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Abstract

An essential assumption in traditional regression techniques is that predictors are mea-

sured without errors. Failing to take into account measurement error in predictors may

result in severely biased inferences. Correcting measurement-error bias is an extremely dif-

ficult problem when estimating a regression function nonparametrically. We propose an

approach to deal with measurement errors in predictors when modelling flexible regression

functions. This approach depends on directly modelling the mean and the variance of the

response variable after integrating out the true unobserved predictors in a penalized splines

model. We demonstrate through simulation studies that our approach provides satisfactory
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prediction accuracy largely outperforming previously suggested local polynomial estimators

even when the model is incorrectly specified and is competitive with the Bayesian estimator.

Keywords: Nonparametric regression; Penalized splines; Variance function estimation.

1 Introduction

A key assumption of parametric and nonparametric regression models is that predictors are mea-

sured without errors. Regression techniques that ignore measurement errors in predictors may

produce highly biased estimates leading to erroneous inferences. The magnitude of the bias re-

sulting from ignoring measurement errors in predictors decreases only slightly as the sample size

increases and does not converge to 0. For instance, in simple linear regression the least squares

slope estimate from naively fitting the response variable on a distorted version of the true predictor

is biased by a factor that depends on the ratio of the variance of the measurement error to the

variance of the true unobserved predictor and is independent of the sample size. Discussion of

measurement error models in parametric regression can be found in Fuller (1987), Carroll (1989),

Cook and Stefanski (1994), Spiegelman, Rosner and Logan (2000) and Carroll et al. (2006).

It is extremely difficult to estimate regression functions nonparametrically with mismeasured

predictors. To handle this problem, Carroll, Maca, and Ruppert (1999) extend the simula-

tion–extrapolation method (Cook and Stefanski 1994) to nonparametric regression. Their method

outperforms the kernel based estimator proposed by Fan and Truong (1993). However, the com-

parison with Fan and Truong’s (1993) method is considered incomplete since the latter method

was introduced without an optimal bandwidth selector. In Section 4, we will contrast the pre-

diction accuracy of our method against Fan and Truong’s (1993) method that uses the 2-stage

2



plug-in bandwidth estimator presented in Delaigle and Gijbels (2002). Staudenmayer and Rup-

pert (2004) presents local polynomial simulation–extrapolation estimator that improves upon Car-

roll et al. (1999) method by utilizing a bandwidth selector that aims to minimize the estimated

mean squared error of the final estimate. Staudenmayer and Ruppert (2004) method is also in-

cluded in the comparison study in Section 4 as well as the local polynomial estimators proposed

by Delaigle, Fan and Carroll (2009) and Huang and Zhou (2017). Delaigle et al. (2009) generalizes

Fan and Truong’s (1993) method to local polynomial estimators using a complex transformation

of the kernel function. Huang and Zhou (2017) adjusts the estimator in Delaigle et al. (2009)

to work directly with transformations of the naive estimator that ignores measurement errors in

predictors.

Berry, Ruppert and Carroll (2002) developed a fully Bayesian approach utilizing penalized

splines (Eilers and Marx 1996). They indicated through simulations that their method showed

superior performance in terms of the mean squared error as compared to Carroll’s et al. (1999)

methods.

Ruppert, Wand and Carroll (2003) and Ganguli, Staudenmayer and Wand (2005) noted that

the observed data likelihood function in Berry et al. (2002) cannot be computed analytically since

it contains intractable high-dimensional integrals in the unobserved predictors. Since it is not

possible to integrate out the unobserved predictors, Ganguli et al. (2005) resorted to a Monte

Carlo expectation maximization (EM) algorithm to compute the maximum likelihood estimates.

This algorithm is computationally demanding, as much as the Bayesian approach. It requires

at every iteration a Metropolis-Hastings step to draw hundreds of samples from the conditional

distribution of the unobserved predictors, which is evidently a time consuming step when n is
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large.

Another interesting Bayesian approach is developed by Sarkar, Mallick, and Carroll (2014). By

using mixtures of Dirichlet processes, it generalizes the Berry et al. (2002) approach by modeling

the distribution of the unobserved predictor and allowing both the measurement error and the

regression error to be non-normal and heteroscedastic.

In this article, we present a frequentist method to the problem of measurement error in non-

parametric regression that adopts the same set of assumptions as Berry et al. (2002) and Ganguli

et al. (2005).

While the exact distribution of the response variable given the observed predictors cannot

be obtained, exact expressions of the mean and the covariance matrix of the response variable

given the observed predictors conditionally on the regression coefficients can be found as will

be demonstrated later. These results are novel and may be of independent interest. We propose

fitting iteratively a heteroscedastic mixed model derived from the conditional moments. The focus

of this method is on the first and the second moments without specifying a particular distribution.

Section 2 reviews the measurement error problem in semiparametric regression in greater detail.

