
SCHEDULING IN HEALTHCARE

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Woo-Hyung Cho

August 2022



© 2022 Woo-Hyung Cho

ALL RIGHTS RESERVED



SCHEDULING IN HEALTHCARE

Woo-Hyung Cho, Ph.D.

Cornell University 2022

In today’s rapidly evolving, technology-driven and data-rich environment, we

are increasingly being offered new information with which to make decisions.

This dissertation examines how these changes are reshaping operations in

healthcare settings, and seeks to better understand their impact on the system

as a whole.

We first consider the use of machine-learned predictions of patient risk

for triage and prioritization. We model this as a learning-augmented online

scheduling problem where we are given good, but imperfect, information about

each arriving patient’s urgency level in advance. In this formulation, we face the

challenges of decision making under imperfect information, and of responding

dynamically to prediction error as we observe better data in real time. We pro-

pose a simple online policy for minimizing the total urgency-weighted costs of

delay across all patients, and show that this policy is in fact the best possible in

certain stylized settings.

Our work in the area of scheduling has also prompted some theoretical ques-

tions. We present a new proof of correctness of the celebrated Shortest Process-

ing Time rule using geometric insights and linear programming techniques.

Finally, we examine the impact of online appointment scheduling platforms

that offer patients the ability to observe and choose physicians that best meet

their needs. In particular, some patients value the flexibility of seeing readily

available physicians while others prefer dedicated service by a primary care



provider. We study the effects of added flexibility in a multi-server queueing

framework and show that even a small number of flexible patients can greatly

benefit overall system performance.
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CHAPTER 1

INTRODUCTION

In today’s rapidly evolving, technology-driven and data-rich environment,

we are increasingly being offered new information with which to make deci-

sions. This dissertation examines how these changes are reshaping operations

in healthcare settings, and seeks to better understand their impact on the system

as a whole.

In Chapter 2, we begin by exploring recent interest in deploying machine

learning algorithms for diagnostic radiology. Advances in modern learning

techniques have made it possible to detect abnormalities in medical images

within minutes. While machine-assisted diagnoses cannot yet reliably replace

the human reviews of images by a radiologist, they could inform prioritization

rules for determining the order by which to review patient cases so that patients

with time-sensitive conditions could benefit from early intervention.

We study this scenario by formulating it as a learning-augmented online

scheduling problem. We are given information about each arriving patient’s

urgency level in advance, but these predictions are inevitably error-prone. In

this formulation, we face the challenges of decision making under imperfect

information, and of responding dynamically to prediction error as we observe

better data in real time. We propose a simple online policy and show that this

policy is in fact the best possible in certain stylized settings. We also demon-

strate that our policy achieves the two desiderata of online algorithms with pre-

dictions: consistency (performance improvement with prediction accuracy) and

robustness (protection against the worst case). We complement our theoretical

findings with empirical evaluations of the policy under settings that more accu-
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rately reflect clinical scenarios in the real world.

Our work in the area of scheduling has also prompted some theoretical ques-

tions, which we explore in Chapter 3. The Shortest Processing Time rule is one

of the oldest results in scheduling theory that finds an optimal solution to the

problem of scheduling jobs on identical parallel machines to minimize average

job completion times. We present a new proof of correctness of the Shortest

Processing Time rule using geometric insights and linear programming tech-

niques. An extended abstract of this work has appeared in the proceedings of

the MAPSP 2022 conference in June 2022.

Finally, in Chapter 4, we examine the impact of online appointment schedul-

ing platforms that offer patients the ability to observe and choose physicians

that best meet their needs. The increasing popularity of platforms like ZocDoc

has fundamentally changed how patients experience appointment scheduling

and raises new questions about its impact to the system as a whole. In this

chapter, we focus on a specific aspect of this phenomenon in which we assume

that some patients value the flexibility of seeing readily available physicians

while others prefer dedicated service by a primary care provider. We study

these effects of added flexibility in a multi-server queueing model that captures

the performance trade-off between patients valuing flexibility (join the shortest-

of-d queues) and patients wanting dedicated service (join a specific queue). Our

analyses indicate that even a small number of flexible patients can greatly ben-

efit overall system performance.

Chapter 4 began as an end-of-semester final project for ORIE 6520: A Random

Walk Through Applied Probability taught by Jamol Pender in Spring 2018. Collab-

orative efforts with fellow PhD student Shuang Tao resulted in a research paper
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shortly thereafter. This chapter also appeared in co-author Shuang Tao’s PhD

dissertation submitted to Cornell University in 2020.

This research was supported in part by NSF CMMI-2035086, NSF/FDA SIR

IIS-1935809, NSF CCF-1740822, NSF DMS-1839346, and NSF CCF-1522054.
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CHAPTER 2

SCHEDULING WITH PREDICTIONS

Modern machine learning algorithms have been tremendously successful

in a variety of application domains, and healthcare is no exception. In recent

years, we have seen significant interest in deploying these algorithms for di-

agnostic radiology, a branch of medicine that uses imaging techniques such as

X-rays, ultrasounds, and Magnetic Resonance Imaging (MRI) to diagnose a pa-

tient. The idea is to use these images as inputs to machine learning algorithms,

which would then search for patterns that imply the presence of an abnormality.

Advances in pattern recognition techniques for image processing and computer

vision have made it possible for machine learning algorithms to detect abnor-

mal conditions in medical images within minutes, or even seconds. Because this

is still a nascent area of research, these algorithmic, machine-assisted diagnoses

cannot yet reliably replace the thorough, human reviews of images by a radiol-

ogist. Meanwhile, they could be used to prioritize and speed up the review of

images that are flagged as likely to contain time-sensitive conditions.

To make this more concrete, imagine a group of patients who have had di-

agnostic images taken after a referral. Radiologists are tasked with processing

each patient case, which typically consists of reading images, then communicat-

ing any findings by filing a radiology report and sending it back to the referring

provider. Appropriate patient care and treatment begin only upon case com-

pletion at the radiology department, so it is in the best interest of the patient

for radiologists to organize their workflow in a way that prioritizes cases by ur-

gency. This is especially true for patients with time-sensitive conditions such as

stroke, intercranial hemorrhage, or pneumothorax, for which early intervention
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is key. In the case of acute stroke due to large vessel occlusion, for example,

studies have shown that an interventional radiology procedure called mechan-

ical thrombectomy could achieve a favorable clinical outcome when performed

within 4 to 6 hours of symptom onset [63]. This is where machine learning could

be helpful. Leveraging the speed and the predictive power of machine learning,

radiologists could use algorithmic outputs to prioritize cases that are deemed

urgent.

True urgency, however, cannot be fully assessed until a case is opened and

images are at least partially read. For this reason, many imaging clinics in-

cluding those in the New York-Presbyterian hospital network tend to rely on

the referring providers’ communication of expectations as well as on their own

insights, expertise and experience when prioritizing cases. In some sense, cur-

rent practices rely on human predictions of urgency. The use of predictions pow-

ered by machine learning algorithms could augment current best practices and

streamline the process of determining the order by which patient cases should

be read.

But predictions, human-made or machine-learned, are rarely perfect. There

will always exist never-before-seen cases that further compound the error. Good

predictions have the potential to expedite the detection and treatment of time-

sensitive conditions, but mispredictions could cause delays that are extremely

costly. Given this understanding, the central question that we ask in this chapter

is, how can we take advantage of predictions to improve radiologists’ workflow while

accounting for prediction error?

