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Abstract This paper investigates the behavior, both good and bad, of the Broyden–
Fletcher–Goldfarb–Shanno algorithm for smooth minimization, when applied to non-
smooth functions. We consider three particular examples. We first present a simple
nonsmooth example, illustrating how this variable metric method (in this case with an
exact line search) typically succeeds despite nonsmoothness. We then study, compu-
tationally, the behavior of the method with an inexact line search on the same example
and discuss the results. In further support of the heuristic effectiveness of the method
despite nonsmoothness, we prove that, for the very simplest class of nonsmooth func-
tions (maximums of two affine functions), the method cannot stall at a nonstationary
point. On the other hand, we present a nonsmooth example where the method with
an inexact line-search converges to a stationary point notwithstanding the presence of
directions of linear descent. Finally, we briefly compare line-search and trust-region
strategies for this method in the nonsmooth case.
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1 Introduction

We study the behavior of the standard Broyden–Fletcher–Goldfarb–Shanno (BFGS)
variable metric method for smooth minimization, when applied to nonsmooth func-
tions. The theory for BFGS applied to convex smooth functions is well established:
Powell [1] showed that BFGS with a Wolfe inexact line search converges to a mini-
mizer, when applied to a twice-differentiable convex function with bounded level sets.
However, there is no corresponding convergence result for nonconvex smooth func-
tions. Although various authors [2–5] made some progress by restricting the function
class or modifying the method, the convergence theory for the BFGS algorithm on
nonconvex functions remains poorly understood: see [6,7]. There is even less experi-
ence with the BFGS method on nonsmooth functions. The success of variable metric
methods on nonsmooth functions was observed many years ago [8], but it seems very
challenging to give any rigorous convergence analysis.

Recent work by Lewis and Overton [9] gives a detailed analysis of the BFGS
method with an exact line search on one particular example: the Euclidean norm
function in R

2. While special, the analysis illustrates how the BFGS method can work
well on nonsmooth functions. That paper also investigates the behavior of BFGS with
a suitable inexact line search on some nonsmooth examples: the authors observe that
this inexact-line-search BFGS method typically converges to Clarke stationary points,
and they pose the following challenge, to prove or disprove.

Consider any locally Lipschitz, semi-algebraic function f with bounded level
sets, and choose the initial point x0 and initial inverse Hessian estimate H0
randomly. With probability one, the BFGS method generates an infinite sequence
of iterates, for which any cluster point x̄ is Clarke stationary, and, furthermore,
the sequence of all function trial values converges to f (x̄) R-linearly.

For more precise details on the terminology, see [9, Challenge 7.1].
Our current work is largely motivated by this earlier paper. We highlight further the

success of the line-search BFGS method on some nonsmooth examples and analyze
the potential reasons. By way of contrast, we illustrate the potential bad behavior of
the line-search BFGS method by constructing a nonsmooth function on which the
method converges to a point at which there exist directions of linear descent. Our goal,
throughout, is simply insight into the line-search BFGS method in the nonsmooth
case.

As context, we also briefly discuss the behavior of a trust-region BFGS method,
when applied to nonsmooth functions. The line search and trust-region philosophies
for updating the current point of course differ considerably: trust-region methods
[10] approximate the original problem in a “trust region” by a quadratic subproblem
and take a corresponding step at each iteration. The trust-region BFGS method we
discuss for illustration is a simple combination of the trust-region method in [11] with
the BFGS algorithm in [9]. Our purpose is to understand the fundamental difference
between these two different strategies in nonsmooth optimization.

We organize this paper as follows. Section 3 shows how the exact-line-search BFGS
method succeeds on a representative convex nonsmooth function. We also provide
numerical evidence for linear convergence of an inexact-line-search BFGS method on
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the same example. Section 4 presents an illustrative proof that the inexact-line-search
BFGS method cannot stall at a spurious limit point, when applied to a representative
nonsmooth function without any stationary points, in contrast with the method of steep-
est descent. Section 5 gives an example where the inexact-line-search BFGS method
converges to a point with descent directions. (This example does not disprove the
challenge question from [9], since the limit point is nonetheless Clarke stationary.) In
Sect. 6, we discuss possible reasons why the line-search BFGS method seems so much
more successful than the trust-region method when applied to nonsmooth functions.

2 Line-Search BFGS Method

In this paper, we study the BFGS and line search algorithms described in [9]. Unless
otherwise stated, we consider vectors in this paper as column vectors, and we denote
the transpose of a column vector x by xT . The line-search BFGS method applied
to minimize a function f : R

n → R iterates as follows. We use xk , Hk , and pk to
denote the current point, the approximate inverse Hessian matrix, and the line search
direction at the kth iteration. We begin with an initial point x0 and an initial posi-
tive semidefinite matrix H0 and, then, repeatedly execute the following loop. We stop
if we encounter an iterate xk where the gradient∇ f (xk) is either zero or does not exist.

Algorithm (Line-search BFGS)

repeat

Search direction: pk := −Hk∇f(xk);

Step length: xk+1 := xk +αkpk, where αk satisfies the following conditions,

for fixed c1 < c2 in (0, 1):

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)T pk (1)

∇f(xk + αkpk)T pk ≥ c2∇f(xk)T pk; (2)

Gradient increment: yk := ∇f(xk+1) − ∇f(xk);

Inverse Hessian factor: Vk := I − (pT
k yk)−1pkyT

k ;

Inverse Hessian update: Hk+1 := VkHkV T
k + αk(pT

k yk)−1pkpT
k ;

Iteration count: k = k + 1;

end(repeat)

In the line search, condition (1) is usually called the Armijo condition, while Condi-
tion (2) is called the weak Wolfe condition. This weak Wolfe condition is the appropri-
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ate choice in the nonsmooth case, rather than the “strong” Wolfe condition: for more
discussion, see [9].

