)
T . Define C ∈ R

(Kn+m)×(Kn+m) and C̃ ∈ R
(Kn+m)×n,

respectively, as

C =












1 0 0 0 · · · 0 0
1 1 0 0 · · · 0 0
1 1 1 0 · · · 0 0
...

...
...

...
. . .

...
...

1 1 1 1 · · · 1 0
1 1 1 1 · · · 1 1












and C̃ =















1T 0 0 · · · 0 0

1T 1T 0 · · · 0 0
...

...
...

. . .
...

...
1T 1T 1T · · · 1T 0

1T 1T 1T · · · 1T 1T

...
...

...
. . .

...
...

1T 1T 1T · · · 1T 1T















,

where 0 = [0, 0, . . . , 0], 1 = [1, 1, . . . , 1]T ∈ R
Mn×1, and the last m rows of C̃

are all ones. Left multiplication by C and C̃ are discrete analogs of integration.
Since C is invertible, (9) is equivalent to

λ∗CmDT
mDmb̂+ CmXT f̂ = CmXTy, (10)
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where f̂ = [f̂ [m](x1), . . . , f̂
[m](xn)]

T and Ck denotes the product of k copies of
C. In the following development, the difference equation (10) is replaced by its
analogous differential equation, in which the term CmDT

mDm is replaced by the
differentiation operator and CmXT is replaced by the integration operator. Let

R =
1

nKm−1
n

[

Cm XT − Cm−1 C̃
]

,

and Ř be a piecewise constant function such that Ř(κj) is the jth row of R
(
y−

f̂ [m]
)
.

The following result states that the optimal solution f̂ [m] can be approxi-
mated by the solution of an ordinary differential equation (ODE); its proof is
given in the Appendix.

Theorem 2.1. The necessary and sufficient conditions for f̂ [m] to minimize
(7) are

(−1)m λ
dm

dxm
f̂ [m](x) = Gm(x)− F̌m(x) + Ř(x), a.e. x ∈ [0, 1], (11)

and
F̌k(1) = Gk(1), k = 1, . . . ,m, (12)

where the asymptotic order of ‖Ř‖ is

‖Ř‖ = Op

(
λ1/2

Kn

)

+Op

((
logKn

nKn

)1/2)

.

It is well-known that smoothing splines satisfy the natural boundary con-
ditions that the mth derivative of φ̂ is zero between 0 and the first design
point and between the last design point and 1. The issue as to whether the
penalized splines satisfy natural boundary conditions is very interesting. Since
Gm(x) = F̌ (x) = 0 for x ∈ [0, t1), and Gm(x)− F̌ (x) = 0 for x ∈ (tn−1, 1] from
(12), we have

dm

dxm
f̂ [m](x) = (−1)mλ−1Ř(x), x ∈ [0, t1) ∪ [tn−1, 1].

Therefore, f̂ [m] does not satisfy the natural boundary conditions on [0, t1) and
(tn−1, 1] in general, i.e., (dm/dxm)f [m](x) 6= 0 for x ∈ [0, t1)∪(tn−1, 1]. However,
under the optimal choices of λ and Kn such that λ is of order n−2m/(4m+1) and
Kn ∼ nγ with γ > (2m − 1)/(4m + 1), we have ‖Ř‖/λ → 0. This shows that

(dm/dxm)f [m](x) → 0 for x ∈ [0, t1) ∪ (tn−1, 1]. Therefore, f̂
[m] satisfies the

natural boundary conditions asymptotically.
The next result establishes the asymptotic equivalence of f̂ [m] and φ̂; its proof

is in the Appendix.