We abstract the setting described above and model it as a single-machine

scheduling problem. A radiologist tasked with reviewing patient cases can be

5



viewed as a single machine that is able to process one job at a time. Case urgen-

cies are captured in the form of job weights, where the higher the weight, the

greater the urgency. Patient treatment plans are often established upon comple-

tion of case review from the radiology department, so a natural objective would

be to minimize the total sum of urgency-weighted completion times across all

patients.

This single-machine problem of minimizing the weighted sum of job com-

pletion times is a decades-old problem that has already been extensively studied

(see [78, 20], for example). In this chapter, we study this problem with the addi-

tion of a key feature: imperfect predictions of urgency. Patient cases randomly

arrive into the system. At each job’s time of arrival, we observe its predicted

level of urgency given by some black-box predictive mechanism. True urgency

is unknown and unobservable at this time, so priority decisions are necessarily

made based on imperfect information. However, when radiologists are work-

ing through a patient case, interpreting the associated images and deciding if

an abnormality is present, they are also gradually learning whether or not the

case on hand is truly urgent (or non-urgent). Anecdotal evidence suggests that

an image study is roughly a process of elimination via inspection from different

angles [48, 76], so it is likely that a job’s true urgency is known even before its

processing is complete. We therefore allow radiologists to preempt a job midway

then return to the remaining work for completion at a later point in time. With a

preemptive strategy, we have an opportunity to hedge against prediction error

by responding early to what is in hindsight a suboptimal decision made in the

face of less-than-perfect information. We aim to find a policy for deciding which

job or remainder thereof to process at any given time so that the total expected

urgency-weighted sum of job completion times is minimized.
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Our scheduling formulation allows for a wide range of models for describ-

ing the problem setting in ways that more accurately reflect clinical settings in

the real world. For example, by using job weights to capture case urgencies,

we are able to handle granularity in prioritization schemes beyond a binary

classification of urgent vs. non-urgent. Our preemptive framework also allows

flexibility in modeling the many different ways in which radiologists gain infor-

mation as they process each patient case. Nevertheless, in this chapter, we focus

on a highly stylized version of this model. We assume that each job can be cate-

gorized as one of two types: urgent or non-urgent. All jobs are available before

any decisions are made, and we are able to observe each job’s predicted priority

class at this time. We further assume that every job shares the same processing

time requirement. Without loss of generality, we assume unit processing time

requirements. A fixed parameter α ∈ (0, 1) is used to denote the fraction of a

job that must be processed before we learn its true type. We call this time point

a job’s α-point. In our model, we allow preemptions to occur only at these α-

points, and assume that the residual work needed to complete an interrupted

job is exactly the same as if the job had not been interrupted.

Our problem of scheduling with predictions is an exercise in online decision

making even when all jobs are available to us in advance. Decisions are made

with incomplete information in the form of imperfect predictions, to which we

respond over time based on our observations of true job types. Classic results

in online decision making have focused on finding solutions that are robust

with provably good performance guarantees over all possible inputs and even

in the worst case. An emerging line of research in this area leverages predictions

to design algorithms that not only remain robust to worst-case inputs but also

achieve performance guarantees that improve with prediction accuracy (see [62]
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for a survey). We continue this line of research and extend it to our problem

setting. In what follows, we first find a threshold-based policy for deciding

which job to process at any given time, and show that our proposed policy is

the best possible over all non-anticipating policies. We then show that perfor-

mance guarantees for this policy degrades gracefully as a function of prediction

error. Our results indicate that our policy simultaneously achieves consistency

(improvement with prediction accuracy) and robustness (protection against the

worst case).

Related Work There has been an explosion of research activity in recent years

that seek to augment online algorithms with machine-learned predictions. In

this framework, the goal is to design algorithms with near-optimal performance

when predictions are accurate while maintaining prediction-less guarantees in

the worst case. The idea is that good predictions can help circumvent worst-case

behavior. Classic optimization problems that are being reexamined under this

framework include caching [57], matching [26, 5, 18, 51], secretary [28], knap-

sack [44] and facility location [4]. Problems in Nash social welfare [12], mecha-

nism design [88] and revenue management [10] are also actively being studied

in this context.

In online scheduling, problems that are being newly examined with learning

augmentation include problems for minimizing average flow time [61, 62, 7],

average completion time [69, 45], average weighted completion time [55], and

makespan [50, 9]. Many of these studies with min-sum objectives assume that

job processing requirements are not known to us in advance. In these settings,

it is natural to use predictions of individual job processing times [69, 45, 61,

62, 7]. More recent work examines the use of permutation predictions, directly
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predicting algorithmic actions rather than input characteristics [55]. Our work

studies the min-sum weighted completion time objective using predictions of an

input characteristic that has not been considered in previous work: job weights.

Job weights are used to capture urgencies or priorities in our problem set-

ting. Outside the realm of online scheduling with predictions, there is an exten-

sive body of work that investigates the effect of priority classes. In the context

of prediction error, our work is closely related to the works of Argon and Ziya

[6] and McLay and Mayorga [58]. In a priority queue model, Argon and Ziya [6]

make priority assignments for arriving customers based on imperfect indicators

of priority types. The signal available to the decision maker is the probability

that a customer is high priority. McLay and Mayorga [58] study the problem of

dispatching ambulances when operators make classification errors in assessing

patient risk via a Markov Decision Process. Our model is fundamentally differ-

ent not just in framework, but more importantly in that we respond dynamically

to real-time information gained while processing each job. Despite these ma-

jor modeling differences, there are striking similarities in some of the insights

and conclusions we draw. With Argon and Ziya [6], we share the same opti-

mal policy structure given two priority classes with linear waiting costs. Both

works have a signal (or, in our case, prediction)-based thresholding policy with

strong ties to the generalized cµ rule. Our threshold policy also reveals how pre-

diction quality impacts decision making. Similar insights are given by McLay

and Mayorga [58] on when to over- or under-respond to perceived patient risk

based on rates of classification error. It is clear that there are connections in our

approaches despite their differences. In future work, it would be interesting to

see when and how these frameworks converge.
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In other related work, van der Zee and Theil [83] directly model misclassifi-

cation rates in a single-server queue where priority assignments are made based

on a probabilistic classifier. Steady-state results are derived when classification

errors are known and very small. Singh et al. [77] eliminates the use of prior-

ity types as a middle-man altogether and directly prescribes placement into the

priority queue. Finally, very recent work by Thompson et al. [80] explores the

impact of prediction-driven prioritization schemes using a preemptive priority

queue. Their simulated clinical impact assumes a fixed prediction error based

on the expected diagnostic performance of machine-learned algorithms.

The remainder of this chapter is organized as follows. In Section 2.1, we

introduce our model as well as a scheduling formulation of the problem. We

present our main results in Section 2.2, where we show that a simple threshold-

based policy is in fact the best possible in certain stylized settings. Section 2.3

extends this idea to a number of settings that more accurately reflect realistic

scenarios. Finally, we conclude and lay out some additional thoughts for future

research in Section 2.4.

2.1 Problem Formulation

We have a set of patient cases that must be processed by a radiologist. At time

of arrival, each patient case is labeled with its predicted urgency level. These

labels are observable. At every decision point, the radiologist decides which

patient case to process. After processing a pre-specified fraction of a patient

case, the radiologist learns the true priority of the case on hand and has the

option to preempt that case in favor of another patient case. We capture this

10



decision making process with a preemptive scheduling model. Our goal is to

find a policy for minimizing the expected urgency-weighted sum of completion

times across all patients. We describe the problem data and model, followed by

a scheduling formulation of the problem.