Well-known properties of the BFGS method include the secant condition

sk := xk+1 − xk = Hk+1 yk,

and the fact that the matrix Hk remains positive definite. For simplicity, we use the
abbreviated notation ∇ fk := ∇ f (xk).

3 BFGS with Exact Line Search

In this section, we will give a full analysis of the BFGS method with an exact
line search (instead of the weak Wolfe version above), applied to one particular
representative nonsmooth example. The exact line search step length is chosen by
αk ∈ argminα{ f (xk + αpk)}. Note that the BFGS method we consider here stops
whenever it encounters a nonsmooth point (by which we mean a point at which f is
not differentiable).

We begin with a structural property of the exact-line-search BFGS method. For
simplicity, we state the result for infinite sequences of iterates.

Proposition 3.1 (Exact-line-search BFGS sequences) Consider a function f on R
n

and a sequence of points x0, x1, x2 . . . in R
n at which f is differentiable and noncrit-

ical. Define vectors sk := xk+1 − xk and yk := ∇ fk+1 − ∇ fk , for k = 0, 1, 2, . . .. If
(xk) is an exact-line-search BFGS sequence for f , then the following properties hold
for all k = 0, 1, 2, . . .:

1. ∇ f T
k+1sk = 0

2. yT
k sk+1 = 0

3. ∇ f T
k sk < 0.

Conversely, suppose n = 2, and f is convex. If ∇ f T
0 s0 < 0, and Properties 1 and 2

hold, along with the property sk �= 0, for all k = 0, 1, 2, . . ., then (xk) is an exact-
line-search BFGS sequence for f .

Proof The forward direction is well known and routine, as follows. Property 1 follows
from the definition of the exact line search. To see Property 2, note

yT
k sk+1 = αk+1 yT

k pk+1 = −αk+1 yT
k Hk+1∇ fk+1 = −αk+1sT

k ∇ fk+1 = 0,

using the secant condition and Property 1. Property 3 follows from the fact that Hk is
positive definite.

We prove the converse by induction. Since ∇ f (x0)
T s0 < 0, we can find a positive

definite matrix H0 such that s0 = −H0∇ f0. The BFGS method then defines p0 = s0,
and the exact line search then seeks α0 minimizing f (x0 + αp0). Since f is convex
and∇ f T

1 p0 = 0, it follows that α0 = 1 is a minimizer, and, hence, x1 is a valid choice
for the next BFGS iterate.
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Now suppose we have proved that the iterates x0, x1, x2, . . . , xk constitute a valid
BFGS sequence. Then, using the definition of the search direction pk , the secant
condition, and Property 1, we know that

pT
k yk−1 = −∇ f T

k Hk yk−1 = −∇ f T
k sk−1 = 0.

On the other hand, Property 2 shows sT
k yk−1 = 0. By assumption, the vectors sk−1,

sk , and∇ fk are all nonzero; by the secant property, so is yk−1, and since Hk is positive
definite, so is pk . Since we are working on the space R

2, and both the vectors pk and
sk are orthogonal to yk−1, they must be collinear. Then, the conditions that f is convex
and ∇ f T

k+1sk = 0 imply that the point xk+1 minimizes the function f along the line
xk + Rpk . Hence, xk+1 is a valid next iterate for the method. Therefore, the claim
follows. ��

The converse direction conveniently checks iterates of the exact-line-search BFGS
on R

2 without keeping track of the matrix Hk , as we see next.

3.1 A Parametrized Example

We next consider a simple but illustrative example on R
2: for fixed a > 0,

f ([u v]T ) = u2 +max{v,−av}. (3)

This function has a global minimizer at zero and is nonsmooth at every point on one
axis (and is “partly smooth” [12] relative to that axis). If we initialize appropriately, the
algorithm generates points alternating between two parabolas and converging linearly
to the optimal solution. In all other cases, the algorithm will terminate at a nonsmooth
point after finitely many iterations.

Proposition 3.2 Consider the exact-line-search BFGS method, applied to minimize
the function (3), initialized with

[u0 v0] =
[

1
2

a2 + 3a + 1

]
and H0 =

[
a

2(a+1)
0

0 2
(a+1)2

]
.

The iterates converge linearly to the unique global minimizer zero, with rate ρ =
a

(a+1)2 , and oscillate between the two parabolas

v = 2

a2 + 3a + 1
u2 and v = − 2a

a2 + 3a + 1
u2. (4)

Explicitly, the iterates are given by

[u2k v2k] =
[
ρk 2ρ2k

a2 + 3a + 1

]
, [u2k+1 v2k+1] =

[
ρk

a + 1
− 2ρ2k+1

a2 + 3a + 1

]
.
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Moreover, the corresponding inverse Hessian approximations are, for k > 0,

H1 = 1

2(a2 + a + 1)

[
2a2 + a 2a(1− a)(1+ a)−1

2a(1− a)(1+ a)−1 4(a3 + a + 1)(1+ a)−3

]

H2k = 1

2a2(a2 + a + 1)

[
a2(a2 + 2a + 2) 2aρk

2aρk 4(a2 + 1)ρ2k

]

H2k+1 = 1

2(1+ a)2(a2 + a + 1)

[
(1+ a)2(2a2 + 2a + 1) −2a2(1+ a)ρk

−2a2(1+ a)ρk 4(a2 + 1)ρ2k

]
.