Theorem 2.2. For any fixed ̺ > 0, we have

sup
x∈[̺,1−̺]

|f̂ [m](x)− φ̂(x)| = Op

(
λ1/2

Kn

)

+Op

((
logKn

nλKn

)1/2)

. (13)
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Furthermore,

‖f̂ [m] − φ̂‖ = Op

(
1

Kn

)

+Op

((
logKn

nλKn

)1/2)

. (14)

Theorem 2.2 gives the convergence rates for the difference between f̂ [m] and
φ̂ over any compact subset of the interior of [0, 1] and over the whole interval.
It is observed from Theorem 2.2 that if λ is of order n−2m/(4m+1) and Kn ∼ nγ

with γ > (2m− 1)/(4m+ 1), then for any x ∈ (0, 1), f̂ [m](x)− φ̂(x) is of order
n−ς logn with ς > 2m/(4m+ 1). It is known that the optimal convergence rate

of φ̂ at any given inner point is of order n2m/(4m+1) under the optimal choice of
λ which is of order n−2m/(4m+1) (Eggermont and LaRicca [6]). This shows that

f̂ [m](x) and φ̂(x) have the same asymptotic distribution for all inner points.
When t is close to the boundary and Kn ∼ nγ with γ > 2m/(4m+ 1), we have

‖f̂ [m]−φ̂‖ = Op(n
−ς) with ς > 2m/(4m+1). The convergence rate of φ̂ is slower

than n2m/(4m+1) at boundary points. Under this circumstance, f̂ [m] and φ̂ are
asymptotically equivalent and they have the same asymptotic distributions for
any x ∈ [0, 1].

3. Applications

It is well-known that the smoothing spline estimator φ̂ is asymptotically equiva-
lent to the kernel smoothing (Silverman [23]). Specifically, Eggermont and LaR-
iccia [4, 6] have shown that, for any t ∈ [0, 1],

φ̂(t) =

∫ 1

0

Kλ(t, s)f(s)ds+
1

n

n∑

i=1

Kλ(t, ti)ǫi + higher order terms, (15)

where the equivalent kernel Kλ(t, s) is the corresponding Green’s function for
the following ordinary differential equation with boundary conditions and given
v(t):

(−1)mλu(2m)(t) + u(t) = v(t), on [0, 1],

subject to u(k)(0) = u(k)(1) = 0, for k = m, . . . , 2m− 1.

The equivalent kernel Kλ(t, s) can be computed explicitly for an equidistant
design, see e.g., Messer and Goldstein [17]. The higher order terms in (15) are
negligible since they converge to zero at faster rates. Theorem 2.2 indicates that
the P -spline or splines that minimize (4) are also approximately kernel regression
estimators. The equivalent kernels for both interior points and boundary points
are the same as the equivalent kernels of smoothing splines.

Corollary 3.1. Let λ satisfy λn2m/(4m+1) → 0 and λ−(2m−1)/2m logKn/Kn →
0. Suppose that the true regression function f is 2mth order continuously dif-
ferentiable with bounded 2mth derivative. Define β = λ−1/(2m). Then for each
fixed t ∈ (0, 1),

√
n

β
[f̂ [m](t)− f(t)] →d N

(
0, σ2

K(t)
)
, (16)
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where λ1/2m
∫ 1

0 K2
λ(t, s)ds → σ2

K(t) as n → ∞. However, if λ = c2mn− 2m
4m+1 for

c > 0 and if Kn ∼ nγ with γ > (2m− 1)/(4m+ 1), then

n2m/(4m+1)
[
f̂ [m](t)− f(t)

]
→d N

(

(−1)m−1c2mf (2m)(t), c−1 σ2
K(t)

)

. (17)

The proof of Corollary 3.1 follows from a direct application of (15) and is
thus omitted. The asymptotic results given by Corollary 3.1 provide theoretical
justification of the observation that the number of knots is not important, as
long as it is above some minimal level (Ruppert [21]). It is easy to find that
the mean squared error of the P -spline estimator is of order n−4m/4m+1, which
achieves the optimal rate of convergence given in Stone [24].

In the following, we study the asymptotic properties of f̂ [p](t) =
∑Kn+p

k=1 b̂k

B
[p]
k (t) when p 6= m. We first define a piecewise mth degree polynomial f̃ [m],

where f̂ [p] and f̃ [m] share the same set of spline coefficients. In particular, define

f̃ [m](t) =

{ ∑Kn+m
k=1 b̂kB

[m]
k (t), if p > m

∑Kn+p
k=1 b̂kB

[m]
k (t), if p < m

Note that, if p < m, then f̃ [m] is defined on [0, 1− m−p
Kn

]. The following lemma,

whose proof is given in the Appendix, characterizes the difference between f̂ [p]

and f̃ [m].