Problem Data We have one radiologist (a single machine) processing patient

cases (jobs) indexed by [n] = {1, . . . , n}. A machine can only process one job

at a time, and each job requires 1 unit in processing time. All jobs are assumed

available at time 0 in advance of any decision making, i.e., release dates rj = 0

for each job j ∈ [n].

There are two priority classes, type 0 (urgent) and type 1 (non-urgent), each

with its associated cost per unit delay (weights) ω0 and ω1, respectively, where

ω0 > ω1 > 0. Each job is independently an urgent job with probability ρ ∈ (0, 1),

which we assume is known based on historical data. Job j’s true urgency

true(j) ∈ {0, 1} is unknown a priori, and is revealed only after partially com-

pleting some fixed α ∈ (0, 1) fraction of the job. On the other hand, its predicted

priority pred(j) ∈ {0, 1} is immediately observable at its release date rj . A bi-

nary classification system predicts the urgency level of each job independently

according to the following probability matrix.

predicted 0 predicted 1
true 0 1− ε0 ε0
true 1 ε1 1− ε1

Table 2.1: Prediction probability matrix

The probability of misclassifying a true type 0 job is the false negative rate

ε0, and the probability of misclassifying a true type 1 job is the false positive

rate ε1. We assume that ε0 ≤ 1/2 and ε1 ≤ 1/2, and that these prediction er-

11



rors are known. We expect that they could be inferred from historical data or

from expected generalization error rates associated with the machine learning

algorithm that we use.

By Bayes’ rule, job j is a type 0 job with probability pj , where

pj = P(true(j) = 0|pred(j) = 0) =
(1− ε0)ρ

(1− ε0)ρ+ ε1(1− ρ)
(2.1)

if job j is predicted to be of high priority, and

pj = P(true(j) = 0|pred(j) = 1) =
ε0ρ

ε0ρ+ (1− ε1)(1− ρ)
(2.2)

otherwise. It is easy to verify that P(true(j) = 0|pred(j) = 0) ≥ P(true(j) =

0|pred(j) = 1) given our assumptions that ε0 and ε1 are both at most one half.

Finally, the weight of job j is

wj = ω0 · 1 {true(j) = 0}+ ω1 · 1 {true(j) = 1}

= ω1 + (ω0 − ω1) · 1 {true(j) = 0} . (2.3)

Assumption 1. ω1 < ω0(1− α) holds.

Intuitively, Assumption 1 ensures that there is a large enough weight dif-

ferential between urgent and non-urgent jobs to make preemption meaningful.

The technical reasons for making this assumption will be discussed in the next

section when it becomes relevant.

Model A decision point occurs whenever a job completes or a job’s true pri-

ority is revealed. We call the latter decision point an α-point. Our model allows

preemptions; at each α-point, we can either complete the job immediately, or pre-

empt then process the remaining 1− α units of work at a later point in time.

12



At each decision point t, we observe the state, which consists of the set of

unopened jobs sorted in some order, and the set of partially processed jobs of

which true types are already known. Of unopened jobs, only predicted pri-

orities are known. Based on the state, we decide whether to open a new job

of as-yet-unknown urgency or complete a job of known priority that only has

1−α units of work remaining. Our decisions at each decision point are therefore

made based on the predicted priorities of unopened jobs and the true priorities of

partially processed jobs. If we decide to open a new job, we process a job chosen

according to some predetermined order and meet our next decision point at the

next α-point t+α, at which time we observe the job’s true type. We then update

the state by moving this job from the set of unopened to the set of partially pro-

cessed. Otherwise, we complete a job at t+ (1− α), incur a weighted cost to the

objective based on the true urgency of the job just completed, and remove that

job from the system entirely.

Objective Each of the n arriving jobs is independently a high priority job with

probability ρ, and is assigned a predictive label according to the probability

matrix given in Table 2.1. Letting Cj denote the completion time of job j, our

goal is to minimize E
(∑n

j=1wjCj

)
.

Scheduling Formulation We first consider the offline version of this problem

in which jobs’ true types are known a priori. This is a single-machine problem

of minimizing the weighted sum of completion times, written 1||
∑
wjCj in the

scheduling notation of Graham et al. [40], and can be solved using the following

result given by Smith [78].

Theorem 1 (Smith’s WSPT Rule). For the single-machine problem of minimizing the
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weighted sum of completion times, the Weighted Shortest Processing Time (WSPT) rule

is optimal.

The WSPT rule sorts jobs in nonincreasing order of weight-to-processing-

time ratios. Given our unit processing time assumption, sorting jobs in WSPT

order is equivalent to sorting jobs in nonincreasing order of true priorities.

Then, processing job j for completion at time j yields an optimal schedule, so

E(OPT) = E
(∑n

j=1 jwj

)
.

Our problem, however, is a non-clairvoyant online decision making problem

in which jobs’ true priorities are not known until jobs are at least partially pro-

cessed. We follow the WSPT rule and sort jobs in nonincreasing order of pre-

dicted weights, breaking ties arbitrarily. We then proceed by opening jobs in

this sorted order. The rest of this chapter is focused on showing that the per-

formance gap between the online and offline versions of this problem can be

reduced with the use of predictions, especially when the predictor has low error.

A Toy Example Consider the following deterministic 9-job example where

each column represents a single job.

true types (unknown) 0 0 0 0 1 1 1 1 1
predicted types (observed) 0 1 0 0 0 1 1 1 0

At each job’s release date, we observe its predicted type. True types are not

known at this time. We proceed by sorting jobs in WSPT order of predicted

priorities.

In this example, there are
(
5
2

)(
4
1

)
possible permutations by which we could

open jobs as a result of this WSPT sort, driven by mispredictions. One such
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predicted types (sorted) 0 0 0 0 0 1 1 1 1
true types (permutation π) 0 1 0 0 1 1 1 0 1

Table 2.2: An example of a possible job ordering

permutation π is given as an example above. Once a job is opened, we learn its

true type after processing α units of the job. At this α-point, we have the option

of either completing the remaining 1− α units of work, or opening the next job

in π. Decisions are made over time with the goal of minimizing E
(∑n

j=1wjCj

)
across all possible permutations of job orderings.

2.2 The β-Threshold Rule: An Optimal Policy

We provide an optimal policy for our problem in this section. Before we do so,

we first discuss an old scheduling result by Schrage [74].

Theorem 2 (Schrage’s SRPT Rule). In the preemptive single-machine problem of min-

imizing the sum of completion times, where jobs are arriving over time, the Shortest

Remaining Processing Time (SRPT) rule is optimal.

By the SRPT rule, given any two jobs of the same weight, we should process

the job with the shorter amount of remaining work first. SRPT applied to our

problem confirms a general intuition that it is never optimal to preempt a job

that is revealed to be of high priority; type 0 jobs will always be processed non-

preemptively. This does not change our model, but it does help simplify some

aspects of it. Since preemption only occurs on type 1 jobs, we are able to elimi-

nate α-points with respect to type 0 jobs. It also suffices to track the number of

partially processed jobs as these jobs are all of type 1.
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We now present a thresholding policy that minimizes our objective across

all non-anticipating policies. Without loss of generality, we sort jobs accord-

ing to their predicted priorities, breaking ties arbitrarily. This is equivalent to

sorting jobs in nonincreasing order of their type 0 probabilities pj as defined in

equations (2.1)-(2.2). As we proceed with our policy, we open jobs in this order.