Specifically, penalized-spline regression is given in the form of linear mixed models along with the

measurement error mechanism that controls the relationship between the observed predictors

and the unobserved predictors. The difficulty of obtaining the observed data likelihood function

is highlighted before introducing estimation methods and the Bayesian approach. In Section 3

we derive the basis of our method and describe an algorithm to execute it. Through simulations,

Section 4 studies the prediction power of the proposed method under a variety of cases and sample

sizes. We conclude that this method offers superior performance over a set of local polynomial

4



estimators even when the model is misspecified and is competitive with the Bayesian approach. It

is very fast to compute allowing one to adjust for measurement error in nonparametric regression

models for very large samples. An application to real data is provided in Section 5 and Section 6

summarizes the findings. For simplicity and to conserve space, the following discussion is restricted

to one predictor, but its extension to additive models is straightforward.

2 Penalized splines with measurement error

Consider the linear mixed model representation of the linear penalized splines model given by

Ruppert and Carroll (2000) and Ruppert et al. (2003)

Y = Xβ +Zu+ e, e ∼ N(0, σ2
eI) and u ∼ N(0, σ2

uI) (1)

where Y = [yi] is an n× 1 vector of observable response variables, β = [β0 β1]
> is an unknown

vector of regression parameters, e = [ei] is an n× 1 vector of unobservable errors and u = [uj] is

a k × 1 vector of unobservable random effects. The random vector e is independent of u. Here

X = [1 x] an n × 2 matrix with x = [x1 . . . xn]> and Z = [(xi − kj)+]j=1,...k
i=1,...n an n × k matrix

where {k1 . . . kk} is a fixed set of knots. The representation in Z uses the truncated lines basis, but

B-splines could be used instead. Simple linear regression corresponds to σ2
u = 0 (overly smoothed)

whereas σ2
u →∞ implies ordinary multiple linear regression in X and Z with u now being treated

as a fixed effect vector resulting in no smoothing. Maximum likelihood or restricted maximum

likelihood (REML) estimation is often used to estimate the parameters.

Let w = [wi] be a n × 1 vector of the observed values of the predictor x. Typically, a
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measurement error model assumes that

w|x ∼ N(x, σ2
w|xI), and x ∼ N(µx1, σ

2
xI) (2)

The observed predictor w is a distorted version of x, where the level of distortion is controlled

by σ2
w|x. Equations 1 and 2 result in a measurement error model with θ = (β, σ2

e , σ
2
u, σ

2
w|x, µx, σ

2
x)

being the vector of the unknown parameters to be estimated from the data. Define

l(θ) ∝ ‖ Y −Xβ −Zu ‖2

σ2
e

+
‖ w − x ‖2

σ2
w|x

+
‖ x− µx1 ‖2

σ2
x

+
‖ u ‖2

σ2
u

+ n log σ2
e + n log σ2

w|x + n log σ2
x + k log σ2

u (3)

Ganguli et al. (2005) denoted l(θ) as the complete data log-likelihood that corresponds to the

complete data Dcomp =
[
Y ,x,u,w

]
, whereas lobs(θ) corresponds to the observed data Dobs =[

Y ,w
]
. Then, lobs(θ) = log

[∫
exp l(θ) du dx

]
. Ruppert et al. (2003) and Ganguli et al. (2005)

noted that this high dimensional integral is intractable and therefore lobs(θ) cannot be obtained.

Specifically, integrating u out will result in an n-dimensional integral with an integrand that

contains a very complicated function of x. Based on the fact that the density of x|u,Y ,w is

proportional to the exponential of the first three terms in (3), Ganguli et al. (2005) developed a

nested Monte Carlo expectation maximization (EM) algorithm to estimate θ. It requires at every

iteration a Metropolis-Hastings algorithm to draw m samples from the distribution of x|u,Y ,w

which is time consuming, especially when n is large. Also, Ruppert et al. (2003) indicated that a

reasonable choice of m is unclear.

Carroll et al. (1999) suggest estimating σ2
w|x via either external data sets or using the pooled
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sample variance of w if replicate measurements are available. They showed that the asymptotic

effect of these estimation methods on the nonparametric regression function is negligible. The

Monte Carlo EM approach and a partial Bayesian approach suggested by Berry et al. (2002)

adopted these methods as well. They also estimated µx and σ2
x by the sample mean and sample

variance of w minus the estimate of σ2
w|x, respectively.

Obviously, an immediate advantage of a fully Bayesian approach is its ability to take into

account the uncertainty in estimating the regression function by placing prior distributions on

β, µx and all variance parameters. Diffuse priors are typically assumed. The joint posterior

distribution cannot be analytically found. Instead, Berry et al. (2002) developed an MCMC scheme

to sample from the posterior distribution. A Metropolis-Hastings step is needed to sample from the

conditional distribution of x. Once the posterior draws have been generated, one can easily obtain

posterior means and credible intervals for all parameters including x and u. Berry et al. (2002)

demonstrated that their method provided satisfactory prediction accuracy and performed better

in terms of the mean squared error than previously suggested methods.

Next, we develop competitive frequentist approach that models the mean and the variance of

Y given w and u.