The step sizes, for k > 0, are α0 = 1, α1 = 1
a(1+a)

, α2k = aρ, and α2k+1 = ρ
a .

Proof A calculation verifies that the given sequence of iterates is an exact-line-search
BFGS sequence, by Proposition 3.1. Since the function is strictly convex along each
search direction, the given sequence is the unique exact-line-search BFGS sequence
under the given initialization. The formulae for the inverse Hessian approximations
are easy to verify directly by induction. ��

Note that the convergence rate ρ is unchanged under the transformation a ← 1
a .

This is not surprising, given the invariance of the method under scaling of the objective,
and a consequent simple symmetry property.

In the example above, for very specific initial values, BFGS generates a sequence
of points oscillating between two parabolas and converging linearly to the optimal
solution, zero. We also observe, at each iteration, that the method crosses the axis on
which the function is nonsmooth. Seemingly this property allows BFGS to “learn” the
nonsmooth structure of the problem, coded into the inverse Hessian approximations.
By contrast, as we see next, under general initial conditions for this function, except in
essentially the case above, the exact line search causes the simple nonsmooth BFGS
method we consider here to break down at a nonsmooth point that is not optimal.

Proposition 3.3 Consider the exact-line-search BFGS method applied to minimize the
function (3). Unless the first two iterates [u0 v0]T and [u1 v1]T satisfy u1 = (1+a)−1u0
and [u1 v1]T lies on one of the two parabolas described by Eq. (4), the algorithm
eventually stops at a nonsmooth point.

Proof For simplicity, we focus on the case a = 1. Assume the method generates an
infinite sequence of points xk = [uk vk]T for k = 1, 2, 3, . . . at which f is smooth.
We first claim that the coordinate vk must change sign at every iteration. If not, then,
without loss of generality, there is an iteration n with vn−1 < 0 and vn < 0. The
previous result ensures (∇ fn −∇ fn−1)

T (xn+1 − xn) = 0, so the search direction pn

must be in the direction of the vector [0 1]T . But the exact line search then causes
termination at the nonsmooth point xn+1 = [un 0]T , contradicting our assumption.

Without loss of generality, we can next assume v2k > 0, v2k+1 < 0 for all k =
1, 2, 3, . . .. By applying the previous result, we easily arrive at the recursion

u2k+1 = −u2k − u2k−1

2
, v2k+1 = v2k + (u2k − u2k−1)(3u2k − u2k−1)

2
,

and similarly
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u2k = −u2k−1 − u2k−2

2
, v2k = v2k−1 + (u2k−1 − u2k−2)(−3u2k−1 + u2k−2)

2
.

Hence, we deduce un = −(un−1 − un−2)/2 for all iterates n > 2, and consequently
un + un−1 = (un−1 + un−2)/2. By induction, we have un + un−1 = 21−n(u1 + u0).
We deduce, for k = 1, 2, 3, . . .,

u2k = 2

3

( 1

22k
− 1

)
(u1 + u0)+ u0, u2k+1 = 2

3

( 1

22k+1 + 1
)
(u1 + u0)− u0.

In particular, u2k → λ := 1
3 u0 − 2

3 u1 and u2k+1 →−λ as k →∞.
Now assume u1

u0
�= 1

2 , so λ �= 0. Suppose first that λ > 0. (The case λ < 0 is similar.)
Then, for all large k we must have u2k−1 < 0 and u2k > 0. By the previous result
we know (∇ f2k − ∇ f2k−1)

T (x2k+1 − x2k) = 0, so the search direction p2k is in the
direction [−1 μ]T where μ = u2k − u2k−1. By definition of the exact line search, we
know x2k+1 = x2k+β[−1 μ]T , where the scalar β minimizes (u2k−β)2+|v2k+βμ|.

If v2k + βμ ≥ 0, then either v2k+1 = 0 or v2k+1 > 0. In the case v2k+1 = 0, our
method stops at this nonsmooth point. If, on the other hand, v2k+1 > 0, then the same
argument shows v2k+2 = 0.

Suppose, on the other hand, v2k + βμ < 0. Then, by its definition, β minimizes
(u2k − β)2 − (v2k + βμ), so a calculation shows β = (3u2k − u2k−1)/4.

Since u2k > 0 and u2k−1 < 0, we deduce β > 0. We also know v2k > 0 and
μ > 0, so v2k+1 = v2k + βμ > 0, which contradicts the property v2k+1 < 0.

Now consider the final case, where u1
u0
= 1

2 but v1 �= − 2
5 u2

1. Then, the formula
above for the component un reduces to un = 2−nu0, and we can similarly deduce a
formula for the component vn :

v2k+1 = v2k + (u2k − u2k−1)(3u2k − u2k−1)

2
= v2k − u2

0

24k+1

v2k = v2k−1 − (u2k−1 − u2k−2)(3u2k−1 − u2k−2)

2
= v2k−1 + u2

0

24k−1 .

