Nonsmooth optimization:
 conditioning, convergence, and semi-algebraic models

Adrian Lewis

ORIE Cornell

Outline

- Optimization and inverse problems via variational analysis
- A fundamental web of ideas:
- error bounds and sensitivity to data
- robustness to perturbation
- angle of transversality
- linearly convergent algorithms.
- Semi-algebraic geometry and generic regularity
- Some algorithms:
- alternating projections
- nonsmooth quasi-Newton
- a prox-linear method.
- Foundations of active-set methods.

Theme

variational analysis \downarrow
optimization, equilibrium, control, etc. . via nonsmooth geometry of closed sets X (maybe nonconvex)
in Euclidean space \mathbf{E}.
Key tool: distance d_{X}.

computational inversion

Computational inversion of $y \in \Phi(x)$

Problem

Given set-valued mapping Φ (between Euclidean spaces), find a solution x with data $y \in \underbrace{\Phi(x)}_{\text {easy to compute }} . \quad$ Equivalently, $x \in \underbrace{\Phi^{-1}(y)}_{\text {hard }}$.

Examples

- Linear programming: $A x \leq y$. Define $\Phi(x)=A x+\mathbf{R}_{+}^{m}$.
- (Banach, 1922) If Id $-\Phi$ is a single-valued contraction, the iteration $x_{k+1}=y+x_{k}-\Phi\left(x_{k}\right)$ converges to the solution.
- Set intersection:

Given sets X and Y, find $z \in X \cap Y$.

Define $\Phi(z)=(X-z) \times(Y-z)$.
Then solve $(0,0) \in \Phi(z)$.

A circle of ideas

Consider the problem

$$
y \in \Phi(x)
$$

locally around $(\bar{x}, \bar{y}) \in \operatorname{graph} \Phi$.

- Regularity - a linear error bound:

$$
\frac{d_{\Phi-1}(y)}{}(x)=\frac{\text { distance to a true solution }}{d_{\Phi(x)}(y)}=\frac{\text { measured error }}{}
$$

is bounded above. (The sup near (\bar{x}, \bar{y}) is the modulus.)

- Sensitivity of solutions x to data y. (Condition number)
- Robustness of regularity to changes in Φ.
(Distance to ill-posedness: Demmel '87, Renegar '94.)
- Local linear convergence of algorithms: $d_{\Phi\left(x_{k}\right)}(y) \leq \alpha^{k}$.
- What happens for generic data y ?

Fundamental result

Suppose graph Φ closed and $\bar{x} \in \Phi^{-1}(\bar{y}) \subset \mathbf{E}$. Key measures. . .

- Modulus of regularity.
- Radius (Dontchev-L-Rockafellar '03):

$$
\inf \{\| \text { linear } G \|: \Phi+G \text { not regular at }(\bar{x}, \bar{y}+G \bar{x})\} .
$$

- Angle between graph Φ and $\mathbf{E} \times\{y\}$ (the coderivative criterion).

Then the quantity

$$
\text { radius }=\frac{1}{\text { modulus }}=\tan (\text { angle })
$$

controls the linear convergence of a simple algorithm.
True for generic data y ?

Example: set intersection, normals, and transversality

$$
(0,0) \in \Phi(z)=(X-z) \times(Y-z) .
$$

Regularity is transversality of X and Y at \bar{z} : normal cones $N_{X}(\bar{z})$ and $-N_{Y}(\bar{z})$ intersect trivially (so, between them, angle >0).

Alternating projections (von Neumann '33) then converges at linear rate depending on angle (Drusvyatskiy-loffe-L '13).

$N_{X}(x)$ at $x \in X$ consists of

$$
\lim _{r} \lambda_{r}\left(z_{r}-x_{r}\right),
$$

where $\lambda_{r}>0, z_{r} \rightarrow x$, and $\left|z_{r}-x_{r}\right|=d_{X}\left(z_{r}\right)$.

A bad example

The problem $y \in \Phi(x)$ is strongly regular if

$$
\Phi^{-1} \text { single-valued and Lipschitz near }(\bar{y}, \bar{x})
$$

(as in the Banach contraction mapping theorem).
But regularity can fail badly even for smooth convex optimization (and hence so does strong regularity).

There is a \mathcal{C}^{1} strictly convex function $f: \mathbf{R} \rightarrow \mathbf{R}$ such that Legendre-Fenchel conjugation

$$
f^{*}(y)=\max _{x}\{y x-f(x)\},
$$

or equivalently, solving $y=f^{\prime}(x)$, is not regular for any y.
$\left(f^{\prime}\right)^{-1}$ is the Lebesgue singular function, so nowhere Lipschitz. But what if f is more "concrete", or "tame" (Grothendieck)?

Semi-algebraic sets

Polynomial level sets in \mathbf{R}^{n} :

$$
\{x: p(x)<0\} \quad \text { and } \quad\{x: p(x) \leq 0\} .
$$

Basic sets are finite intersections of these.
Finite unions of basic sets are called semi-algebraic.
Semi-algebraicity is prevalent and easy to recognize, since linear projection maps preserve it (Tarski-Seidenberg).

If $X, Y \subset \mathbf{R}^{n}$ are semi-algebraic, then, for almost all $z \in \mathbf{R}^{n}$, the intersection of $X-z$ and Y is everywhere transversal. Proof:

Theorem (loffe '07)... after Sard.
For almost all data y, the problem $y \in \Phi(x)$ is regular at every solution x, providing Φ has closed semi-algebraic graph.