3 Heterosedastic mixed model approach

Ruppert et al. (2003) and Ganguli et al. (2005) noted that the density of Y |w is proportional to the

intractable integral
∫

exp l(θ) du dx. It is straightforward to show that Y |x ∼ N
(
Xβ, σ2

uZZ
>+

σ2
eI
)

but integrating x out to obtain the density of Y |w is not possible due to the presence of

x in Cov(Y |x). Therefore, we will not seek the density of Y |w but rather we will derive the
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exact expressions of E(Y |w,u) and Cov(Y |w,u) and suggest an algorithm based on an iterative-

heteroscedastic mixed model with the random effects contained in u; see (1).

First, the conditional mean of Y |w,u is given by

E(Y |w,u) = E
(
E(Y |w,u,x)|w,u

)
= E(Xβ +Zu|w,u)

= E(X|w)β + E(Z|w)u (4)

where the expectation operator is computed element-wise. Next, the conditional covariance matrix

of Y |w,u is given by

Cov(Y |w,u) = E
(
Cov(Y |w,u,x)|w,u

)
+ Cov

(
E(Y |w,u,x)|w,u

)
= σ2

eI + Cov(Xβ +Zu|w,u)

= σ2
eI + Cov(Xβ|w) + Cov(Zu|w,u)

+ Cov(Xβ,Zu|w,u) + Cov(Zu,Xβ|w,u)

(5)

The second and the third equations follow from the facts that Y and w are conditionally inde-

pendent given x and u, and x and u are marginally and conditionally independent given w.

To compute (4) and (5), we need the following theorems. The first establishes the conditional

distribution of x given w. It is a direct application of Bayes theorem and the joint Gaussian

distribution of (x,w), and will be given without a proof. The second gives integral identities

related to the expressions (4) and (5). The proof is provided in the Appendix.
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Theorem 1. The assumptions in (2) are equivalent to

x|w ∼ N
(σ2

xw + µxσ
2
w|x1

σ2
x + σ2

w|x
,
σ2
xσ

2
w|x

σ2
x + σ2

w|x
I
)

and w ∼ N
(
µx1, (σ

2
x + σ2

w|x)I
)

(6)

Theorem 2. Let f and F be the density function and the cumulative distribution function for a

normal distribution with mean µ and variance s2 and a and b any two real numbers with a < b.

Then,

+∞∫
−∞

(x− a)+f(x) dx = s2f(a) + (µ− a)(1− F (a)) (7)

+∞∫
−∞

(x− a)2+f(x) dx = s2f(a)(µ− a) +
(
(µ− a)2 + s2

)(
1− F (a)

)
(8)

+∞∫
−∞

x(x− a)+f(x) dx = s2f(a)µ+ (s2 + µ(µ− a))(1− F (a)) (9)

+∞∫
−∞

(x− a)+(x− b)+f(x) dx = s2f(b)(µ− a) + (s2 + (µ− a)(µ− b))(1− F (b)) (10)

By using (6), the ith row of the matrix E(X|w) is

[
1 E(xi|wi)

]
=

[
1

σ2
xwi + µxσ

2
w|x

σ2
x + σ2

w|x

]
(11)

and by (7) the (i, j)-entry of the matrix E(Z|w) is given by

E
(
(xi − kj)+|wi

)
=

σ2
xσ

2
w|x

σ2
x + σ2

w|x
fi(kj) +

(
σ2
xwi + µxσ

2
w|x

σ2
x + σ2

w|x
− kj

)
(1− Fi(kj)) (12)
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where now fi and Fi are the pdf and the cdf of xi|wi. As expected, nothing can be learned about

the regression function through w when σ2
w|x → ∞ as the contributions of w will disappear in

both (11) and (12). Notice that when σ2
w|x = 0, Fi(kj) = 1 if xi ≤ kj and 0 otherwise and in this

case (12) is simply a spline function with knot kj.

Finding the conditional variance in (5) is more involved. The details are in the Appendix.

There it is shown that Cov(Y |w,u) is a diagonal matrix with the ith diagonal element given by

vi = σ2
e + β2

1

σ2
xσ

2
w|x

σ2
x + σ2

w|x
+ 2β1Cov(xi, zi|wi)u+ u>Cov(zi|wi)u (13)

The parameters σ2
w|x, µx and σ2

x are estimated as described in Section 2. Once the estimates

of σ2
w|x, µx and σ2

x have been obtained, they are plugged in (4) and (5). The problem can be put

in a form of a heteroscedastic mixed model. Specifically,

Y = E(X|w)β + E(Z|w)u+ ε, ε ∼ ψ(0,V ) and u ∼ N(0, σ2
uI) (14)

where ψ(0,V ) is an unknown distribution with mean 0 and covariance matrix V = diag(vi).

Evidently, ψ does not correspond to a normal distribution. The matrices E(X|w) and E(Z|w)

represent known predictors. Despite its apparent similarity with model (1), model (14) is different

in three main aspects. First, the response variable does not follow a normal distribution, second,

the variance is not constant, third, and more importantly the error vector ε depends on the random

effect u and β1 through the covariance matrix V . The term vi is a quadratic function in β1 and

u. However, E(ε|u) = 0, which is critical.