Lemma 3.1. For any fixed t ∈ (0, 1), let d = ⌊Knt⌋ + 1. Let γ̂(t) = f̂ [p](t) −
f̃ [m](t). Then, if p > m,

γ̂(t) =

p
∑

q=m+1

d+q
∑

i=d+1

(
Kn

q
(t− κi−q)

)

B
[q−1]
i (t)

p
∑

l=1

ai+1−d,lK
−l
n

dl

dtl
f̂ [p](t), (18)

and if p < m,

γ̂(t) = −
m∑

q=p+1

d+m∑

i=d+1

(
Kn

q
(t−κi−q)

)

B
[q−1]
i (t)

m∑

l=1

bi+1−d,lK
−l
n

dl

dtl
f̃ [m](t), (19)

where the coefficients {aij} and {bij} are constants.

Following the similar discussion as above, we can establish the asymptotic
distribution for f̃ [m] as in (16) and (17), respectively, under different admissible

ranges of λ and Kn. Since f̂ [p] = f̃ [m] + γ̂(t), we have the following asymptotic

distribution for f̂ [p] for any p 6= m at a fixed interior point.

Corollary 3.2. Suppose that f is 2mth order continuously differentiable with
bounded 2mth derivative on [0, 1]. Let λ satisfy λn2m/(4m+1) → 0 and
λ−(2m−1)/2m logKn/Kn → 0. Then, for each fixed t ∈ (0, 1) and with β =
λ−1/(2m) as before,

√
n

β
[f̂ [p](t)− f(t)− γ̂(t)] →d N

(
0, σ2

K(t)
)
, (20)
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where γ(t) is given by (18) if p < m or by (19) if p > m. However, if λ =

c2mn− 2m
4m+1 for c > 0, and let Kn ∼ nγ with γ > (2m− 1)/(4m+ 1), then

n2m/(4m+1) [f̂ [p](t)− f(t)− γ̂(t)] →d N
(

(−1)m−1c2mf (2m)(t), c−1 σ2
K(t)

)

.

(21)

It can be seen from the above corollary that when p is not equal to m,
the asymptotic bias has an additional term γ̂(t), which is of order Op(1/Kn).
When Kn grows sufficiently fast with respect to n, this term is asymptotically
negligible.

4. Discussions

We have so far focused on the equally spaced design case and equally spaced
knots. When the design is not equally spaced and we use equidistant knots, under
similar arguments in Section 2, problems (7) and (8) are still asymptotically
equivalent, and the problem (8) is asymptotically equivalent to

minimize

∫ 1

0

[φ(t)− f(t)]2ω(t)dt+
2

n

n∑

i=1

(φ(ti)− f(ti))ǫi + λ

∫ 1

0

[
φ(m)(t)

]2
dt,

where ω(t) is the asymptotic design density, and the rest is as the same as in
Chapter 21 of Eggermont and LaRicca [6].

We have assumed that the random errors {ǫi : i = 1, . . . , n} in the regression
model satisfy a normal distribution, and this assumption can be relaxed. A
crucial step in the proofs of the asymptotic properties of the estimators is the
order of maxi=1,...,n |ǫi|. Indeed, when the ǫi’s are independent normal random
variables, maxi=1,...,n |ǫi| is of order Op((2 logn)

1/2). If the ǫi’s satisfy other
distributions, then the order of maxi=1,...,n |ǫi| can be determined by the tail
probability Pr(ǫi > x). By making use of assumptions of this tail probability,
all derivations for asymptotic properties can be obtained in a similar fashion.