Hence, vn converges to v1+ 2
5 u2

1, which, by assumption, is nonzero. Thus, vn eventually
does not change sign, which quickly gives a contradiction. ��
Corollary 3.1 Consider the exact-line-search BFGS method applied to minimize the
function (3). If the method does not terminate, then iterates must oscillate between
the two parabolas described by Eq. (4) and converge linearly to the global minimizer
zero.

Proof Again we concentrate on the case a = 1 for simplicity. By the previous result,
we can assume v2k > 0, v2k+1 < 0, u0 = 2u1, and v1 = − 2

5 u2
1. Then, we deduce

the formulae u2k = 2−2ku0, v2k = 2
5 4−2ku2

0, u2k+1 = 2−(2k+1)u0, and v2k+1 =
− 2

5 4−(2k+1)u2
0, so the claim follows. ��
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To summarize this very simple theoretical case study, we observe two possible
cases. Either the exact-line-search BFGS method converges linearly to the global
minimizer zero, oscillating between two parabolas, or the line search causes the method
to terminate prematurely at a nonoptimal nonsmooth point.

4 BFGS with Inexact Line Search

We turn next from the idealized version of BFGS of the previous section to a more
realistic version with an inexact line search. Again we focus on very simple examples,
seeking insight on the method in the nonsmooth case, rather than extensive practical
experience. For the latter, see Lewis and Overton [9], and the references therein.

Recall that, for minimizing the function f , with the current iterate xk and search
direction pk , the line search seeks a step length αk : that is, a scalar t satisfying the
Armijo and Wolfe conditions, namely

f (xk + tpk) ≤ f (xk)+ c1t∇ f (xk)
T pk (5)

∇ f (xk + tpk)
T pk ≥ c2∇ f (xk)

T pk . (6)

We here use the following algorithm [9, Alg. 2.6] to find a step length.

As we saw in the previous section, for nonsmooth examples, the behavior of BFGS
with an exact line search can depend on the initialization. By contrast, the behavior with
an inexact line search in practice seems more robust. We consider here the following
question: to what extent we can gain insight on the convergence rate (with respect to
the number of function evaluations carried out in the inexact line search) from the
behavior with an exact line search?
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4.1 The Parametrized Example: Ill Conditioning

For illustration, we return to the previous example, the function (3). We are particularly
interested in the broad dependence of the rate of convergence on the parameter a,
which gives a certain measure of the “conditioning” of the problem. Notwithstanding
the dependence of the standard smooth theory on the assumption c1 > 0 for simplicity
of exposition, we take c1 = 0 and c2 = 0.9 here.1 Numerical experimentation shows
that, with random initialization, the inexact-line-search BFGS eventually crosses the
line v = 0 at each iteration, and has a linear convergence rate, plotted in red on Fig.
1. (This behavior is relatively insensitive to the choice of c2.)

A reasonable fit to the observed linear convergence rate is given by the function
r(a), defined for 0 < a < 1 by

log2
(
r(a)

) = log2(3a2 + 3a + 1)− log2((a
2 + 3a + 3)(a + 1)2)

2 log2(1+ 1
a )

, (7)

and for a > 1 by the symmetry r(a) = r(1/a). This function is plotted in blue on Fig.
1. We arrive at this rough fit through the following loose intuition.

As Proposition 3.2 indicates, when applying the exact-line-search BFGS to this
function with appropriate starting points, we generate the iterates

x2k =
[
ρk 2ρ2k

a2 + 3a + 1

]T

and x2k+1 =
[

ρk

a + 1
− 2ρ2k+1

a2 + 3a + 1

]T

(8)

(where ρ = a
(a+1)2 ), with step lengths α2k =

(
1+ 1

a

)−2
and α2k+1 = (1+ a)−2.

The linear convergence rate per iteration is, in this case,

f (x2k+1)

f (x2k)
= 1+ 2a2

a2+3a+1

1+ 2
a2+3a+1

1

(a + 1)2 and
f (x2k+2)

f (x2k+1)
= 1+ 2

a2+3a+1

1+ 2a2

a2+3a+1

a2

(1+ a)2 ,

for the even and odd iterations, respectively.
Since we set c1 = 0, the exact line search step length in Sect. 3 also satisfies the

line search conditions. Consider the case when a > 0 is small. In that case, the odd
iterations generate a large decrease in function value with a step length close to one.
By contrast, the even iterations generate only a small decrease, and, to do so, need to
use a small step length (1+ 1/a)−2. We might expect a bisection-based line search to
need roughly log2

(
(1+ 1/a)2

)
function evaluations to locate the step.

Consider the ratio rexact by which the function value decreases during the course of
an iteration. Let us denote by q the number of function evaluations (or “trials”) during
the inexact line search and by r the average ratio of decrease per function evaluation.
Then, we have the relationship rq = rexact < 1. Hence, an estimate of the convergence
rate during those iterations is

1 See the discussion of this point in [9, pp. 151–154].
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Fig. 1 A fit of convergence rate

r(a) =
(

f (x2k+1)

f (x2k)

)θ

, where θ = 1

2 log2(1+ 1
a )

. (9)

Experiments with the inexact-line-search BFGS suggest that iterations analogous to
the one above are typical throughout the run and not just for alternating values of k.
Hence, we arrive at the estimate (7), which does give a reasonable fit to the experimental
data. A similar argument applies to large a > 0.