Even if Y |w,u follows a normal distribution, the dependence between ε and u means that
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the likelihood function cannot be directly optimized (Davidian and Giltinan 1995). The following

iterative algorithm aims to estimate the parameters β, σ2
e and σ2

u and predict u:

1. Fit a homoscedastic linear mixed model to (14), that is, as a working model take V = σ2
εI,

σε > 0.

2. From the fitted model, obtain the estimate β̂1 and the prediction û and plug-in them in (13)

so v̂i = σ2
e + ci where ci’s are known constants.

3. Fit the heteroscedastic mixed model in (14) with vi being set at v̂i.

4. Repeat steps 2–3 until stabilization.

5. Using the estimates from the previous step, obtain the fitted curve over a grid of values

d = (d1, . . . , dt) [
1 di]i=1,...tβ̂ + [(di − kj)+]j=1,...k

i=1,...t û

This method will be called by the conditional approach since it is based on the mean and the

variance of Y given the random effects u. We recommend using k-fold cross validation to estimate

the variance parameters. Specifically, for a certain value of σ2
e , the weights are formed, the data

are split into k folds and then predictions for each fold are computed using the model fitted in

the remaining k − 1 folds. The model is fitted using a sequence of values of σ2
u. The process is

repeated over a grid values of σ2
e and the pair of σ2

u and σ2
e that minimizes the mean squared error

is selected. Instead of providing a grid of σ2
e , one can use an optimization method (e.g. BFGS)

aiming to find σ2
e that minimizes the cross validation mean squared error in σ2

u. We adopt this

option in the simulation section. We have found that cross validation is more robust than REML
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when the distribution of x is incorrectly specified as normal.

There are three important points to consider. First, as explained in Ruppert et al. (2003), under

homoscedasticity such as the model in (1), the penalty parameter in the penalized fitting criterion

is σ2
e/σ

2
u. For the heteroscedastic model in (20), it can be shown that the penalty parameter is

σ−2u . The equivalency between the two parameters allows one to work with well developed software

(e.g. glmnet in R) that aim to find the optimal value of the penalty parameter. Second, optimal

estimators cannot be obtained using this method since ψ does not correspond to a density of

normal distribution. This method focuses completely on modelling the mean and the variance

without specifying a particular distribution. Third, it is straightforward to generalize this method

when measurement errors are heteroscedastic (e.g. the covariate for the males group is measured

more accurately than the females group).

The prediction of the process, y0 when x = x0 is given by

β̂0 + β̂1x0 + [(x0 − kj)+]j=1,...kû (15)

If w0 a distorted version of x0 is observed rather than x0, it can be shown that the estimated best

linear unbiased predictor (EBLUP) of y0 is given by

β̂0 +
σ2
xw0 + µxσ

2
w|x

σ2
x + σ2

w|x
β̂1 +

[
E((x0 − kj)+|w0)

]>
j=1,...k

û (16)

Finally, the measurement error model assumes that x is a latent variable similar to the random

effect u. It can be predicted given Y using the same theoretical tools. First, it is not too difficult

to show that the covariance between xi and yj given w is β1
σ2
xσ

2
w|x

σ2
x + σ2

w|x
whenever i = j and zero
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otherwise. Thus, the EBLUP of x is

σ2
xw + µxσ

2
w|x1

σ2
x + σ2

w|x
+ β̂1

σ2
xσ

2
w|x

σ2
x + σ2

w|x
Cov(Y |w)−1(Y − E(Y |w)β̂) (17)

The details are omitted for brevity, but it can be proved that the marginal moments of Y |w are

given by

E(Y |w) = E(X|w)β, and (18)

Cov(Y |w) =
(
σ2
e + β2

1

σ2
xσ

2
w|x

σ2
x + σ2

w|x

)
I

+ σ2
u

(
diag

( k∑
j=1

Var((xi − kj)+|w)
)

+ E(Z|w)E(Z|w)>

)
(19)

Next, the prediction accuracy of the conditional approach is studied through simulations and

compared against the local constant estimator of Fan and Truong (1993), the local polynomial es-

timators in Staudenmayer and Ruppert (2004), Delaigle et al. (2009) and Huang and Zhou (2017),

and the Bayesian approach. It is shown that it has superior performance over other frequentist

methods and is highly competitive with the Bayesian approach.

4 Simulations

Four regression functions are studied to evaluate the prediction accuracy of the conditional ap-

proach presented in the previous section. The comparison scheme presented here is similar to the

one presented in Berry et al. (2002) except that here the sample size is varied from 27 to 214 for

each case.
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In terms of the mean squared error (MSE), the conditional approach is compared against the

naive model that fits a linear spline model to the observed predictor w without accounting for

measurement errors and against the local constant estimator of Fan and Truong (1993), the local

polynomial estimators in Staudenmayer and Ruppert (2004), Delaigle et al. (2009) and Huang

and Zhou (2017), and the Bayesian approach of Berry et al. (2002). The MSE is calculated over a

grid of 101 points in the interval [a, b] covering most of the range of x. For each case, 100 data-sets

have been generated and σ2
w|x is assumed to be known for the all approaches.

