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Outline

Can we minimize nonsmooth and (maybe) nonconvex functions?
I Algorithms

I General-purpose quasi-Newton
I ProxDescent for composite problems
I Primal-dual for saddlepoints

I Examples
I Eigenvalue optimization
I Systems control
I Transient dynamics
I Sparse estimation

I Geometry
I The typical picture — partial smoothness
I Active set philosophy and acceleration
I Constant rank.

2 / 20



Nonsmooth optimization in practice
Practitioners often value optimization algorithms that are:

simple, reliable, intuitive, general-purpose (black-box).

Example: gradient descent for minimizing smooth f on Rn.
At current iterate x , set t = 1:

repeat xnew = x − t∇f (x); t =
t

2
; until f (xnew) < f (x).

But f is often nonsmooth.

I Gradient descent fails.
Eg: 1000 random runs on
f (u, v) = |u|+ v2 −→

I Subgradient method slow.

I Bundle methods tricky.

I Fast methods structured.
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Nonsmooth optimization via “smooth” BFGS
Current iterate x , and H approximating ∇2f (x)−1.

I xnew approximately minimizes f in quasi-Newton direction:

−R+H∇f (x).

I Hnew chosen as close to H as possible. . .

measured by traceH−1Hnew − log detHnew . . .

subject to curvature information:

Hnew

(
∇f (xnew)−∇f (x)

)
= xnew − x .

Effective for nonsmooth f
too! (L-Overton ’13)
Example (L-Zhang ’18):
1000 random runs on
f (u, v) = |u|+ v2 −→
Invariably converges, at
consistent linear rate. Why?
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Typical “partly smooth” behavior

Example (Anstreicher-Lee ’04):
Minimize product of 10 largest eigenvalues of symmetric matrix

(aijv
i · v j) for unit v i ∈ R20 (i = 1, . . . , 20).

Eigenvalues of H
Smooth and sharp eigen-
directions for product.
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Theme: typical nonsmooth geometry

Practical optimization involves minimizing 〈y , ·〉 over
closed X ⊂ Rn that may be

I nonsmooth

I nonconvex,

but typically

I nonpathological.

Optimization reveals ridges:
the problem parameters y
determine solutions varying over
smooth manifolds M⊂ X ,
around which X is sharp.

Aim: illustrate this partial smoothness, define it,
explain why it’s typical, and capitalize on it.
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Example: simultaneous control system stabilization

Problem (Blondel ’94) Find stable real polynomials p, q so

(z2 − 2δz + 1)p(z) + (z2 − 1)q(z)

also stable (all roots lie in left half-plane).

I δ = 1 clearly impossible;

I δ = 0.99999 impossible (Blondel)

I δ = 0.9? Prize: 1 kg Belgian chocolate;

I Which δ are possible? Prize: +1 kg.

Computational approach (Burke-Henrion-L-Overton ’05)
Restrict (eg) to cubic p and scalar q, minimize real t over

X =
{

(p, q, t) : t ≥ Re z for all roots z
}

and eat chocolate if optimal t < 0.
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Optimal roots for chocolate problem

In this case M =
{

(p, q, t) : quintic has quintuple root at t
}

.

I As parameter δ varies, solution varies smoothly on M.

I Such solutions are easy to calculate algebraically.

I As (p, q, t) ∈ X moves off M, t increases sharply.
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Numerical radius and control systems
Matrices Z with field of values satisfying

W (Z ) =
{
u∗Zu : unit u

}
⊂ unit disk D

I form a compact convex set Ω, and

I have dynamics x ← Zx with good transient stability.

After optimization (L-Overton ’18),

I W (Z ) often equals D, and

I such Z form a manifold M.

Example: Any unit matrix (in Frobenius norm) with sparsity
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is the projection onto Ω of some Y 6∈ Ω.
As Y varies, the projection varies over M.
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Mathematical foundations

The normal cone NX (x) at x ∈ X
consists of

n = lim
r
λr (zr − xr )

where λr > 0, zr → x , and
xr is a projection of zr onto X .

The tangent cone TX (x) consists of t = limr µr (yr − x), where
µr > 0 and yr → x in X .

X is (Clarke) regular at x when these cones are polar: 〈n, t〉 ≤ 0.

Examples. Manifolds, convex sets, or prox-regular sets:
points near x have unique projections onto X .
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Partly smooth sets

S ⊂ Rn is partly smooth relative to
a manifold M⊂ S if

I S is regular throughout M
I M is a ridge of S :

NS(x) spans NM(x)
for x ∈M.

I NS(·) is continuous on M.

Examples

I Polyhedra, relative to their faces

I {x : smooth gi (x) ≤ 0}, relative to {x : active gi (x) = 0}
I Semidefinite cone, relative to fixed rank manifolds (Oustry).
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Semi-algebraic sets

A good model for concrete feasible regions. . .