Define a constant

β =
α

1− α
· ω1

ω0 − ω1

.

At each decision point, we observe the state (S, `), where S is the set of un-

opened jobs and ` is the number of partially processed type 1 jobs. If either

S = ∅ or ` = 0, we do not have a decision to make; if the former, we complete a

partially processed type 1 job, and if the latter, we open a new job. If S = ∅ and

` = 0, we are done. Thus, we assume that ` > 0 and S 6= ∅ with k = min(S),

which means that job k is the next job in line. We make our decisions by com-

paring pk against β: if pk ≤ β, we process the remaining 1−α units of a partially

completed low priority job and reach our next decision point at completion. If

pk > β, we open job k and process α units of the job, at which time we learn

of job k’s true type. If job k is a type 1 job, we are at our new decision point.

Otherwise, we process job k to completion for another 1−α units and make our

next decision when job k’s processing is complete.

Theorem 3. The β-threshold rule is optimal.

Proof. Suppose on the contrary that there exists an optimal policy that does not

follow the β-threshold rule. By assumption, if we run this policy on any instance

of our problem input, there exists at least one decision point where the optimal

policy observes the given state and makes a decision that deviates from ours.

We consider the last such decision point and call it time t, and further assume
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Algorithm 1 The β-Threshold Rule

Require: jobs sorted in nonincreasing order of pj
1: Initialize:

t← 0 . time
S ← [n] . set of unopened jobs
`← 0 . number of partially completed type 1 jobs

2: procedure COMPLETELOW(t,S, `) . complete a known low priority job
3: `← `− 1
4: t← t+ (1− α)
5: end procedure
6: procedure OPENNEXT(t,S, `) . open a new job, then stop at the α-point
7: k ← min(S)
8: S ← S \ {k}
9: t← t+ α

10: if true(k) = 0 then . nonpreemptively complete a type 0 job
11: t← t+ (1− α)
12: else
13: `← `+ 1
14: end if
15: end procedure
16: while (S, `) is not (∅, 0) do
17: if S = ∅ then
18: COMPLETELOW(t,S, `)
19: else if ` = 0 then
20: OPENNEXT(t,S, `)
21: else
22: k ← min(S)
23: if pk > β then
24: OPENNEXT(t,S, `)
25: else
26: COMPLETELOW(t,S, `)
27: end if
28: end if
29: end while
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that the observed state at that time is (S, `), where S is the set of unopened jobs

such that k = min(S) and ` > 0 is the number of partially processed type 1 jobs.

Two things may have occurred at time t: pk > β and the optimal policy pro-

cesses a low priority job for completion at time t + (1 − α), or pk ≤ β and the

optimal policy proceeds by opening job k. In both cases, we show that choos-

ing the alternative improves the objective value and ensures that the resulting

schedule is consistent with the β-threshold rule.

i pk > β: according to the β-threshold rule, we should have opened job k at

time t; the optimal policy decided otherwise and completed a type 1 job (let

us call this job i) at time t + (1 − α). We proceed by identifying another

point in time in the schedule generated by the optimal policy to process job

i, which would allow job k to be processed at time t instead. We then show

by an interchange argument that doing so improves the objective value.

Starting from time t, trace time forward in the schedule generated by the

optimal policy. Since t is the last decision point that deviates from the β-

threshold rule by assumption and the set of unopened jobs at the next deci-

sion point t + (1 − α) remains unchanged so that k = min(S), the optimal

policy opens job k at time t+(1−α). We continue to trace time forward until

some time u, when the optimal policy begins processing the remaining 1−α

units of a previously preempted, true low priority job for the first time since

completing job i at time t + (1 − α). We show that within the interval [t, u),

we can improve the objective by delaying the completion of job i to Ci = u

and moving up the schedule in [t+ 1− α, u) by 1− α units to [t, u− 1 + α).

By our assumptions, u is the time at which either S = ∅ (every job has been

opened), or the next job’s type 0 probability falls below β, whichever hap-
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pens first. Therefore, all jobs opened in [t+1−α, u) are above the probability

threshold β. Let z ≥ 1 denote the number of jobs opened in [t + 1 − α, u)

including job k. Among these z jobs, suppose there are z0 jobs of true type

0 that are completed immediately where z0 =
∑k+z−1

j=k 1 {true(j) = 0}. The

remaining z − z0 jobs are revealed to be of true type 1 after α units of pro-

cessing, then are preempted. These preempted jobs are not processed until

at least time u.

By interchange, each of the z0 type 0 jobs complete 1−α units earlier. On the

other hand, completion of job i, a type 1 job, is delayed by u− (t+ 1− α) =

z0 + (z − z0)α, which sums one unit of delay for every completed type 0 job

and an α unit of delay for every preempted type 1 job. None of the other jobs

are affected by this interchange. Thus, the overall change to the objective is

−z0ω0(1− α) + ω1 (zα + z0(1− α)) (2.4)

= −z0(ω0 − ω1)(1− α) + αω1z

= −(ω0 − ω1)(1− α)

(
z0 −

α

1− α
· ω1

ω0 − ω1

z

)
= −(ω0 − ω1)(1− α) (z0 − βz)

= −(ω0 − ω1)(1− α)
k+z−1∑
j=k

(1 {true(j) = 0} − β) .

In expectation,

−(ω0 − ω1)(1− α)
k+z−1∑
j=k

(pj − β) < 0

since pj > β for each j = k, . . . , k + z − 1, which establishes a contradic-

tion. We have also shown how to choose the interval [t, u) for interchange to

ensure that the schedule is consistent with the β-threshold rule from time t

onward.

ii pk ≤ β: according to the β-threshold rule, we should have completed a type

1 job for completion at time t + 1 − α. Instead, the optimal policy opened
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job k. The proof proceeds similarly to the above in that we first identify an

appropriate point in time in the schedule generated by the optimal policy to

open job k, then use interchange. The main difference lies in that the amount

of delay from opening job k is not immediately clear, since that depends on

job k’s true type.

We first argue that in fact, regardless of type, job k completes at t + 1 in

the schedule generated by the optimal policy. This is trivially true if job k

is a type 0 job. Otherwise, the optimal policy meets its next decision point

at t + α, where the set of unopened jobs is S = [n] \ [k] and there are now

`+ 1 true type 1 jobs that are not yet fully processed including job k. By our

assumption that time t is the last decision point at which the optimal policy

deviates from the β-threshold rule, the optimal policy completes a type 1 job

at (t + α) + (1 − α) = t + 1 since β ≥ pk ≥ pk+1 at time t + α. We are free

to label this job as job k. Then, starting from t + 1, the optimal policy will

complete the remaining ` type 1 jobs in succession, completing the last type

1 job at time t+ `(1− α) + 1.