The bandwidth parameter in methods of Fan and Truong (1993), Delaigle et al. (2009) and

Huang and Zhou (2017) are estimated using the 2-stage plug-in estimator proposed by Delaigle and

Gijbels (2002, 2004). Delaigle and Gijbels (2002, 2004) showed that this method approximately

minimizes the asymptotic mean integrated squared error and performs well in finite samples. Sim-

ilar to Delaigle and Hall’s (2008) method, Huang and Zhou (2017) developed a bandwidth selector

procedure based on SIMEX and cross validation to be used in conjunction with their method

and with Delaigle et al. (2009) method as well. We recompute these estimators according to this

bandwidth selector. However, it is noted that this procedure is very computationally demanding.

At n = 214, it may take more than 5 hours to compute. For this reason, we implemented it on 20

data-sets only.

Along with Staudenmayer and Ruppert (2004) method, there are in total six local polynomial

estimators. To ease visualisation, at each sample size we will only report the lowest MSE of all local

polynomial estimators. This unrealistic estimator is called the best local polynomial estimator,

henceforth BLPE. Consequently, the BLPE has been given an unfair advantage over the other

estimators. Nonetheless, as we will see, our conditional approach outperforms BLPE.
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The conditional approach and the Bayesian approach are set to use the same set of 40 equally-

spaced knots. In Appendix B, we vary the number of knots from 10 to 50 and find that the number

of knots has little effect on accuracy. In fact, Wang, Shen, and Ruppert (2011) demonstrated that

performance is largely independent of the number of knots, because the number of knots is not a

smoothing parameter of a penalized spline. For the conditional approach, the R-package glmnet

is used to perform 5-fold cross validation. For the Bayesian approach, non-informative priors have

been assumed for all parameters. Specifically, normal distributions with large variance and inverse

gamma distributions with small scale and shape parameters are used as prior distributions on the

mean parameters and on the variance parameters, respectively. The total number of posterior

samples is 4000 including a burn-in period of 1000. We developed a customized MCMC algorithm

to compute the Bayesian estimator that is much faster than Bayesian software such as JAGS or

STAN.

The four cases considered are as follows:

1. The parameters are a = −2, b = 2, σ2
e = 0.32, σ2

w|x = 0.82, µx = 0 and σ2
x = 1. The

regression function is given by

m(x) =
sin(πx/2)

1 + 2x2(sign(x) + 1)

2. a = 0.1, b = 0.9, σ2
e = 0.00152, σ2

w|x = (3/7)σ2
x, µx = 0.5, σ2

x = 0.252, and the regression

function

m(x) = 1000(x)3+(1− x)3+
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3. a = 0.1, b = 0.9, σ2
e = 0.052, σ2

w|x = 0.1412, µx = 0.5, σ2
x = 0.252, and the regression function

m(x) = 10 sin(4πx)

4. a = 0.1, b = 0.9, σ2
e = 0.352, σ2

w|x = 0.12, µx = 0.5, σ2
x = 1/62, and the regression function

m(x) = 3 exp(−78(x− 0.38)2) + exp(−200(x− 0.75)2)− x

The four functions described above are displayed in Figure 1 along with one simulation example

of the observed data, (y, w). Note that the features of the true curve may not be easily detected

through the scatterplot of the observed data.

The results of the simulation study are summarized in Figure 2. Figure 2 presents the median

MSE for all approaches and the ratio of squared bias to the MSE for the naive and the conditional

approaches.

To demonstrate the importance and the necessity of taking measurement error into account

regardless of the sample size, notice that the naive approach has unsatisfactory performance in all

samples sizes and cases. Its performance improves only slightly as n increases. In case-1, when

n = 214 the MSE is reduced only by a factor of 15.6% and 4% when compared to n = 27 and n = 29

respectively. Similar numbers have been observed for the other cases. This slight decrease in MSE

is mainly due to the reduction of the prediction variance as the bias remains high regardless of

the sample size. In case-1, the bias at n = 214 is only smaller by 8.8% and 2.9% when compared

against n = 27 and n = 29. The bias contributes about 97.52%− 99.89% to the MSE for n ≥ 29.

This range slightly changes to 98.1%− 99.99% for the other cases.
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Figure 1. The Regression functions with a simulation example of the observed data for cases 1–4.

As shown in Figure 2, the performance of the conditional approach largely improves as n

increases or in other words the empirical rates of convergence improves with n as specified in

Section 3. It corrects for the bias even for small samples.

The conditional approach has a far superior performance than the naive estimators and all

local polynomial estimators in all cases and sample sizes including the small ones. Also, as

compared to the Bayesian approach, it has a better performance in Cases 2 and 3 and showed a

competitive performance in Cases 1 and 4. A pointwise MSE assessment for the boundary, critical
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Figure 2. MSE (black) for cases 1–4 computed for the naive approach (open diamonds), the BLPE
(open triangles), the Bayesian approach (solid triangles), and the conditional approach (solid circles).
The squared bias/MSE is shown in red for the naive and the conditional estimators.

and inflection points for Case 1 is given in Appendix C.

