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Outline

Prox-linear algorithms for composite minimization:

g + c or h
(
c(·)
)

for simple nonsmooth g and h, and smooth c.

I Background: Fletcher ’82, . . .
. . . , sparse estimation via nonconvex regularization.

I Global convergence: limit points and sublinear rate.

I Prox-gradient steps as a stopping criterion.

I Error bounds, quadratic growth, linear convergence.

I Partial smoothness and second-order acceleration.
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ProxDescent algorithm for min h
(
c(·)
)

Nonsmooth but “simple” h : Rm → R (initially finite convex).
Smooth c : Rn → Rm. Around iterate x ,

c̃(d) = c(x) +∇c(x)d ≈ c(x + d).

Unique step d solves easy subproblem

min
d

h
(
c̃(d)

)
+ µ‖d‖2.

Update prox parameter µ: if

actual decrease = h
(
c(x)

)
− h
(
c(x + d)

)
less than half

predicted decrease = h
(
c(x)

)
− h
(
c̃(d)

)
,

reject: µ← 2µ; otherwise,
accept: x ← x + d , µ← µ

2 .
Repeat. (L-Wright ’15)
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Examples: exact penalties, compressive sensing

min
x

p(x) + ν
∑
i

q+i (x).

Easy subproblems:

min
d

sTd +
∑
i

(aTi d + bi )
+ + µ‖d‖2.

Follows Fletcher ’82, Powell ’84, Yuan ’85, Burke ’85, Wright ’90,
Byrd et al. ’05 (KNITRO), Friedlander et al. 07. . .

Sparse solve Ax = b (Candès, Donoho, Tao et al. ’06. . . ) via

min
x
‖Ax − b‖2 + τ‖x‖1.

Separable subproblems:

min
d∈Rn

sTd + τ‖x + d‖1 + µ‖d‖2.

Just O(n) operations: SpaRSA (Wright et al. ’09).
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Example: nonconvex regularizers for sparse estimation

min
x
‖A x− b‖2 + τ

∑
i

φ(xi ) (Zhao et al. ’10).

Random 256-by-4096 A, sparse x̂, and b = A x̂ + noise.

Eventual slow linear convergence.
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Global convergence of prox-linear methods

Theorem (L-Wright ’15)

For arbitrary h (nonsmooth or extended-valued), limit points x̄ of
iterates are stationary for objective f = h

(
c(·)

)
:

f (x)− f (x̄) ≥ o(‖x − x̄‖).

Rate? More generally, if g , h convex (for now),

min
x

imize g(x) + h
(
c(x)

)
via iteration x ← x + prox-gradient step

d(x , µ) = argmin
d

g(x + d) + h
(
c̃(d)

)
+ µ‖d‖2.

If h,∇c are β, γ-Lipschitz, the steps d1, d2, . . . become small:

dk = O(k−
1
2 )

providing µ ≥ βγ. (Drusvyatskiy-L ’16).
6 / 13



Small prox-gradient steps ⇒ near-stationarity

When should we stop the prox-linear method for minimizing

f (x) = g(x) + h
(
c(x)

)
?

Theorem (Drusvyatskiy-L ’16)

If the step d is small, then the iterate x is “nearly” stationary.

Precisely: corresponding to the step d = d(x , µ)
is a point x̂ and a vector v satisfying

‖x + d − x̂‖ ≤ ‖d‖ and ‖v‖ ≤ 5µ‖d‖,

such that
f (·) + 〈v , ·〉

is stationary at x̂ . (Proof via Ekeland principle).

7 / 13



Linear convergence and prox-gradient error bounds

Minimizing f (·) = g(·) + h
(
c(·)

)
gives iterates xk . Around any

limit point x̄ , suppose stepsize bounds distance to a minimizer:

dist(x) = min
y∈argmin f

‖x − y‖ ≤ 1

α
‖d(x , µ)‖. (∗)

Then (Luo-Tseng ’93) the excess e(·) = f (·)−min f shrinks:

e(xk+1)

e(xk)
≤ 1− α2.

Theorem (Drusvyatskiy-L ’16)

The error bound (∗) is equivalent to local quadratic growth:

e(x) ≥ µα

2
dist2(x)

(and to “metric subregularity” of the subdifferential ∂f ).
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General Taylor-like models
Stationary points for closed objective f on complete metric
(X , d) have nearby points (with nearby value) and small slope:

|∇f |(x) = lim sup
y→x

(
f (x)− f (y)

)+
d(x , y)

.

Algorithms iteratively minimize closed model m around current x :

|m(y)− f (y)| ≤ ηd2(x , y) (y ∈ X ).

Model minimizer x+ gives step size ε = d(x , x+).
Then (Drusvyatskiy-Ioffe-L ’17), some x̂ satisfies

d(x̂ , x+) ≤ ε

f (x̂)− f (x+) ≤ ηε2

|∇f |(x̂) ≤ 10ηε.

Small steps ⇒ nearly stationary.
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Partial smoothness: the easiest nonconvex case
I Well-behaved on “active manifold” M: f |M smooth and

critical at x̄ , fixed-directional derivatives f ′(·; y) continuous.
I Prox-regularity: points near

(
x̄ , f (x̄)

)
have unique

nearest points in the epigraph
{

(x , t) : t ≥ f (x)
}

.
I Sharp growth: f ′(x̄ ; y) > 0 for unit normals y to M.
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The “active set” philosophy

Quadratic growth, and hence linear convergence, simplifies for
partly smooth f :

f grows at least quadratically ⇔ f |M grows quadratically

(verifiable simply via a Hessian.)

Furthermore M is identifiable (Wright ’93): yk → 0 and
f + 〈yk , ·〉 stationary at xk → x̄ ⇒ xk ∈M eventually.

Hence high-dimensional nonsmooth optimization

min f

reduces locally to low-dimensional smooth equality-constrained

min f |M.

Now accelerate using a second-order model.
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Acceleration

The prox-linear method for minimizing f (·) = h
(
c(·)

)
generates

steps dk , and corresponding iterates xk having a limit point x̄ .

Suppose h is partly smooth at c(x̄) relative to a manifold N , and
assume objective quadratic growth. Then xk → x̄ (linearly).

Identifiability ⇒ c(xk) +∇c(xk)dk ∈ N eventually.

Classical algorithms

I use dk to predict the active set.

I accelerate using a second-order model.

Generalize for simple h (L-Wright ’15):

I “Track” N .

I Build a second-order model from c and h|N .

(See also Mifflin-Sagastizábal ’05).
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Composite prox-linear methods: highlights

I Simple and intuitive.

I Unifying classical and modern algorithmic frameworks.

I Robust and scaleable in practice.
I Comprehensive convergence theory:

I limit points are stationary
I basic sublinear rate
I stopping criterion
I linear convergence and quadratic growth
I partial smoothness and second-order acceleration.

I The lens of variational analysis.
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