We can explore this behavior in a more controlled fashion. Consider, for the moment,
the behavior of our inexact line search when started at the exact-line-search iterates
x2k (or x2k+1) described by (8) and searching in the corresponding directions p2k

(or p2k+1). Numerical results (with c0 = 0, c1 = 0.9) suggest that the number of
function evaluations needed by the line search depends only on a and does not depend
on the iteration count k. The following subsidiary result throws some light on that
dependence.

Proposition 4.1 Consider the function (3), with parameter a = 2m − 1 (for m =
1, 2, 3, . . .), and the exact-line-search BFGS iterates (8) with search directions p2k

and p2k+1. With those iterates and search directions, the inexact line search would
generate the step lengths α2k = 1 and α2k+1 = 2−m. On the other hand, in the case
a = 1/(2m − 1), we obtain α2k = 2−m and α2k+1 = 1.

Proof We only prove the case when a > 1. The proof for a < 1 is similar. For

the even iterations, since the iterate is x2k =
[
ρk 2ρ2k

a2+3a+1

]T
, and the direction is

p2k =
[
− (a+1)ρk

a − 2ρ2k

a2

]T
, we deduce
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f (x2k) =
(

1+ 2

a2 + 3a + 1

)
ρ2k, f (x2k + p2k) =

( 3

a2 −
2

a2 + 3a + 1

)
ρ2k,

∇ f (x2k)
T p2k = −

(
2+ 2

a
+ 2

a2

)
ρ2k, ∇ f (x2k + p2k)

T p2k > 0.

Since α = 1 satisfies the line search conditions, we deduce α2k = 1. For the odd

iterations, we have x2k+1 =
[

ρk

a+1 − 2ρ2k+1

a2+3a+1

]T
and p2k+1 =

[−ρk 2ρ2k+1
]T

.

Then, we obtain

f (x2k+1) =
( 1

(a + 1)2 +
2aρ

a2 + 3a + 1

)
ρ2k,

x2k+1 + αp2k+1 =
[( 1

a + 1
− α

)
ρk

(
− 2

a2 + 3a + 1
+ 2α

)
ρ2k+1

]T

,

∇ f (x2k+1)
T p2k+1 = −

( 2

a + 1
+ 2aρ

)
ρ2k .

Consider the case α = 2−l for some integer l = 1, 2, 3, . . . , m − 1. We have

∇ f (x2k+1 + αp2k+1)
T p2k+1 = −

( 2

a + 1
− 2α

)
ρ2k + 2ρ2k+1 > 0.

Note that α ≥ 2
a+1 , so

f (x2k+1 + αp2k+1) =
(
α − 1

a + 1

)2
ρ2k +

(
2α − 2

a2 + 3a + 1

)
ρ2k+1

≥
( 2

a + 1
− 1

a + 1

)2
ρ2k +

( 2

a + 1
− 2

a2 + 3a + 1

)
ρ2k+1

>
1

(a + 1)2 ρ2k + 2a

a2 + 3a + 1
ρ2k+1 = f (x2k+1).

Therefore, the line search algorithm will successively try α = 1, 1
2 , . . . , 1

2m−1 , and

finally α = 1
2m = 1

a+1 . At this point we have

∇ f (x2k+1 + αp2k+1)
T p2k+1 = −

( 2

a + 1
− 2α

)
ρ2k + 2ρ2k+1 > 0,

f (x2k+1 + αp2k+1) =
(
α − 1

a + 1

)2
ρ2k +

(
2α − 2

a2 + 3a + 1

)
ρ2k+1

≤ 2a

(a + 1)2 ρ2k+1 ≤ f (x2k+1),

so the line search conditions are satisfied. The claim follows. ��
The result above suggests that, if we were following the iterates generated by the
exact-line-search BFGS, then, for small a > 0, the “work” involved in each iteration,
measured loosely by the number of function evaluations our inexact line search would
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take, is dominated by the even iterations, for which it depends on the factor log2(1+ 1
a ),

a key ingredient of the estimate (7).

4.2 Example: A Ridge

Rigorous general analysis of the inexact-line-search BFGS in the nonsmooth case
seems challenging. Here, for reassurance, we prove one very modest result. In the
simplest possible case, a maximum of two affine functions (a “ridge”), we can at least
be sure that the method will not converge to a spurious limit.

By way of contrast, the method of steepest descent (where the search direction
pk is just −∇ fk), with our inexact line search, can easily fail on such functions. For
example, for the function f ([x1 x2]T ) = 6|x1| + 3x2, the steepest descent using
the same inexact line search (with 0 ≤ c1 ≤ 1

3 ) and starting at the initial point
[2 3]T , generates the iterates 2−k[2(−1)k 3]T , k = 1, 2, . . .. These iterates converge
to the origin which is not a critical point for the convex function f . Furthermore,
the convergence is sublinear in the number of function evaluations: at iteration k,
the line search requires k bisections. In contrast, BFGS with the same line search
rapidly reduces the function value toward −∞. On such examples, the following
result captures the general argument.

Proposition 4.2 If the inexact-line-search BFGS method applied to the function
f ([u v]T ) = |u| + v generates a sequence of iterates xk = [uk vk]T with uk �= 0 (for
k = 0, 1, 2, . . .), then xk does not converge.

Proof The line search guarantees that, if the current point satisfies uk > 0, then the
search direction pk = [mk lk]T satisfies mk < 0, and at the next iteration we must
have uk+1 < 0. A similar argument holds if uk < 0.