The nonparametric convergence rate without measurement error is MSE = Kn−α for some

α > 0. Then log(MSE) should be approximately linear in log n. With normally-distributed

measurement error, the optimal convergence rate is K log(n)−α. Ideally, log(MSE) should be
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Figure 3. log log n versus log(MSE) for cases 1–4. The conditional approach is presented by the solid
circles whereas the naive approach are shown by the open diamonds.

approximately linear in log log n. Figure 3 displays the log(MSE) for the conditional approach

versus log log n for all cases. Note that the curves for the conditional approach largely follow

linear patterns with a weak evidence of curvature.
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To test the robustness to model specification, the simulation study is repeated with x sampled

from a skew normal distribution (Azzalini 1985 and Azzalini 2013) with shape parameter α = 6

(long right-tailed distribution) and is repeated again with x sampled from a uniform distribution

(short tailed distribution). In both scenarios, the mean and variance of x are the same as specified

in cases 1–4. Notice that for local polynomial estimators no assumptions have been made about

the distribution of x. The conditional approach and the Bayesian approach are fitted mistakenly

assuming normality of x. The results for are shown in Figure 4 (skew normal) and Figure 5

(uniform).

The MSE for both the conditional approach and Bayesian approach have evidently increased.

The structure of the mean function in the conditional approach is computed assuming normality of

x. Mistakenly assuming normality induced mean misspecification in E(Y |w,u) causing additional

bias to incur. The performance of local polynomial estimators has deteriorated as well although

there is no assumption has been made about the distribution of x in these methods.

Despite the serious departure from the normality assumption of x, the conditional approach

remained superior to the naive approach and to the local polynomial estimators across all cases and

sample sizes under both distributions. Also, the conditional approach maintained its dominance

over the Bayesian approach in Cases 2 and 3. In addition to that, it showed better performance

in Case 4 when sampling from skew normal. The Bayesian approach performed better in Case 1

under both sampling distributions.

As mentioned before, the BLPE may report a different estimator at each sample size n. In total

there are 96 combinations of sample sizes, cases and sampling distributions. For example in Case

1 under normality, at n = 27 BLPE is the Staudenmayer and Ruppert (2004) estimator whereas
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Figure 4. MSE results when x is sampled from skew normal distribution. MSE (black) for cases 1–4
computed for the naive approach (open diamonds), the BLPE (open triangles), the Bayesian approach
(solid triangles), and the conditional approach (solid circles). The squared bias/MSE is shown in red for
the naive and the conditional estimators.

at n = 28 and n = 29 is Delaigle et al. (2009) method with plug-in bandwidth selector and for

n ≥ 210, Delaigle et al. (2009) with Huang and Zhou (2017) bandwidth selector is reported. Again

in Case 1 but now when sampling x from a skew normal distribution, the minimum is achieved

at Fan and Truong (1993) method at all sample sizes. Generally speaking, despite its complexity,
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Figure 5. MSE results when x is sampled from uniform distribution. MSE (black) for cases 1–4 com-
puted for the naive approach (open diamonds), the BLPE (open triangles), the Bayesian approach (solid
triangles), and the conditional approach (solid circles). The mean squared bias/MSE is shown in red for
the naive and the conditional estimators.

the Huang and Zhou (2017) bandwidth selector, which follows Delaigle and Hall (2008), produced

unstable results with both Delaigle et al. (2009) and Huang and Zhou (2017) estimators. Out of

the 96 combinations, this bandwidth selector appeared six times only all with Delaigle et al. (2009)

estimator. Huang and Zhou (2017) estimator was selected once when using the plug-in bandwidth
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selector. Staudenmayer and Ruppert (2004) was selected 33 times (mostly with n ≤ 212), followed

by Fan and Truong (1993) estimator (31 times) and Delaigle et al. (2009) estimator when using

the plug-in method (25 times).

We demonstrated through this simulation study that the conditional approach is superior to

the best local polynomial estimator even when the model is incorrectly specified and is competitive

with the Bayesian approach.

4.1 Comparisons with Sarkar et al. (2014)

Ideally we would like to include Sarkar’s et al (2014) method, henceforth SMC, in the simulation

study conducted in the previous section. However, this method is very computationally intensive

and timely consuming, prohibiting its use in our simulations. For example, on a single dataset

with n = 210 only, it took about 40 minutes to execute. Instead, a light version of the simulation

study is performed using 40 simulated datasets with n = 29.