We show that within the interval [t, t + `(1 − α) + 1), we can improve the

objective by delaying the opening of job k to time t + `(1 − α), when ` type

1 jobs have each completed the remaining 1 − α units of work. Even with

this interchange, since β ≥ pk+1, job k will be processed nonpreemptively

regardless of type so that Ck = t + `(1 − α) + 1. None of the other jobs are
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affected. The overall change to the objective is

−`ω1 + wk`(1− α) (2.5)

= −`ω1 + (ω1 + (ω0 − ω1) · 1 {true(k) = 0}) `(1− α) by (2.3)

= −`ω1 + ω1`(1− α) + (ω0 − ω1)1 {true(k) = 0} `(1− α)

= −`αω1 + (ω0 − ω1)1 {true(k) = 0} `(1− α)

= −`(ω0 − ω1)(1− α)

(
α

1− α
· ω1

ω0 − ω1

− 1 {true(k) = 0}
)

= −`(ω0 − ω1)(1− α) (β − 1 {true(k) = 0}) .

In expectation,

−`(ω0 − ω1)(1− α) (β − pk) ≤ 0

since pk ≤ β by assumption. The resulting schedule is consistent with the

β-threshold rule from time t onward. This establishes the desired contradic-

tion and concludes the proof.

Given our results in Theorem 3, we now provide a technical reason behind

Assumption 1 which requires ω1 < ω0(1 − α). Suppose on the contrary that

ω1 ≥ ω0(1 − α). Rearranging inequalities, this also implies that α ≥ 1 − ω1/ω0.

Then,

β =
α

1− α
· ω1

ω0 − ω1

≥ αω0

ω0 − ω1

=
α

1− ω1/ω0

≥ 1

and so by the β-threshold rule we would complete every job nonpreemptively.

Because this is not a particularly interesting case, we focus our efforts where

preemption offers room for improvement. All the same, we provide a perfor-

mance upper bound for this case in Corollary 5.

The β-threshold rule may seem arbitrary at first, but there is an intuitive

explanation for it that reveals a strong connection with the celebrated cµ rule.

Recall that for any job j, E(wj) = ω1 + (ω0 − ω1)pj by Equation (2.3).
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Proposition 1.
E(wj)

1
>

ω1

1− α
⇐⇒ pj > β.

Proof. Expanding the left hand side of the inequality,

(1− α) (ω1 + (ω0 − ω1)pj) > ω1 ⇐⇒ (1− α)(ω0 − ω1)pj > αω1

⇐⇒ pj >
α

1− α
· ω1

ω0 − ω1

⇐⇒ pj > β,

which is equivalent to the conditions given in the β-threshold rule. Inequality

in the other direction holds analogously.

At every decision point, applying the β-threshold rule is equivalent to com-

paring the cµ of an unopened job j against the cµ of a known low priority job

with 1−α units of residual work, and choosing the job with the higher cµ value.

Depending on our chosen parameter values, the β-threshold rule may give

rise to three modes of decision making: a nonpreemptive policy, a preemptive pol-

icy, and a hybrid policy that switches from a preemptive policy to a nonpreemp-

tive policy sometime in between.

Let us first assume that jobs are sorted in WSPT order of predicted priorities.

A nonpreemptive policy completes every job in sorted order without preemption.

A schedule generated by a nonpreemptive policy is a nonpreemptive schedule.

A policy is preemptive if, opening jobs in sorted order, every type 1 job is pre-

empted at its α-point. These low priority jobs will only be revisited once all n

jobs have been opened and every high priority job has completed its processing.

The resulting schedule is a preemptive schedule. Preemptive and nonpreemp-
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tive schedules are two non-adaptive special cases of a schedule generated by

the β-threshold rule.

The hybrid policy, on the other hand, is an adaptive policy that switches be-

tween the preemptive and nonpreemptive regimes based on the predictive label

of the job being processed. More specifically, a preemptive strategy is used on

jobs that are expected to be type 0, while a nonpreemptive strategy is used on

the remaining jobs that are predicted to be non-urgent. Given our initial sort,

we make this switch exactly once.

In what follows, we specify the conditions that give rise to each of our poli-

cies.

Corollary 1. A nonpreemptive policy is optimal if

min (ρ(1− β), β(1− ρ)) ≤ ρ(1− β)ε0 + β(1− ρ)ε1 and ρ ≤ β.

Proof. The statement follows directly from Theorem 3. We employ a nonpre-

emptive policy if β ≥ P(true(·) = 0|pred(·) = 0) where the probability is as

defined in (2.1)-(2.2). Rearranging the inequality, we obtain the result.

Corollary 2. A preemptive policy is optimal if

min (ρ(1− β), β(1− ρ)) ≤ ρ(1− β)ε0 + β(1− ρ)ε1 and ρ > β.

Corollary 3. A hybrid policy is optimal if

ρ(1− β)ε0 + β(1− ρ)ε1 < min (ρ(1− β), β(1− ρ)) .

The β-threshold rule admits a hybrid policy if

P(true(·) = 0|pred(·) = 1) ≤ β < P(true(·) = 0|pred(·) = 0). (2.6)

23



It follows naturally from Bayes’ rule that the gap between the two conditional

probabilities in (2.6) is large when prediction error is low. When that is the case,

β is much more likely to fall in between these two probabilities for our chosen

parameter values, resulting in an adaptive hybrid policy. On the other hand,

when we have a predictor with high prediction error, this conditional proba-

bility gap is likely to be smaller, in which case a non-adaptive policy would be

best.

2.2.1 Performance Analysis

We now quantify the performance of our policies as a function of prediction

error. More specifically, we fix the number of urgent jobs among our n avail-

able jobs, then obtain exact expressions for expected performance conditional

on this quantity, which we denote n0. Performance is measured against the of-

fline optimum OPT given n0. This focus on conditional expectation allows us

to remove one layer of randomness from our problem and isolate the effects of

misprediction. The expressions we derive in this section will also be useful for

competitive analysis in our next section. Extending our results to obtain expres-

sions for unconditional expectations of performance can be easily done by using

the first and second moments of n0.

Proposition 2. Let Cφ
j and Cα

j each denote job j’s completion time in nonpreemptive
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and preemptive schedules, respectively. Given n0,

OPT = (ω0 − ω1)
n0(n0 + 1)

2
+ ω1

n(n+ 1)

2
(2.7)

E

(
n∑
j=1

wjC
φ
j

∣∣∣∣∣n0

)
= OPT + (ω0 − ω1)E(X|n0) (2.8)

E

(
n∑
j=1

wjC
α
j

∣∣∣∣∣n0

)
= OPT + αω0E(X|n0) + αω1E(Y |n0) (2.9)

where, letting n1 = n− n0,

E(X|n0) =
(ε0 + ε1)n0n1

2
, E(Y |n0) =

n1(n1 − 1)

2
. (2.10)

Proof. The offline optimum is easy to compute by WSPT:

OPT =
n∑
j=1

jwj =

n0∑
j=1

ω0j +
n∑

j=n0+1

ω1j

= (ω0 − ω1)
n0(n0 + 1)

2
+ ω1

n(n+ 1)

2
.

For (2.8) and (2.9), recall that sorting jobs in WSPT order of predicted priori-

ties results in a number of possible permutations of true priorities. We evaluate

the objective for some fixed permutation π of true types, then take the expecta-

tion across all possible permutations.

In a nonpreemptive schedule, each pair of jobs whose true types are out

of order, i.e., a pair of (true 1, true 0), adds ω0 − ω1 to the objective relative

to the offline optimum. Letting X denote the number of such inversions in π,∑n
j=1wjC

φ
j = OPT + (ω0 − ω1)X .