We first prove |mk | > |lk | for all iterations k. Without loss of generality, sup-
pose uk > 0. Since ∇ f (xk) = [1 1]T , then mk + lk = −[1 1]Hk[1 1]T . Note
that yk = ∇ f (xk+1) − ∇ f (xk) = [−2 0]T and Vk = I − (pT

k yk)
−1 pk yT

k is the

matrix
[ 0 0
−lk/mk 1

]
. Hence, using the notation Hk =

[ ak bk

bk ck

]
, we see that the matrix

Hk+1 = Vk Hk V T
k + αk(pT

k yk)
−1 pk pT

k is given by

[
−αk mk

2 −αklk
2

−αklk
2 ak(

lk
mk

)2 − 2bk
lk
mk
+ ck − αk

(lk )2

2mk

]
.

Thus, mk+1 = αk (lk−mk )
2 > 0, which implies lk − mk > 0. Combined with the fact

that mk + lk < 0, we have |mk | > |lk |.
We now prove the proposition by contradiction. Suppose the sequence xk converges.

Then, αkmk → 0 and αklk → 0. Note

pk+1 = −Hk+1∇ f (xk+1) = −
[−αk mk

2 −αklk
2

−αklk
2 ck+1

] [−1
1

]
=

[
αk (lk−mk )

2
−αklk

2 − ck+1

]
,
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where ck+1 = ak(
lk
mk

)2 − 2bk
lk
mk
+ ck − αk

(lk )2

2mk
. Then, we deduce that mk+1 =

αk (lk−mk )
2 → 0. We now show that the positive number ck+1 stays bounded away from

zero.
To this end, note by induction that we have

Hk+1 = Vk . . . V0 H0V T
0 . . . V T

k + α0Vk . . . V1(pT
0 y0)

−1 p0 pT
0 V T

1 . . . V T
k

+ · · · + αk(pT
k yk)

−1 pk pT
k .

Since

Vi Vj =
[

0 0
− li

mi
1

] [
0 0

− l j
m j

1

]
=

[
0 0

− l j
m j

1

]
= Vj ,

we obtain Hk+1 = V0 H0V T
0 + α0V1(pT

0 y0)
−1 p0 pT

0 V T
1 + · · · + αk(pT

k yk)
−1 pk pT

k .

Since pT
k yk > 0 for all k, the (2, 2)-entry of the matrix Hk is increasing in k, and,

hence, is at least as large as that of the matrix V0 H0V T
0 , namely the quantity a0

( l0
m0

)2−
2b0

l0
m0
+ c0 > 0, as required.

Finally, observe lk+1 = −αklk
2 − ck+1 cannot converge to zero. Since we know

|mk | > |lk |, we obtain a contradiction. The claim follows. ��
The idea of this proof extends to the maximum of any two affine functions on R

n .
Note too how this example illustrates behavior that seems to drive the success of BFGS
in the nonsmooth case: the inexact line search crosses the line u = 0 (the manifold
with respect to which the function is partly smooth) at each iteration, allowing the
method to “learn” the nonsmooth structure.

5 A Limit Point with Descent Directions

In the above sections we illustrated good behavior of BFGS on some nonsmooth
functions. We now contrast with an illustration of possible pitfalls.

The reference [9] poses the challenge: does the inexact-line-search BFGS method
converge only to points that are Clarke stationary? For locally Lipschitz functions,
this amounts to saying that we can find convex combinations of gradients at nearby
points that are arbitrarily small. For a large class of functions (for example, those of the
form h

(
c(·)) with h finite and convex and c smooth), Clarke stationarity guarantees

that there exist no directions of linear descent. However, in general Clarke stationarity
does not rule out descent directions: the function x �→ −|x | at x = 0 is a simple
example.

Here we show how BFGS can converge to a point at which there exist directions of
linear descent. Suggestions of this phenomenon were recently observed numerically
on an example of Nesterov by Gürbüzbalaban and Overton [13]. We begin with some
relevant definitions (see [14]).
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Definition 5.1 Consider a function f : R
n → R and a point x̄ with f (x̄) finite.

Consider a vector v ∈ R
n .

1. We call v a regular subgradient of f at x̄ , written v ∈ ∂̂ f (x̄), iff

f (x) ≥ f (x̄)+ 〈v, x − x̄〉 + o(x − x̄) and x → x̄;

2. We call x̄ regular stationary iff 0 ∈ ∂̂ f (x̄). (In other words, x̄ is a local minimizer,
up to first order.)

3. We call v a limiting subgradient of f at x̄ , written v ∈ ∂ f (x̄), iff there are sequences
xν → x̄ with f (xν)→ f (x̄) and vν ∈ ∂ f (xν) with vν → v.

4. We call x̄ limiting stationary iff 0 ∈ ∂ f (x̄).
5. When f is Lipschitz around x̄ , and zero is a convex combination of limiting

subgradients there, we call x̄ Clarke stationary.

A direction p ∈ R
n satisfying lim supt↓0

1
t

(
f (x̄+tp)− f (x̄)

)
< 0 is called a direction

of linear descent. (In this case, x̄ is clearly not regular stationary.)

Reference [9, Proposition 3.3] gives an example of the exact-line-search BFGS applied
to f (x) = ||x || in R

2. The complete statement is as follows.

Proposition 5.1 Consider the exact-line-search BFGS method applied to the Euclid-
ean norm in R

2, initialized by

x0 =
[

1
0

]
and H0 =

[
3 −√3
−√3 3

]
.