As recommended by Sarkar et al. (2014), we run 10000 MCMC iterations including a burn-in

period of 5000 before applying thinning of factor 5. The R-code to execute SMC can be found

in the journal website where the research is published. Three replicates are generated since the

implementation of SMC depends on availability of replicates to estimate σ2
w|x which previously was

assumed to be known. The conditional approach estimates σ2
w|x using the pooled sample variance

of w. The parameter σ2
x is estimated by the average of the sample variances of replicates of w

minus the estimate of σ2
w|x. Then the algorithm runs separately on each replicate and predictions

are generated before they are combined by taking their average. We found that this procedure can

yield more accurate predictions than applying the procedure once on the average of the replicates.
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Table 1

100×MSE results for the conditional
approach and Sarkar’s et al. (2014) method
(SMC). The comparison is based on n = 29

and involves cases 1 & 2 and three
distributions of x. Three replicates are

available.

Conditional SMC

Case 1
Normal 1.18 1.20
Skew Normal 5.80 9.51
Uniform 4.34 3.10

Case 2
Normal 27.64 2797.58
Skew Normal 128.22 3146.27
Uniform 171.59 2597.85

The results are shown in Table 1.

Under Case–1, the conditional approach has a comparable performance with SMC when x has

a normal distribution and a better performance when x is sampled from skew normal distribu-

tion although it incorrectly specifies the distribution of x. Note that SMC does not make any

distributional assumption on the distribution of x. SMC yielded more accurate predictions when

x is sampled from uniform distribution. Under Case–2, the conditional approach has evidently

produced superior performance. The improvement in MSE over the SMC method approximately

ranged between 15 times to 101 times.

In almost all cases and distributions, the performance of the conditional approach has improved

in presence of replications despite σ2
w|x being unknown. The improvement is minimal had we

decided to take a single run on the data and perform the algorithm on the average of the replicates.

Table 2 reports the average time in seconds to execute the conditional approach when σ2
w|x is

known (no replicates) and σ2
w|x is unknown (three replicates), and SMC (three replicates) on a
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Table 2

Average calculation times in seconds for the SMC method and the
conditional approach when σ2w|x is known and when σ2w|x is unknown.

Sample Size 27 29 210 214

SMC 239.62 755.45 2360.04
Conditional (σ2

w|x known) 12.89 13.02 20.150 177.70

Conditional (σ2
w|x unknown) 18.91 22.68 24.112 197.41

single dataset. SMC’s computation time when n = 27 exceeds the conditional approach computing

time when n = 214 regardless σ2
w|x is known or not. The conditional approach is about 98 times

faster to run than SMC at n = 210.

5 Application

Berry et al. (2002) analyzed a clinical trial experiment comparing a treatment group to a con-

trol group. The response variable is a score representing severity of a disease with lower scores

indicating more severe disease. The main interest is estimating the score difference between the

two groups adjusting for the baselines scores that are believed to covary non-linearly with the

response variable. Basically, the model contains a dummy variable representing the group and 30

spline terms in the baseline score variable along their interactions with the dummy variable. The

measurement error variance in the baselines scores is estimated at 0.35. The sample consists of

490 patients distributed evenly between the two groups.

Figure 6 shows the fitted curves representing the treatment effect (difference in the average

scores between the treatment and the control groups) across various values of baselines scores.

Notice that the naive approach that ignores measurement error concludes that treatment has

a negligible effect on the severity of the disease in contrast to the Bayesian approach and the
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Figure 6. Estimating treatment effect utilizing naive approach (dotted lines), the Bayesian approach
(dot-dashed lines), and the conditional approach (dashed lines).

conditional approach both of which agree to a large extent but markedly differ on the boundaries.

6 Conclusions

Ignoring measurement error in predictors may lead to highly biased inferences. The estimated

regression function will misrepresent the true functional relationship between the response variable

and the predictors. We demonstrated that the bias that results from failing to take into account
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measurement error remains huge regardless of the sample size. For this purpose, we devised an

iterative frequentist approach that depends on modelling the conditional mean and the variance

of the response variable given the observed predictor and the random effects. We showed through

simulations that the conditional method largely outperformed the naive approach and the best

local polynomial estimator. This remained true even when the conditional approach mistakenly

assumed the normality of x. The conditional approach also displayed a competitive performance

with the Bayesian approach and in some cases it was superior.

As stated earlier, this work can be naturally extended to additive models when more than one

predictor exists. It may be some or all of the predictors are measured with errors. Inclusion of

interactions may complicate the mathematics but remains feasible with few additional assumptions

regarding the joint relationships between the predictors. Another future direction includes utilizing

other basis functions such as O’Sullivan splines or B-splines rather than truncated splines could

be tried. A far more interesting direction is exploring how to generalize methods presented in this

article to account for measurement errors in logistic and Poisson regression models. Finally, we

assumed that x has a normal distribution. The family of skew normal distributions is a very rich

family that includes normal distributions and long tailed distributions that are frequently seen

in practice. It is desirable for future work to extend the methodology presented here to when x

follows a skew normal distribution. Also, a mixture of normal is another family of interest.
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Appendix A: Proof of Theorem 2

We will demonstrate (10) only since (7), (8), and (9) will follow similarly. First since b > a,