In a preemptive schedule, the cost of one inversion is αω0, since a type 1 job

preempts after processing α units and allows a type 0 job to be processed and
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completed before resuming its 1 − α units of residual work. This schedule also

incurs a cost of αω1 for every pair of (true 1, true 1) jobs, because the policy

requires that we open and preempt both jobs before we begin processing any

remaining work for completion. Thus, letting Y denote the number of (true 1,

true 1) pairs in π,
∑n

j=1wjC
α
j = OPT + αω0X + αω1Y .

We conclude the proof by computing E(X|n0).

X =
n∑
j=1

∑
k>j

1 {π(j) = 1}1 {π(k) = 0}

=
n∑
j=1

∑
k>j

1 {π(j) = 1, pred(j) = 0}1 {π(k) = 0, pred(k) = 0}

+
n∑
j=1

∑
k>j

1 {π(j) = 1, pred(j) = 0}1 {π(k) = 0, pred(k) = 1}

+
n∑
j=1

∑
k>j ((((

((((
((((

(((
((((

(((
((((

(

1 {π(j) = 1, pred(j) = 1}1 {π(k) = 0, pred(k) = 0}

+
n∑
j=1

∑
k>j

1 {π(j) = 1, pred(j) = 1}1 {π(k) = 0, pred(k) = 1}

where the third term cancels because of our initial sort in WSPT order of pre-

dicted priorities. Accounting for the order of jobs, we can replace π(·) with

true(·):

X =
1

2

(
n∑
j=1

1 {true(j) = 1, pred(j) = 0}

)(
n∑
k=1

1 {true(k) = 0, pred(k) = 0}

)

+

(
n∑
j=1

1 {true(j) = 1, pred(j) = 0}

)(
n∑
k=1

1 {true(k) = 0, pred(k) = 1}

)

+
1

2

(
n∑
j=1

1 {true(j) = 1, pred(j) = 1}

)(
n∑
k=1

1 {true(k) = 0, pred(k) = 1}

)
.

Order in the second term is, again, automatically satisfied by how we sort the

jobs. Taking the conditional expectation given n0 and letting n1 = n − n0, we
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obtain

E(X|n0) =
ε1(1− ε0)n0n1

2
+ ε0ε1n0n1 +

ε0(1− ε1)n0n1

2
(2.11)

=
(ε0 + ε1)n0n1

2
.

Finally, E(Y |n0) =
(
n1

2

)
= n1(n1 − 1)/2.

Given the proposition above, we can combine (2.8)-(2.9) to give expressions

for the performance of the β-threshold rule. In essence, the β-threshold rule

dictates when to move from a preemptive regime to a nonpreemptive regime.

Based on our previous analyses, this cutoff occurs once we complete the last job

that is predicted to be of high priority.

Proposition 3. Let Cβ
j denote job j’s completion time in a schedule generated by the

β-threshold rule. This schedule is nonpreemptive with performance given in (2.8) if β ≥

maxj pj , and preemptive with performance given in (2.9) if β < minj pj . Otherwise,

relative to OPT as defined in (2.7), the conditional expectation given n0 is

E

(
n∑
j=1

wjC
β
j

∣∣∣∣∣n0

)
= OPT + E

αω0X0 + αω1Y0︸ ︷︷ ︸
preemptive

+ (ω0 − ω1)(X −X0)︸ ︷︷ ︸
nonpreemptive

∣∣∣∣∣∣∣n0


(2.12)

where, letting n1 = n− n0,

E(X0|n0) =
ε1(1− ε0)n0n1

2
, E(Y0|n0) =

ε21 (n2
1 − n1)

2

and E(X|n0) is as defined in (2.10).

Proof. X0 and Y0 count the number of (true 1, true 0) and (true 1, true 1) pairs,

respectively, from the set of jobs that are predicted to be of type 0. The expected

value of X0 given n0 is given in the first term of (2.11) in Proposition 2. The
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expected value of Y0 given n0 is the expected value of
(
Bin(n1,ε1)

2

)
where Bin(n1, ε1)

denotes a binomial random variable with parameters n1 and ε1. The remainder

of the proof is identical to the one given in the proposition above.

The expression in (2.12) makes it clear that the impacts of false positive and

false negative rates to performance may vary.

Corollary 4. If the false positive rate ε1 = 0, a hybrid policy gives a nonpreemptive

schedule.

Figure 2.1: Expected performance

Figure 2.1 plots the unconditional expected performance of each of our poli-

cies as a function of prediction error, where performance is normalized by the

offline optimum. For illustrative purposes, we assume ε0 = ε1 and choose pa-

rameter values of α = 0.4, ρ = 0.1, and ω0/ω1 = 20. Since our problem is a

minimization problem, the lower the ratio of E(ALG)/OPT, the better.

The nonpreemptive policy performs very well when prediction error is low,

in fact recovering the offline optimum when we are given perfect predictions.
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This policy blindly trusts the predictor, however, resulting in poor performance

when prediction quality is low. On the other hand, the preemptive policy opts

not to trust the predictions and searches for high priority jobs regardless of the

advice it receives. It performs well when prediction quality is low, but is overly

aggressive against non-urgent jobs when predictions are accurate, penalizing

them unnecessarily. The β-threshold rule takes the best of both worlds. When

prediction error is low, our optimal policy strategically shifts from a preemptive

to a nonpreemptive policy, outperforming each of the individual non-adaptive

policies. Once prediction error reaches a certain point and predictive labels lose

meaning, the β-threshold rule shifts to a preemptive policy.

Figure 2.2: Expected performance

Needless to say, performance depends heavily on our chosen parameter val-

ues. Figure 2.2 gives two examples in which performance improvements from

the β-threshold rule are modest at best. The plot on the left panel considers a

case where relative priority values are set very high at ω0/ω1 = 100. Analytically,

our chosen parameter values push down the β value significantly so that it be-

comes unlikely that β will fall between the two conditional probabilities given

in (2.6) unless the predictor is very accurate. Intuitively, the relative priority of

urgent jobs is so great that there is simply no room for prediction error. This
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explains the low tolerance for error before our optimal policy switches from a

hybrid policy to a preemptive policy. The hybrid policy still outperforms both

non-adaptive policies when predictions are accurate.

The second plot in Figure 2.2 is a rare example in which a nonpreemptive

policy outperforms a preemptive policy throughout. Here, we consider a high

value of α where α = 0.7, which pushes up the β value and the cost of pre-

emption at the same time. In this case, the high cost of preemption makes it

preferable to complete a low priority job than to open a new job that may or

may not be high priority. We again observe that the hybrid policy outperforms

both non-adaptive policies, but the improvements are small.

2.2.2 Competitive Analysis

We provide performance guarantees for our policies in this section.

Definition 1. The competitive ratio of an online algorithm ALG is CR if the inequality

E(ALG) ≤ CR · OPT

holds for all possible inputs. Then, we can also say that ALG is CR-competitive.

In our competitive analysis, an adversary deliberately choosing a difficult

input has control over the mix of urgent and non-urgent jobs. Let q denote the

fraction of urgent jobs among all available jobs. We shall aim to find the worst

case values of q. This analysis addresses a known weakness in our model. Our

model assumes that each arriving job is independently a high priority job with

probability ρ ∈ (0, 1), and our proposed β-threshold rule is optimal with respect

to this parameter. While ρ could be inferred from historical data, it also tends to
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be highly volatile and sensitive to environmental changes. Mass casualty events

or insurance policy changes are some examples that could drive the value of ρ

up or down. With competitive analysis, we are able to guarantee performance

for all possible values of ρ. Furthermore, as a byproduct of our analyses, we can

observe which values of ρ result in the worst case.