The method generates a sequence of vectors xk that rotate clockwise through an angle
of π

3 and shrink by a factor 1
2 at each iteration.

In fact, the use of our inexact line search (Algorithm 3) instead of the exact line
search, generates the same points, as the following calculation shows.

Proposition 5.2 Consider the inexact-line-search BFGS method applied to the
Euclidean norm in R

2. For any 0 < c1 < 2
3 and c1 < c2 < 1, the method, initialized

as in Proposition 5.1, generates a sequence of vectors xk that rotate counterclockwise
through an angle of π

3 and shrink by a factor 1
2 at each iteration. For

R =
[

1
2

√
3

2

−
√

3
2

1
2

]
,

at the kth iteration we have:

xk = 2−k R−k x0, αk = 1

4
, pk = 2−k R−k

[−3√
3

]
and Hk = 2−k R−k H0 Rk .
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Proof A direct calculation (see [9, Theorem 3.2]) shows that the exact-line-search
BFGS applied to the function ‖x‖ initialized with x0 and H0 generates the sequence
(xk). It is also easy to check that the exact step size for each iteration is 1

4 . In order to
prove the result, it is sufficient to prove that the step size for the inexact-line-search
BFGS is also 1

4 for each iteration.
Consider the kth iteration. The line search algorithm will try t = 1 first. Since

∇ f (xk)
T pk = −3× 2−k and f (xk + pk) =

√
7× 2−k , then

f (xk + pk) = 2−k
√

7 > 2−k(1− 3c1) = f (xk)+ c1∇ f (xk)
T pk

∇ f (xk + pk)
T pk = 9√

7
× 2−k ≥ −3× 2−kc2 = −c2∇ f (xk)

T pk .

Hence, the algorithm will try t = 1
2 . This time we note

f
(

xk + 1

2
pk

)
= 2−k > 2−k

(
1− 3

2
c1

)
= f (xk)+ c1

2
∇ f (xk)

T pk

c2∇ f (xk)
T pk = −3× 2−kc2 < 3× 2−k = ∇ f (xk + 1

2
pk)

T pk .

Now the algorithm will try t = 1
4 . We observe, since c1 < 2/3,

f (xk + 1

4
pk) = 2−(k+1) < 2−k(1− 3

4
c1) (c1 <

2

3
) = f (xk)+ c1

4
∇ f (xk)

T pk

c2∇ f (xk)
T pk = −3× 2−kc2 < 0 = ∇ f (xk + 1

4
pk)

T pk .

We deduce αk = 1/4. The claim follows. ��
The inexact-line-search BFGS thus only visits points on the half-lines given by
R+[cos nπ

3 sin nπ
3 ]T (for integers n). To construct an example where the algorithm

converges to a point with descent directions, we ensure that BFGS still only visits
those points, but change the function values elsewhere.

Proposition 5.3 Consider the inexact-line-search BFGS applied to the function
defined by g([u v]T ) = √u2 + v2 · cos(18 arctan v

u ) (for [u v]T �= [0 0]T ) and
g([0 0]T ) = 0, or equivalently in polar coordinates (r, θ) �→ r cos(18θ). For any
0 < c1 < 2

3 and c1 < c2 < 1, if we initialize as in Proposition 5.1, then the method
generates the same sequence as in Proposition 5.2 and, hence, converges to the point
zero, at which there exist directions of linear descent.

Proof The existence of directions of linear descent at zero is clear (for example, the
ray θ = π/18), so we simply need to prove that the BFGS method generates the same
sequence (xk) as in Proposition 5.2 by induction. Since

R =
[

1
2

√
3

2

−
√

3
2

1
2

]
=

[
cos π

3 sin π
3− sin π

3 cos π
3

]
and R−1 =

[
cos π

3 − sin π
3

sin π
3 cos π

3

]
,
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we deduce

Rk =
[

cos kπ
3 sin kπ

3− sin kπ
3 cos kπ

3

]
and R−k =

[
cos kπ

3 − sin kπ
3

sin kπ
3 cos kπ

3

]
.

Then, g(xk) = g(2−k R−k x0) = 2−k = f (xk). Furthermore, we have

∂g(x)

∂u

∣∣∣∣
x=xk

= uk

||xk || cos
(

18 arctan
vk

uk

)
= uk

||xk ||

and

∂g(x)

∂v

∣∣∣∣
x=xk

= vk

||xk || cos(18 arctan
vk

uk
) = vk

||xk || ,

so ∇g(xk) = xk||xk || = ∇ f (xk).

It suffices to show that, at each iteration k, the step size is always 1
4 . The idea of the

proof is to compare the functions f = ‖ · ‖ and g along the search directions at each
iteration and observe that the calculations during the inexact line search are identical.
Figure 2 illustrates the idea, by plotting the functions f and g along a typical search
direction.

Clearly p0 = −H0∇g(x0) = [−3
√

3]T and ∇g(x0) = ∇ f (x0) = [1 0]T . The
line search algorithm applied to g first tries t = 1. Since

g(x0 + p0) = g([−2
√

3]T ) = √7 cos(18arctan
−√3

2
)

> 1 = g(x0) > g(x0)+ c1∇g(x0)
T p0,

we see t = 1 does not satisfy the Armijo condition. Moreover, as Fig. 2 illustrates,
∇g(x0 + p0)

T p0 ≥ ∇ f (x0 + p0)
T p0. Since, furthermore, ∇ f (x0 + p0)

T p0 ≥
c2∇ f (x0)

T p0 = c2∇g(x0)
T p0, the value t = 1 satisfies the weak Wolfe condition

for g. Therefore, the line search algorithm will try t = 1
2 .