+∞∫
−∞

(x− a)+(x− b)+f(x) dx =

+∞∫
b

(x− a)(x− b)f(x) dx

=

+∞∫
b

(x− µ+ µ− a)(x− µ+ µ− b)f(x) dx

=

+∞∫
b

(x− µ)2f(x) dx+ (2µ− a− b)
+∞∫
b

(x− µ)f(x) dx

+ (µ− a)(µ− b)(1− F (b)) (20)

The first term in (26)

+∞∫
b

(x− µ)2f(x) dx =

+∞∫
b

(2πs2)−1/2(x− µ)2 exp(−(x− µ)2/(2s2)) dx

=

+∞∫
b−µ

(2πs2)−1/2t2 exp(−t2/(2s2)) dt

= −(2πs2)−1/2s2t exp(−t2/(2s2))
∣∣∣+∞
b−µ

+ s2
+∞∫
b−µ

(2πs2)−1/2 exp(−t2/(2s2)) dt

= (2πs2)−1/2s2(b− µ) exp(−(µ− b)2/(2s2)) + s2(1− F (b))

= s2(b− µ)f(b) + s2(1− F (b)) (21)
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Now, the second term in (26)

(2µ− a− b)
+∞∫
b

(x− µ)f(x) dx = (2µ− a− b)
+∞∫
b

(2πs2)−1/2(x− µ) exp(−(x− µ)2/(2s2)) dx

= (2µ− a− b)
+∞∫

(b−µ)2/2

(2πs2)−1/2 exp(−t/s2) dt

= (2µ− a− b)(−s2(2πs2)−1/2 exp(−t/s2))
∣∣∣+∞
(b−µ)2/2

= (2µ− a− b)s2f(b) (22)

Substituting (27) and (28) in (26) gives (10).

Appendix B: Cov(Y |w,u)

Using result 1, the (i, j) entry of Cov(Xβ|w) is

Cov(β0 + β1xi, β0 + β1xj|w) = β2
1Cov(xi, xj|w) =


0 i 6= j

β2
1

σ2
xσ

2
w|x

σ2
x+σ

2
w|x

i = j

(23)

Cov(Xβ|w) is a diagonal matrix since the xi’s are independent givenw. Similarly, the ith element

of the vector Zu is a function of xi only. Therefore, Cov(Zu|w,u) is a diagonal matrix as well.

The (i, i) entry of this matrix is

Cov(Zu|w,u)ii = Var

(
k∑
j=1

uj(xi − kj)+|wi,u

)
(24)
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More compactly using vectors, (24) can be re-expressed as

Cov(Zu|w,u)ii = u>Cov(zi|wi)u (25)

where zi is the ith row vector of Z. Specifically, zi =
[
(xi − k1)+, . . . , (xi − kk)+

]>
. The (l, r)

entry of Cov(zi|wi)

Cov
(
(xi − kl)+, (xi − kr)+|wi

)
= E

(
(xi − kl)+(xi − kr)+|wi

)
− E

(
(xi − kl)+|wi

)
E
(
xi − kr)+|wi

)
(26)

The last term can be found similar to (12) whereas the first term, by (10),

E
(
(xi − kl)+(xi − kr)+|wi

)
=

σ2
xσ

2
w|x

σ2
x + σ2

w|x
fi(kr)

(
σ2
xwi + µxσ

2
w|x

σ2
x + σ2

w|x
− kl

)

+

(
σ2
xσ

2
w|x

σ2
x + σ2

w|x
+

(
σ2
xwi + µxσ

2
w|x

σ2
x + σ2

w|x
− kl

)
×

(
σ2
xwi + µxσ

2
w|x

σ2
x + σ2

w|x
− kr

))
×

(
1− Fi(kr)

)
(27)

assuming l ≤ r.

Finally, similar to above, Cov(Xβ,Zu|w,u) is a diagonal matrix since the ith element for

both vectors Xβ and Zu depends on xi alone. The (i, i) entry of this matrix is

Cov(Xβ,Zu|w,u)ii = Cov(β0 + β1xi, z
>
i u|wi,u)

= β1Cov(xi, zi|wi)u

= β1

k∑
j=1

ujCov
(
xi, (xi − kj)+|wi

)
(28)
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which can be directly found using (9).

Let vi be (i, i) entry of the Cov(Y |w,u). Putting (5), (23), (27) and (28) together concludes

that Cov(Y |w,u) is a diagonal matrix with vi being

vi = σ2
e + β2

1

σ2
xσ

2
w|x

σ2
x + σ2

w|x
+ 2β1Cov(xi, zi|wi)u+ u>Cov(zi|wi)u (29)

Appendix C: Varying the Number of Knots

Figure 6 shows the MSE performance for the conditional approach for Case 1 while varying k

the number of knots. It basically repeats the analysis in panel (a) of Figure 2 for the conditional

approach with k = 10, 20, 30, 40 and 50. Except when n is small, the performance of the estimator

is slightly affected by choice of k.

Appendix D: MSE Pointwise Assessment

Figure 7 provides pointwise MSE for six points for the conditional and the Bayesian approaches for

Case 1. Two points are the on the boundary of the grid {−2, 2}, three critical points {−1, 0, 0.43},

and one inflection point at 0.81.
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