Lemma 1. The performance of a nonpreemptive policy is bounded above by CRφ ·OPT

where

CRφ = 1 + ε

(√
ω0

ω1

− 1

)
and ε = (ε0 + ε1)/2 is the average of the false negative and false positive rates ε0 and

ε1.

Proof. Let Cφ
j denote job j’s completion time in a nonpreemptive schedule.

Based on (2.8),

E
(∑n

j=1wjC
φ
j

∣∣∣n0

)
OPT

− 1 =
(ω0 − ω1)E(X|n0)

OPT
.

Expanding the terms as given in Proposition 2 and letting q = n0/n,

(ω0 − ω1)E(X|n0)

OPT
=

2ε(ω0 − ω1)n0(n− n0)

(ω0 − ω1)n0(n0 + 1) + ω1n(n+ 1)

=
2ε(ω0 − ω1)q(1− q)n2

(ω0 − ω1)(q2n2 + qn) + ω1(n2 + n)

then, we approach the limit from below as n→∞ so the upper bound is

2ε(ω0 − ω1)q(1− q)
(ω0 − ω1)q2 + ω1

.

It is straightforward calculus to show that

max
0≤q≤1

2ε(ω0 − ω1)q(1− q)
(ω0 − ω1)q2 + ω1

= ε

(√
ω0

ω1

− 1

)
,
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which implies the result. The maximum is attained by choosing

q =

√
ω1

ω0 − ω1

+

(
ω1

ω0 − ω1

)2

− ω1

ω0 − ω1

.

An immediate consequence of the above lemma is a performance bound for

the schedule when Assumption 1 does not hold. Recall that without Assump-

tion 1, a nonpreemptive schedule is an optimal schedule.

Corollary 5. If ω1 ≥ ω0(1− α), the competitive ratio is 1 + ε
(√

1
1−α − 1

)
.

Lemma 2. The competitive ratio CRα of a preemptive policy is

CRα =


1 + α if ε ≤ ω1/ω0, and

1 +
α

2

ω0

ω0 − ω1

(
1− 2ε+

√
1− 4ε+ 4ε2

(
ω0

ω1

))
otherwise,

where ε = (ε0 + ε1)/2 is the average of the false negative and false positive rates ε0 and

ε1.

Proof. The first part of the proof proceeds similarly. Let Cα
j denote job j’s com-

pletion time in a preemptive schedule. Letting n1 = n− n0 and q = n0/n,

E
(∑n

j=1wjC
α
j

∣∣∣n0

)
OPT

− 1 =
αω0E(X|n0) + αω1E(Y |n0)

OPT

= α · 2εω0n0n1 + ω1n1(n1 − 1)

(ω0 − ω1)n0(n0 + 1) + ω1n(n+ 1)

= α · 2εω0q(1− q)n2 + ω1 ((1− q)2n2 − (1− q)n)

(ω0 − ω1) (q2n2 + qn) + ω1(n2 + n)

then, we approach the limit from below as n→∞ so the upper bound is

α · 2εω0q(1− q) + ω1(1− q)2

(ω0 − ω1)q2 + ω1

. (2.13)
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We want to maximize (2.13) with respect to q where 0 ≤ q ≤ 1. Taking the

derivative,

α ·

(
(2εω0(1− 2q)− 2ω1(1− q)) ((ω0 − ω1)q

2 + ω1)
− 2(ω0 − ω1)q (2εω0q(1− q) + ω1(1− q)2)

)
((ω0 − ω1)q2 + ω1)

2

= α · 2(ω0 − ω1)(ω1 − εω0)q
2 + 2ω1(2(ω1 − εω0)− ω0)q − 2ω1(ω1 − εω0)

((ω0 − ω1)q2 + ω1)
2 .

We first evaluate this derivative at the boundaries. At q = 1, the numerator is

always non-positive with −2εω2
0 ≤ 0. When q = 0, the numerator is −2ω1(ω1 −

εω0). If this quantity is non-positive, i.e., ε ≤ ω1/ω0, then the coefficient for q2

given by 2(ω0 − ω1)(ω1 − εω0) is also non-negative, which implies that (2.13)

decreases in q everywhere in the domain 0 ≤ q ≤ 1. Thus, if ε ≤ ω1/ω0, we

obtain the competitive ratio 1 + α by setting q = 0 in (2.13).

If ε > ω1/ω0, the expression in (2.13) attains a maximum in the interior of

the domain. The rest of the proof is straightforward calculus. We achieve the

maximum given in the statement of the lemma by setting

q =

√
ω1

ω0 − ω1

+

(
ω1

ω0 − ω1

· 2εω0 − 2ω1 + ω0

2εω0 − 2ω1

)2

− ω1

ω0 − ω1

· 2εω0 − 2ω1 + ω0

2εω0 − 2ω1

.

A preemptive policy aggressively searches for high priority jobs by preempt-

ing every type 1 job it encounters, completing any low priority residual work

only after all jobs are open and all type 0 jobs have completed their processing.

Lemma 2 confirms our intuition that this policy performs poorly when predic-

tion error is low. Consider for example an instance that consists exclusively

of type 1 jobs. Indiscriminate preemption offers no advantage, as there are no

urgent jobs to search for. In this case, a preemptive policy causes on average

an α unit of delay in the completion of every job, resulting in a constant 1 + α
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competitive ratio when error rates are small (ε ≤ ω1/ω0). Given our assumption

that prediction errors are at most one half, we are able to deduce the following

corollary.

Corollary 6. If ω0 < 2ω1, a fully preemptive policy is (1 + α)-competitive.

Thus, preemption offers little advantage when the relative weight differen-

tial is small.

Lemma 3. A hybrid policy achieves a competitive ratio of

CRβ := 1 +
1

2

(
αε21 − λ+

√
ω0

ω1

λ2 +
ω0

ω0 − ω1

(αε21)
2

)
(2.14)

where

λ = ε0(1 + ε1) +
αω0

ω0 − ω1

ε1(1− ε0)−
αω1

ω0 − ω1

ε21. (2.15)

Proof. The proof proceeds similarly where Cβ
j denotes job j’s completion time

in a hybrid policy. Letting n1 = n− n0 and q = n0/n,

E
(∑n

j=1wjC
β
j

∣∣∣n0

)
OPT

− 1

=
E (αω0X0 + αω1Y0 + (ω0 − ω1)(X −X0)|n0)

OPT

=

(
αω0ε1(1− ε0)q(1− q)n2 + αω1ε

2
1 ((1− q)2n2 − (1− q)n)

+ (ω0 − ω1)ε0(1 + ε1)q(1− q)n2

)
(ω0 − ω1) (q2n2 + qn) + ω1(n2 + n)

then, we approach the limit from below as n→∞ so the upper bound is

(αω0ε1(1− ε0) + (ω0 − ω1)ε0(1 + ε1)) q(1− q) + αω1ε
2
1(1− q)2

(ω0 − ω1)q2 + ω1

. (2.16)

Using arguments similar to those given in the previous lemma, (2.16) always

attains a maximum in the domain 0 ≤ q ≤ 1 when

q =

√√√√√ ω1

ω0 − ω1

+

 ω1

ω0 − ω1

· λ+ αε21

λ− α
(

ω1

ω0−ω1

)
ε21

2

− ω1

ω0 − ω1

· λ+ αε21

λ− α
(

ω1

ω0−ω1

)
ε21
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where λ is as defined above.