One may ask “what is the interpretation of cases m > p?” These cases are,
of course, impossible for the smoothing spline penalty, since if m > p, then the
mth derivative will not exist at the knots and will be zero elsewhere. For the
discrete P -spline penalty, the cases m > p are valid and indeed were allowed
in Eilers and Marx [7]. To interpret these cases, it is useful to look at the
simple case when p = 0, i.e. piecewise constant splines, under the assumption of
equally spaced knots. In this case, ∆bk is the jump of the function at the knot
κk. Hence when m = 1, any deviations from a constant function are penalized.
This effect is similar to what it would be if the first derivative existed and was
penalized. Similarly, when m = 2, ∆2bk is the difference between the jumps
at two consecutive knots. The functions that are unpenalized are step function
approximations to linear functions. This pattern persists for higher values of
m and p. For example, if p = 1, then the functions that are unpenalized are
piecewise linear approximations to polynomials of degree m − 1, because the
coefficients will follow a polynomial trend of the same degree.
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The univariate P -splines can be naturally extended to multivariate P -splines
Marx and Eilers [15]. The asymptotic properties can be studied along the same
line. Our conjecture is that the multivariate P -spline smoothing is asymptoti-
cally equivalent to multivariate kernel smoothing and the equivalent kernel is
the Green’s function corresponding to a related partial differential equation.
Further study of this issue is beyond the scope of this paper and shall be re-
ported in a future publication.

Appendix

Proof of Theorem 2.1

Since C is invertible, for any k ∈ N, (9) is equivalent to

λ∗CkDT
mDmb̂+ CkXT f̂ = CkXTy, (22)

where f̂ = [f̂ [m](x1), . . . , f̂
[m](xn)]

T and Ck denotes the product of k copies of
C.

The matrix DT
mDm is a banded symmetric matrix. Except for the first m

and last m rows, every row of DT
mDm has the form (0, . . . , 0, ω∗

0 , ω
∗
1 , . . . , ω

∗
2m, 0,

. . . , 0), where ω∗
j = (−1)m(−1)2m−j

(
2m
j

)
, j = 0, . . . , 2m. Moreover, except for

the first m− k and last m rows, the ith row of CkDT
mDm has the form

(

0, . . . , 0,
︸ ︷︷ ︸

(i−m+k−1)−copies

ω̃0, . . . , ω̃2m−k, 0, . . . , 0
︸ ︷︷ ︸

(Kn+p)−(i+m)−copies

)

,

where

ω̃j = (−1)m(−1)2m−k−j

(
2m− k

j

)

, j = 0, . . . , 2m− k.

Further, the elements of the last k rows of CkDT
mDm are all zeros. In particular,

when k = m,

CmDT
mDmb̂ = (−1)m

[
∆mb̂m+1,∆

mb̂m+2, . . . ,∆
mb̂Kn+p, 0, . . . , 0

]T
. (23)

From (5),

∆mb̂m+k =
1

Km
n

dm

dxm
f̂ [m](x), x ∈ (κk−1, κk], k = 1, . . . ,Kn. (24)

Since the elements of the last k rows of CkDT
mDm are all zeros for k =

1, . . . ,m, we have, from (22),

F̌k(1) = Gk(1), k = 1, . . . ,m. (25)

Also note that

1

n
C̃f̂ =

[

F̌1(κ1), F̌1(κ2), . . . , F̌1(1), . . . , F̌1(1)
]T

,
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and from (25),

1

nKm−1
n

Cm−1C̃ (f̂ − y) =
[

F̌m(κ1)−Gm(κ1), F̌m(κ2)−Gm(κ2), . . . ,

F̌m(1)−Gm(1), 0, . . . , 0
]T

.

Let

R =
1

nKm−1
n

[
Cm XT − Cm−1 C̃

]
,

and Ř be a piecewise constant function such that Ř(κj) is the jth row of R (y−
f̂ [m]). Therefore, the jth row of (22), when k = m, can be written as

(−1)m
λ∗

nKm−1
n

∆mbm+j + F̌m(κj) = Gm(κj) + Ř(κj), j = 1, . . . ,Kn. (26)

Combining (24) and (26) gives

(−1)mλF̂ (2m)
m (x) + F̌m(x) = Gm(x) + Ř(x), x ∈ [0, 1],

where λ = λ∗/(nK2m−1
n ). The asymptotic order of Ř is given in Lemma A.1.

Lemma A.1. The following holds:

‖Ř‖ = Op

(
λ1/2

Kn

)

+Op

((
logKn

nKn

)1/2)

.