Polynomial level sets in Rn:{
x : p(x) < 0

}
and

{
x : p(x) ≤ 0

}
.

Basic sets are finite intersections of these.
Finite unions of basic sets are called semi-algebraic.

Semi-algebraicity is prevalent and easy to recognize,
since linear projection maps preserve it (Tarski-Seidenberg).
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Typical variational problems
Theorem (Drusvyatskiy-Ioffe-L ’13) For a problem y ∈ Φ(x), if

semi-algebraic Φ: E→→ F has dim(graph Φ) ≤ dim F,

then for almost all data y at every solution x̄ ,

strong regularity: Φ−1 single-valued and Lipschitz near (y , x̄).

Example Any maximizer x̄ of 〈y , ·〉
over closed X ⊂ E is critical:

y ∈ NX (x̄).

Semi-algebraic X have dim(graphNX ) ≤ dim E, so,
for almost all y , strong regularity holds for all x̄ . And more. . .
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Identifiability and “active set” philosophy

Many methods for maxX 〈y , ·〉 (high-dimensional and nonsmooth)
generate asymptotically critical xk ∈ X :

there exist yk ∈ NX (xk) such that yk → y .

Example. Proximal point: ρ(xk − xk+1) + y ∈ NX (xk+1).

Suppose X is semi-algebraic and y is generic.
Any maximizer x̄ lies on an identifiable manifold M⊂ X :
every asymptotically critical sequence eventually lies in M.

Equivalently (almost),
X is partly smooth relative to M,
and prox-regular at x̄ for y ∈ riNX (x̄).
Hence low-dimensional smooth reduction
maxM 〈y , ·〉, and acceleration. . .
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Example: composite optimization
Minimize “simple” nonsmooth h : Rm → R (here finite convex)
composed with smooth c : Rn → Rm. Around current x ,

c̃(d) = c(x) +∇c(x)d ≈ c(x + d).

Step d solves easy subproblem

min
d

h
(
c̃(d)

)
+ µ‖d‖2.

Update step control µ: if

actual decrease = h
(
c(x)

)
− h
(
c(x + d)

)
less than half

predicted decrease = h
(
c(x)

)
− h
(
c̃(d)

)
,

reject: µ← 2µ; otherwise,
accept: x ← x + d , µ← µ

2 .
Repeat. (L-Wright ’15: ProxDescent)
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Example: nonconvex regularizers for sparse estimation

min
x
‖A x− b‖2 + τ

∑
i

φ(xi ) (Zhao et al. ’10).

Random 256-by-4096 A, sparse x̂, and b = A x̂ + noise.

Eventual slow linear convergence.
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Acceleration

ProxDescent for f = h
(
c(·)
)

generates steps dk .
Limit points x̄ of the corresponding iterates xk are stationary.

If h partly smooth at c(x̄) relative to N , and f grows
quadratically, then xk → x̄ (linearly).

Identifiability ⇒ c(xk) +∇c(xk)dk ∈ N eventually.

Classical algorithms

I use dk to predict the active set.

I accelerate using a second-order model.

Generalize for simple h (L-Wright ’15, Mifflin-Sagastizábal ’05):

I “Track” N .

I Build a second-order model from c and h|N .
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Partly smooth operators

Partial smoothness of sets X ⊂ Rn illuminates optimality:

y ∈ NX (x).

What about y ∈ Φ(x) for set-valued Φ: Rn →→ Rm (eg monotone)?

Definition Φ is partly smooth at x̄ for ȳ ∈ Φ(x̄) if:

I Its graph gph Φ is a manifold around (x̄ , ȳ);

I P : gph Φ→ Rn defined by P(x , y) = x is constant rank.

M = P(gph Φ) is then an identifiable manifold for ȳ ∈ Φ(x).
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Partial smoothness and primal-dual methods

For convex f and g and a matrix A, saddlpoints for

min
x

max
y

{
f (x) + yTAx − g(y)

}
satisfy [

0
0

]
∈ Φ

[
x
y

]
=

[
∂f −AT

A ∂g

] [
x
y

]
.

(Chambolle-Pock ’11) seeks saddlepoints by updating (x , y) to

xnew minimizing f (·) +
1

2
‖ · −x + AT y‖2

ynew minimizing g(·) +
1

2

∥∥ · −y + A(x − 2xnew)
∥∥2
.

If f , g are partly smooth relative to M,N , then Φ is partly smooth
relative to M×N . Hence identification (Lewis-Zhang ’18).
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Summary

I Appealingly simple nonsmooth algorithms (like BFGS).

I Diverse examples: classical, spectral, control. . .
I Typical partly smooth geometry of “ridges”:

I Each ridge is a smooth manifold;
I Around the ridge, the set is “sharp”.

I Partial smoothness is typical (especially if semi-algebraic). . .

I . . . and active-set methods depend on it.
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