As Fig. 2 indicates, we have g(x0 + 1
2 p0) = f (x0 + 1

2 p0) and
∇g(x0 + 1

2 p0) = ∇ f (x0 + 1
2 p0). Hence, t = 1

2 does not satisfy the Armijo
condition but does satisfy the Wolfe condition, following Proposition 5.2. Hence,
the line search will next try t = 1

4 . Since g(x0) = f (x0), ∇g(x0) = ∇ f (x0),
g
(
x0 + 1

4 p0
) = f

(
x0 + 1

4 p0
)
, and ∇g

(
x0 + 1

4 p0
) = ∇ f

(
x0 + 1

4 p0
)
, it follows

that t = 1
4 satisfies the line search conditions. Hence, the iterates coincide for k = 1.

We now proceed inductively, in similar fashion. We suppose that up to kth iteration
the iterates coincide, and, furthermore, pk = 2−k R−k p0 and
Hk = R−k H0 Rk . We want to prove coincidence at the (k + 1)th iteration. First note
that xk+ tpk = 2−k R−k(x0+ tp0) can be obtained by rotating 2−k(x0+ tp0) counter-
clockwise through an angle of kπ

3 . Then, we have f (xk + tpk) = 2−k f (x0+ tp0) and
g(xk+tpk) = 2−k g(x0+t0 p0). Therefore, by the above argument, the line search step
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Fig. 2 A comparison of f and g along search direction p0
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Fig. 3 Graph of the function g

size should be αk = 1
4 . As showed in Fig. 3, there exist directions of linear descent at

zero. The claim follows. ��
In fact, a direct calculation shows that ∂̂g(0) = ∅ and g is smooth on R

n/{0}, with
||∇g|| ≥ 1 everywhere, so, using the language of Definition 5.1, zero is not limiting
stationary. However, zero is Clarke stationary.
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For this example, the inexact-line-search BFGS method in exact arithmetic is thus
known to converge to a point at which there exist directions of linear descent. How-
ever, numerical experiments reveal this convergence to be numerically unstable. The
examples in [13] are complementary: convergence to points with directions of linear
descent appears numerically stable but remains unproven in exact arithmetic.

6 Line-Search BFGS Versus Trust-Region BFGS

Given the apparent success of line-search BFGS methods on nonsmooth functions, it
is natural to compare with trust-region versions. We consider here a trust-region BFGS
algorithm from [11]. Given a starting point x0, initial Hessian approximation B0, trust-
region radius 
0, maximum number of iterations N , parameters η ∈ (0, 10−3) and
r ∈ (0, 1), the trust-region BFGS in this paper is as follows.
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Fig. 4 Numerical results on f ([u v]T ) = u2 + |v|

Numerical experiments show that line-search BFGS methods work well for broad
classes of nonsmooth functions, while trust-region versions fail even on simple exam-
ples. In this section, we use the simple nonsmooth function f ([u v]T ) = u2 + |v| to
explore some intuitive reasons for the success of line-search BFGS methods over their
trust-region counterparts.

We present some simple numerical experiments. The left graph in Fig. 4 is an
example where trust-region BFGS fails to converge to the optimal solution. In contrast,
the right graph in the same figure shows the success of the line-search BFGS on the
same example.

Points on the line v = 0 are nonsmooth. Numerical results show that the line-search
BFGS method generates a sequence of points that eventually cross that line at every
iteration (see the lower right panel in the figure above). Indeed, this property can be
proved analytically for the exact-line search BFGS, as we saw above. However, the
trust-region BFGS method seems to satisfy no analogous property. The trust region
seems overly restrictive on the updated point and approximate Hessian. In compari-
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son, the line-search BFGS method responds much more effectively to the nonsmooth
structure of the function.

Second, the line-search BFGS method updates the approximate Hessian when it
finds a point satisfying the Armijo and Wolfe conditions along the current search
direction, and these conditions seem to ensure that the updated point is satisfactory for
this update. However, the trust-region BFGS updates the approximated Hessian matrix
at each iteration, even when the current subproblem is not a good approximation of
the original problem around the current point.

Third, numerical results show that the radius of the trust region converges to zero
quickly (see the lower left figure above). When the trust region is small, the method
cannot take a big step even though the subproblem is a good approximation of the
original problem. This causes the method to converge very slowly. In addition, for the
same reason, the method fails to take advantage of a well approximated subproblem
to better update the approximate Hessian.

7 Conclusions

In practice, the BFGS algorithm seems a good general-purpose nonsmooth optimiza-
tion method: it is relatively simple to implement, robust, and reliable. On the other hand,
we are far from a complete theoretical understanding of its success. Our explorations
in this work are first steps: two simple closed-form examples to help investigate how
linear convergence occurs, a computational study of how well such examples might
predict the relationship between convergence rate and problem conditioning (what-
ever that might be for this problem class), and a rigorous if rudimentary first step in a
convergence proof for piecewise linear functions. While encouraging, the latter proof
serves also to illustrate the difficulties in a careful analysis. A wider range of well-
behaved examples, candidate condition numbers controlling convergence rate, and true
convergence proofs would all constitute interesting advances in our understanding of
this intriguing algorithm.
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