Proof. Let ȳ = Kn

n XT y and α = λ∗Kn/n. Claeskens et al. [2] showed that

‖H−1‖∞ = O(1), where H = Kn

n XTX + αDT
mDm. Thus, b̂ is stochastically

bounded, so is f̂ [m]. Thus, ‖F̂m − F̌m‖ is of order Op(1/n). Let b̄ solve (X
TX +

λ∗DT
mDm)b̄ = XT f and denote f̄ [m](x) =

∑Kn+m
k=1 b̄kB

(m)
k (x). Note that f̄ [m] is

the estimator when there is no noise in the regression model (1). We have

‖f̂ [m]− f̄ [m]‖ ≤ ‖b̂− b̄‖∞ ≤ ‖H−1‖∞ ‖ ȳ−E[ȳ] ‖∞ = Op

(√

Kn

n

√

2 logKn

)

.

(27)
It is shown that ‖f̄ [m]−f‖ = O(λ1/2) and the development of this rate is similar
to Theorem 7 in Eggermont and LaRiccia [4]. Thus,

‖R (y − f̂ [m])‖∞ ≤ ‖R (y − f)‖∞ + ‖R (f − f̄ [m])‖∞ + ‖R (f̄ − f̂ [m])‖∞

= Op

(√

logKn

nKn

)

+Op

(
λ1/2

Kn

)

+Op

((
logKn

nKn

)1/2)

.

Hence, the lemma follows.
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Proof of Theorem 2.2

Define

R̃(x) = (−1)mαF̂ (2m)
m (x) + F̂m(x)−Gm(x).

Then, R̃ = F̂m − F̌m + Ř. Hence, F̂m solves the ordinary differential equation

(−1)mλF̂ (2m)
m (x) + F̂m(x) = Gm(x) + R̃(x), 0 ≤ x ≤ 1, (28)

with 2m boundary conditions from (25):

F̂ (k)
m (0) = 0, F̂ (k)

m (1) = Gm−k(1) + em−k, k = 0, . . . ,m− 1, (29)

where em−k = F̂m−k(1) − F̌m−k(1). Lemma A.1 indicates that f̂ [m] is stochas-
tically bounded. Therefore ek are small with an order of Op(1/n). Lemma A.1

also indicates that ‖R̃‖ has the same rate as that of ‖Ř‖ since ‖F̂m − F̌m‖ is of

order Op(1/n). Hence, ‖R̃‖ = Op(λ
1/2/Kn) +Op

((
logKn/nKn

)1/2)
.

Next, consider the smoothing spline problem (8).

Lemma A.2. The necessary and sufficient conditions for φ̂ to minimize (8)
are

(−1)m λ φ̂(m)
m (x) + Φ̌m(x) = Ǧm(x), a.e. x ∈ [0, 1]

and

Φ̌k(1) = Ǧk(1), k = 1, . . . ,m,

where

Φ̌1(x) =

∫ x

0

φ̂(t)dω1(t), Φ̌k(x) =

∫ x

0

Φk−1(t)dt, k ≥ 2,

Ǧ1(x) = G1(x), Ǧk(x) =

∫ x

0

Ǧk−1(t)dt, k ≥ 2.

Proof. Denote the functional (8) as H(φ). For any φ, φ̄ ∈ Wm
2 and δ ∈ R,

H(φ+δφ̄)−H(φ) = 2δH1(φ, φ̄)+δ2
{∫ 1

0

φ̄2(t)dω1(t)+λ

∫ 1

0

{φ̄(m)(t)}2dt
}

, (30)

where

H1(φ, φ̄) =

∫ 1

0

[φ(t) − g(t)]φ̄(t)dω1(t) + λ

∫ 1

0

φ(m)(t)φ̄(m)(t)dt. (31)

Then, φ ∈ Wm
2 minimizes H(φ), if and only if, H1(φ, φ̄) = 0 for all φ̄ ∈ Wm

2 . The
reason is as follows. If φ ∈ Wm

2 minimizes H(φ), H(φ+ δφ̄)−H(φ) ≥ 0 for all
φ̄ ∈ Wm

2 and any δ ∈ R. ThenH1(φ, φ̄) = 0 follows since δ can be either negative
or positive. On the other hand, if H1(φ, φ̄) = 0, we have H(φ+ δφ̄)−H(φ) ≥ 0
by (30). Thus, φ minimizes H(φ).
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Letting v(t) = tk, k = 0, . . . ,m − 1 in (31) shows that if φ minimizes H(f),
then,

∫ 1

0

[φ(t)− g(t)] tkdω1(t) = 0, k = 0, 1, . . . ,m− 1.

