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Outline

Prox-linear algorithms for composite minimization:

g+c or h(c(")
for simple nonsmooth g and h, and smooth c.

» Background: Fletcher '82, ...
..., sparse estimation via nonconvex regularization.

v

Global convergence: limit points and sublinear rate.

v

Prox-gradient steps as a stopping criterion.

v

Error bounds, quadratic growth, linear convergence.

Partial smoothness and second-order acceleration.
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ProxDescent algorithm for min h(c(-))

Nonsmooth but “simple” h: R™ — R (initially finite convex).
Smooth ¢: R" — R™. Around iterate x,

é(d) = c(x)+Ve(x)d = c(x+d).
Unique step d solves easy subproblem
min h(&(d)) + ulld|.
Update prox parameter u: if
actual decrease = h(c(x)) — h(c(x + d))
less than half
predicted decrease = h(c(x)) — h(&(d)),

reject: 1 < 2u; otherwise,
accept: x <~ x+d, p< 5.
Repeat. (L-Wright '15)
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Examples: exact penalties, compressive sensing

m|n p(x) +v Z q,
Easy subproblems:

. T T + 2
d ;d+ b; d|<.
min s'd + 3 (afd +bi)" + pl|d|

i

Follows Fletcher '82, Powell '84, Yuan '85, Burke '85, Wright '90,

Byrd et al. '05 (KNITRO), Friedlander et al. 07...
Sparse solve Ax = b (Candes, Donoho, Tao et al. '06...) via

mxin |Ax — b||* + 7||x]|1.
Separable subproblems:
min s'd +7|)x + d||1 + | d|?
deR”

Just O(n) operations: SpaRSA (Wright et al. '09).
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Example: nonconvex regularizers for sparse estimation

min ||Ax — b||? + TZ #(xi)  (Zhao et al. '10).

Random 256-by-4096 A, sparse X, and b = AX + noise.
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Eventual slow linear convergence.



Global convergence of prox-linear methods
Theorem (L-Wright '15)

For arbitrary h (nonsmooth or extended-valued), limit points X of
iterates are stationary for objective f = h(c(-)):

F(x) = £(x) = o([lx — x]]).
Rate? More generally, if g, h convex (for now),
minimize g(x) + h(c(x))

via iteration x <+ x -+ prox-gradient step

d(x, ;1) = argmin g(x +d)+ h(é(d)) + uld|*.
If h,Vc are 3,~-Lipschitz, the steps di, do, ... become small:

di = O(k™2)

providing p > (7. (Drusvyatskiy-L '16).
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Small prox-gradient steps = near-stationarity
When should we stop the prox-linear method for minimizing

F(x) = g(x) + h(c(x))?

Theorem (Drusvyatskiy-L '16)

If the step d is small, then the iterate x is “nearly” stationary.

Precisely: corresponding to the step d = d(x, u)
is a point X and a vector v satisfying

Ix +d = X[ <[|d|| and [lv][ < 5pulld],

such that
F(-) +(v,")

is stationary at X. (Proof via Ekeland principle).

13



Linear convergence and prox-gradient error bounds

Minimizing f(-) = g(-) + h(c(-)) gives iterates x,. Around any
limit point X, suppose stepsize bounds distance to a minimizer:

. . 1
dis(x) = _min =yl < ~fd(xp)l. (+)

Then (Luo-Tseng '93) the excess e(-) = f(-) — min f shrinks:

1—a?.

e(Xk+1)
)

Theorem (Drusvyatskiy-L '16)
The error bound (%) is equivalent to local quadratic growth:

e(x) > %dist2 (x)

(and to “metric subregularity” of the subdifferential Of).
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General Taylor-like models

Stationary points for closed objective f on complete metric
(X, d) have nearby points (with nearby value) and small slope:

B +
IVFfl(x) = Iirngp(f(x()j(xf;()y)) )

Algorithms iteratively minimize closed model m around current x:

Im(y) — f(y)l < nd*(x,y) (v € X).

Model minimizer x™ gives step size ¢ = d(x, x).
Then (Drusvyatskiy-loffe-L '17), some X satisfies
d(%,xt) < e
f(2)—f(xT) < ne
IVF(X) < 10ne.

Small steps = nearly stationary.

13



Partial smoothness: the easiest nonconvex case

» Well-behaved on “active manifold” M: f|xq smooth and
critical at X, fixed-directional derivatives f'(+; y) continuous.
» Prox-regularity: points near ()'(, f()’()) have unique
nearest points in the epigraph {(x,t): t > f(x)}.
» Sharp growth: f’(X;y) > 0 for unit normals y to M.
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The “active set” philosophy

Quadratic growth, and hence linear convergence, simplifies for
partly smooth f:

f grows at least quadratically < f|q grows quadratically

(verifiable simply via a Hessian.)

Furthermore M is identifiable (Wright '93): y, — 0 and
f + (yk,-) stationary at x4 - X = xx € M eventually.

Hence high-dimensional nonsmooth optimization
min f
reduces locally to low-dimensional smooth equality-constrained
min f|aq.

Now accelerate using a second-order model.
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Acceleration

The prox-linear method for minimizing f(-) = h(c(-)) generates
steps dk, and corresponding iterates xx having a limit point X.

Suppose h is partly smooth at ¢(x) relative to a manifold NV, and
assume objective quadratic growth. Then xx — X (linearly).

Identifiability = c(xx) + Vc(xk)di € N eventually.
Classical algorithms

> use di to predict the active set.

» accelerate using a second-order model.

Generalize for simple h (L-Wright '15):

» “Track” N.

» Build a second-order model from ¢ and h|u .
(See also Mifflin-Sagastizabal '05).

12 /13



Composite prox-linear methods: highlights

v

Simple and intuitive.

v

Unifying classical and modern algorithmic frameworks.

v

Robust and scaleable in practice.

v

Comprehensive convergence theory:

limit points are stationary

basic sublinear rate

stopping criterion

linear convergence and quadratic growth

partial smoothness and second-order acceleration.

vV vy VY VvVYyy

v

The lens of variational analysis.
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