Interlude: nonsmooth optimization via quasi-Newton

Generic regularity suggests linear convergence. Eg: minimize nonsmooth Lipschitz $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ via Clarke criticality...

$$
\text { solve } 0 \in \partial f(x)=\operatorname{conv}\left\{\lim \nabla f\left(x_{r}\right): x_{r} \rightarrow x\right\} .
$$

BFGS Algorithm: iterates x_{k}, approximate inverse Hessians H_{k}.

- x_{k+1} approximately minimizes f on $x_{k}-\mathbf{R}_{+} H_{k} \nabla f\left(x_{k}\right)$.
- H_{k+1} minimizes $H \mapsto \operatorname{trace} H_{k}^{-1} H-\log \operatorname{det} H$ subject to $H\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right)=x_{k+1}-x_{k}$.

Popular since 1970 for smooth problems, yet also effective when nonsmooth.
Why?? Example (L-Overton '13)
Minimize an eigenvalue product f (nonsmooth, nonconvex, semi-algebraic, $n=190$), ten random initializations.

iteration

What controls the linear rate?

Generic strong regularity

Theorem (Drusvyatskiy-loffe-L '13) Consider
semi-algebraic $\Phi: \mathbf{E} \rightrightarrows \mathbf{F}$ with $\operatorname{dim}(\operatorname{graph} \Phi) \leq \operatorname{dim} \mathbf{F}$.
Then, for almost all data y, the problem $y \in \Phi(x)$ is strongly regular at every solution x.

Example Any maximizer \bar{x} of $\langle y, \cdot\rangle$ over closed $X \subset \mathbf{E}$ is critical:

$$
y \in N_{X}(\bar{x})
$$

Suppose X is semi-algebraic.
 Then (Drusvyatskiy-L '13)

$$
\operatorname{dim}\left(\operatorname{graph} N_{X}\right) \leq \operatorname{dim} \mathbf{E},
$$

so, for almost all y, strong regularity holds for all \bar{x}. Hence. . .

Consequences of strong regularity

For semi-algebraic optimization $\max _{X}\langle y, \cdot\rangle$ with generic data y, the condition $y \in N_{X}(x)$ is strongly regular at every maximizer \bar{x}. Two consequences, with classical flavor...

Quadratic growth
(Bonnans-Shapiro '00): there exists $\kappa>0$ so

$$
\langle y, x\rangle \leq\langle y, \bar{x}\rangle-\kappa|x-\bar{x}|^{2}
$$

for $x \in X$ near \bar{x}.
Second-order condition (Mordukhovich '92)

$$
(z, w) \in N_{\text {graph }} N_{x}(\bar{x}, y) \text { and } w \neq 0 \Rightarrow\langle z, w\rangle<0
$$

But we can say more...

Identifiability and "active set" philosophy

Many methods for $\max _{X}\langle y, \cdot\rangle$ (high-dimensional and nonsmooth) generate asymptotically critical $x_{k} \in X$: there exist $y_{k} \in N_{X}\left(x_{k}\right)$ such that $y_{k} \rightarrow y$.

Example. Proximal point: $\rho\left(x_{k}-x_{k+1}\right)+y \in N_{X}\left(x_{k+1}\right)$.
Suppose X is semi-algebraic and y is generic. Any maximizer \bar{x} lies on an identifiable manifold $\mathcal{M} \subset X$: every asymptotically critical sequence eventually lies in \mathcal{M}.

Hence the problem reduces to

$$
\max _{\mathcal{M}}\langle y, \cdot\rangle .
$$

Low-dimensional and smooth.

"Blind" algorithms reveal identifiable manifolds

Recall: BFGS (L-Overton '13) on an eigenvalue product problem (Anstreicher-Lee '04): $\min \left\{\prod \lambda_{i}(A \circ X): X \in \mathbf{S}_{+}^{20}, X_{i i}=1 \forall i\right\}$.

Hessian eigenvalues:
smoothness versus sharpness

Eigenvectors predict identifiable manifold.

A prox-linear algorithm (L-Wright '08)

 $\min _{x}\{f(x): G(x) \in Y\}$, where f and G are \mathcal{C}^{2} and Y is simple. Example (LASSO and LARS): $\min \left\{|A x-b|^{2}:|x|_{1} \leq 1\right\}$.Subproblem: form linear approximations $\widetilde{f}(d) \approx f(x+d)$ and \widetilde{G} at current feasible x. Since Y simple, easy to solve

$$
\min _{d}\left\{\widetilde{f}(d)+\mu|d|^{2}: \widetilde{G}(d) \in Y\right\} .
$$

Update: $x \leftarrow x^{+} \approx x+d$. Specifically, x^{+}feasible, with

$$
\left|x^{+}-(x+d)\right| \leq \frac{|d|}{2} \quad \text { and } \quad \frac{f(x)-f\left(x^{+}\right)}{f(x)-\widetilde{f}(d)} \geq \frac{1}{2} .
$$

If success, repeat; if not, reset $\mu \leftarrow 2 \mu$ and try again.
Typically, at optimality, Y has an identifiable manifold \mathcal{M} at $g(\bar{x})$: eventually $\widetilde{G}(d) \in \mathcal{M}$, and $\inf \{f(x): G(x) \in \mathcal{M}\}$ easier.

Summary

- Variational-analytic insights into computational inversion.
- Key tools: the normal cone and regularity/transversality.
- Sensitivity, error bounds, robustness, and linear convergence.
- Semi-algebraic optimization: generic regularity and identifiability.
- Quasi-Newton and prox-linear methods for nonsmooth optimization.