We first have

Φ̌1(1)− Ǧ1(1) =

∫ 1

0

[f(t)− g(t)]dω1(t) = 0.

Further,

Φ̌2(1)− Ǧ2(1) =

∫ 1

0

∫ s

0

[f(t)− g(t)]dω1(t)ds

=

∫ 1

0

[f(t)− g(t)] t dω1(t) = 0.

Similarly, it is shown that Φ̌k(1) = Ǧk(1) for k = 1, . . . ,m.
If φ ∈ Wm

2 satisfies Φ̌k(1) = Ǧk(1), k = 1, . . . ,m, we have

∫ 1

0

[φ(t)− g(t)]φ̄(t)dω1(t) =

∫ 1

0

[φ(t)− g(t)] [φ̄(t)− φ̄(1)]dω1(t)

= −
∫ 1

0

[φ(t) − g(t)]

∫ 1

t

φ̄′(s)dsdω1(t)

= −
∫ 1

0

[F̌1(s)−G1(s)] g
′(s)ds

= · · · · · ·

= (−1)m
∫ 1

0

[Φ̌m(s)− Ǧm(s)] φ̄(m)(s)ds.

Hence,

H(φ, φ̄) =

∫ 1

0

H2(φ) φ̄
(m)(t)dt, (32)

where
H2(φ) = λ φ(m)(t) + (−1)m [Φ̌m(t)− Ǧm(t)]. (33)

If H1(φ, φ̄) = 0 for all φ̄ ∈ Wm
2 , letting B = {t ∈ [0, 1] : H2(φ) 6= 0} and

φ̄(m)(t) = −IB(t) gives

H1(φ, φ̄) =

∫

B

H2(φ)dt 6= 0,

unless B is of measure zero. This shows H2(φ) = 0 almost everywhere. This
completes the proof of this lemma.

Define

Φ̂1(x) =

∫ x

0

φ̂(t)dt, Φ̂k(x) =

∫ x

0

Φk−1(t)dt, k ≥ 2.
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Let R = (−1)mλΦ̂
(m)
m + Φ̂m − Ǧm = Φ̂m − Φ̌m. Hence, Φ̂m solves the ordinary

differential equation

(−1)mλΦ̂(2m)
m (x) + Φ̂m(x) = Ǧm(x) +R(x), 0 ≤ x ≤ 1, (34)

with 2m boundary conditions:

Φ̂(k)
m (0) = 0, Φ̂(k)

m (1) = Ǧm−k(1) + ěm−k, k = 0, . . . ,m− 1, (35)

where ěm−k = Φ̂k(1)− Φ̌k(1). Since φ̂ is stochastically bounded, it is easy to see
that ‖R‖ and |ěm−k|, k = 0, . . . ,m− 1 are all of order Op(1/n).

It is interesting to note that the ordinary differential equations (28) and

(34) share many similarities. To obtain the relationship between f̂ [m] and φ̂, we
further introduce a few variables and functions related to the true regression
function f . Define

Ψ1(x) =

∫ x

0

f(t)dt, Ψk(x) =

∫ x

0

Ψk−1(t)dt, k ≥ 2,

Ψ̌1(x) =

∫ x

0

f(t)dω1(t), Ψ̌k(x) =

∫ x

0

Ψ̌k−1(t)dt, k ≥ 2,

Ψ̃1(x) = Ψ̌1(x), Ψ̃k(x) =

∫ x

0

Ψ̃k−1(t)dω2(t), k ≥ 2.

Let δ = f̂ [m] − φ̂ and ∆m = F̂m − Φ̂m. It is observed from (28) and (34) that
∆m solves the ordinary differential equation

(−1)mλ∆(2m)
m (x) + ∆m(x) = η(x), x ∈ [0, 1], (36)

with 2m boundary conditions:

∆(k)
m (0) = 0, ∆(k)

m (1) = ζk, k = 0, . . . ,m− 1, (37)

where
η = Gm + R̃− Ǧm,

and
ζk = Gm−k(1) + em−k − Ǧm−k(1)− ěm−k.

Note that
η = (Gm − Ψ̃m − Ǧm + Ψ̌m) + (Ψ̃m −Ψm) + R̃,

in which ‖Gk − Ψ̃k − Ǧk + Ψ̌k‖ for k ≥ 2, which are of order Op(log n/
√
nKn)

by the strong approximation theorem (Komlós et al. [12]), and ‖Ψ̃m − Ψm‖ is

of order O(1/n). Hence ‖η‖ is of order Op(λ
1/2/Kn) + Op

((
logKn/nKn

)1/2)
,

and ‖ζ‖∞ is of order Op(1/Kn) with ζ = (ζ0, . . . , ζm−1).
Let Kλ(t, s) be the Green’s function corresponding to (36). Then,

∆m(x) =

∫ 1

0

Kλ(x, s)η(s)ds,
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and

δ(x) =

∫ 1

0

∂m

∂xm
Kλ(x, s)η(s)ds. (38)

Eggermont and LaRiccia [4] showed that λ
l

2m
∂l

∂xlKλ(x, s) is kernel-like for l =
0, . . . ,m. In particular,

∫ 1

0

∣
∣
∣
∣
λ

1
2
∂m

∂xm
Kλ(x, s)

∣
∣
∣
∣
ds

is uniformly bounded for x ∈ [0, 1]. Combining this with (38) shows that ‖δ‖
has an order of Op(1/Kn) +Op

(
(logKn/nλKn)

1/2
)
.

The proof for the case where both f̂ [m] and φ̂ are restricted to a compact sub-
interval [̺, 1 − ̺] is similar, where ̺ ∈ (0, 1/2). The only difference is that the

rate for Ř in Lemma A.1 becomes Op

(
λ
Kn

)
+ Op

((
logKn

nKn

)1/2)
. This is because

the bias term supx∈[̺,1−̺] |f̄ [m](x)−f(x)| is of order O(λ) in the latter case.

Proof of Lemma 3.1

The B-spline basis functions satisfy the following recurrence relationship

B
[p]
j (t) =

Kn

p
(t− κj−p−1)B

[p−1]
j−1 (t) +

Kn

p
(κj − t)B

[p−1]
j (t).

Let f [p−1](t) =
∑Kn+p−1

k=1 bkB
[p−1]
k (t) with the same first (Kn+p−1) coefficients

of f [p]. For x ∈ (κd, κd+1), the difference between f [p](t) and f [p−1](t) is given
by

f [p](t)− f [p−1](t) =

d+p
∑

i=d+1

[

bi+1
Kn

p
(t− κi−p) + bi

(
Kn

p
(κi − t)− 1

)]

B
[p−1]
i (t)

=

d+p
∑

i=d+1

(bi+1 − bi)

(
Kn

p
(t− κi−p)

)

B
[p−1]
i (t). (39)

From (39), if p > m,

f̂ [p](t) = f̃ [m](t) +

p
∑

q=m+1

d+q
∑

i=d+1

∆bi+1

(
Kn

q
(t− κi−q)

)

B
[q−1]
i (t).

From (3), we have ∆lbk = cTl (∆bk−l+1,∆bk−l+2, . . . ,∆bk), where

cl =
[

(−1)l−1

(
l − 1

0

)

, (−1)l−2

(
l − 1

1

)

, . . . , (−1)0
(
l − 1

l − 1

) ]T

.

Combining this with (5), it is easy to show that there exists Cd ∈ R
p×p such

that

[

∆bd+2,∆bd+2, . . . ,∆bd+p+1

]T

= Cd

[

K−1
n

d

dt
f [p](t), . . . ,K−p

n

dp

dtp
f [p](t)

]T

.
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Hence, we can write

∆bd+k =

p
∑

l=1

aklK
−l
n

d l

dxl
f [p](t), k = 2, . . . , p+ 1, (40)

which gives (18). (19) can be established similarly. Thus the lemma follows.
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