An interpretable upper bound for (2.14) can be derived using the inequality
√
a+ b ≤

√
a+
√
b, which yields

CRβ ≤ 1 +
λ

2

(√
ω0

ω1

− 1

)
+
αε21
2

(
1 +

√
ω0

ω0 − ω1

)
.

Rearranging (2.15), we have

λ = ε0 + ε1

(
α + (1− α)ε0 +

αω1

ω0 − ω1

(1− ε0 − ε1)
)
. (2.17)

We first show that λ/2 ≤ ε, where ε is the average of ε0 and ε1. To do so, it

suffices to show that the coefficient to ε1 in (2.17) is no greater than 1.

1−
(
α + (1− α)ε0 +

αω1

ω0 − ω1

(1− ε0 − ε1)
)

= (1− α)(1− ε0)−
αω1

ω0 − ω1

(1− ε0 − ε1)

= (1− α)

(
1− ε0 −

α

1− α
· ω1

ω0 − ω1

(1− ε0 − ε1)
)

= (1− α) (1− ε0 − β(1− ε0 − ε1))

= (1− α) ((1− β) (1− ε0) + βε1) ≥ 0.

The last inequality follows since every term in the expression is nonnegative, so

we have the desired inequality. Recalling that the nonpreemptive competitive

ratio is CRφ = 1 + ε
(√

ω0/ω1 − 1
)

, we are able to decompose the competitive

ratio as follows:

CRβ ≤ 1 +
λ

2

(√
ω0

ω1

− 1

)
︸ ︷︷ ︸

≤ CRφ

gains relative to CRφ

+
αε21
2

(
1 +

√
ω0

ω0 − ω1

)
︸ ︷︷ ︸

losses relative to CRφ

. (2.18)

When the relative urgency ω0/ω1 � 1, gains in the β-threshold policy relative

to a nonpreemptive policy are large since the multiplier
√
ω0/ω1 − 1 is large. In

comparison, the losses are approximately equal to αε21 and small, which implies

a guaranteed performance improvement.
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Theorem 4. The β-threshold policy achieves a competitive ratio
CRφ if ρ(1− β)ε0 + β(1− ρ)ε1 ≥ min (ρ(1− β), β(1− ρ)) and ρ ≤ β,

CRα if ρ(1− β)ε0 + β(1− ρ)ε1 ≥ min (ρ(1− β), β(1− ρ)) and ρ > β, and

CRβ if ρ(1− β)ε0 + β(1− ρ)ε1 < min (ρ(1− β), β(1− ρ)) .

Proof. The theorem combines Lemmas 1, 2 and 3 and the conditions in Corollar-

ies 1, 2 and 3.

An immediate observation from our competitive analyses is that the worst-

case fraction of urgent jobs is inversely proportional to relative priority levels

ω0/ω1. But more importantly, we are able to characterize how the competitive

ratio evolves as a function of prediction error.

Figure 2.3: Competitive ratios

For analytical purposes, let us assume ε = ε0 = ε1 and ω0/ω1 � 1. We can

easily see from our expression of CRφ in Lemma 1 that the competitive ratio of

a nonpreemptive policy grows linearly in O(ε), i.e., performance improves with
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prediction accuracy. In the case of a preemptive policy, the competitive ratio

stays constant at 1 + α before it starts growing linearly in O(αε). Compared

with that of a nonpreemptive policy, its growth rate is scaled down by a factor

of α where 0 < α < 1. Finally, Lemma 3 shows that the competitive ratio of a

hybrid policy grows quadratically in O (ε2). Given ε ≤ 1/2, this rate of growth is

slower than that of a nonpreemptive policy, offering yet another interpretation

of the decomposition of CRβ given in (2.18). These findings are illustrated in

Figure 2.3.

Our analyses indicate that, for all three policies that the β-threshold rule

admits, performance degrades gracefully as a function of prediction error. As

such, we achieve the two qualities that an online algorithm with advice should

exhibit: consistency and robustness [57]. Consistency requires performance im-

provement when the predictor has low error. The idea is that performance with

good advice should be better than performance with poor advice. At the same

time, an algorithm should be robust to all inputs, with or without predictions.

All three of our policies show improved performance with prediction accuracy.

The nonpreemptive and hybrid policies even recover the offline optimum when

offered perfect predictions. Our three policies are also robust in that the compet-

itive ratios are bounded above by when error rates are equal to one half. When

ε = 1/2, predictions are truly random, i.e., there are no predictions at play.

2.3 Extensions

In this section, we consider a number of extensions to our model that more

accurately reflect real-world settings.
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2.3.1 Probabilistic Classifiers

We first consider a probabilistic classifier that is able to predict with what prob-

ability a job is of high priority. Rather than providing a binary predictive label

of urgent vs. non-urgent, this probabilistic classifier directly offers an estimate

of pj . Let us denote these estimated probabilities as p̂j .

We first sort jobs in nonincreasing order of p̂j , breaking ties arbitrarily. As

we proceed with our policy, jobs are opened in sorted order. Then, we have the

following corollary to Theorem 3.

Corollary 7. The β-threshold rule is optimal given a probabilistic classifier.

The β-threshold rule proceeds similarly even with a probabilistic classifier.

A preemptive policy is applied to those jobs whose estimated probabilities lie

above β, and a nonpreemptive policy is applied to those jobs whose p̂j values

fall below that threshold. The β-threshold rule remains optimal, minimizing the

objective across all non-anticipating policies.

What differs from our original model is the measure of error. Beyond binary

classification, the false negative and false positive rates ε0 and ε1 no longer ap-

ply. A more appropriate measure of error in this case would be the logarithmic

loss function (also called the cross-entropy loss function) given as follows:

η = − 1

n

n∑
j=1

(1− true(j)) · log (p̂j) + true(j) · log (1− p̂j) .

The β-threshold rule is the best possible policy for decision-making based on

available information that is both imperfect and incomplete. However, its per-

formance depends heavily on the accuracy of the classifier on hand. An exact
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characterization of performance as a function of the log-loss η remains an open

problem.

2.3.2 Probabilistic Learning Outcome

Our model assumes that a radiologist is always able to determine a job’s true

type at its α-point with probability 1. Perhaps a more realistic model would be

to leave some room for doubt. Suppose that at job j’s α-point, we learn that job

j is an urgent job with some probability θj ∈ [0, 1]. Probability θj is a posterior

probability that offers a better likelihood of job j’s urgency based on α units of

observed data.

In our notation, S denotes the set of unopened jobs. Every job in set S has

one unit in remaining work, with an associated a prior probability of being an

urgent job. These prior probabilities are as defined in (2.1)-(2.2). Let I denote

the set of interrupted, previously preempted jobs that each have 1 − α units in

residual work. Every job in I has an associated posterior probability. At every

decision point, we make the decision of whether to open a job k with the largest

prior probability pk = maxj∈S pj , or to complete the remaining 1 − α units of

work of job i, where job i has the largest posterior probability among all jobs in

I such that θi = maxj∈I θj . For this decision problem, the following modified

version of the β-threshold rule is the best possible across all non-anticipating

policies.

Theorem 5. The
(
β + α

1−α
ω0

ω0−ω1

θi
1−θi

)
-threshold rule is optimal where θi = maxj∈I θj .

Proof. The proof is nearly identical to the interchange argument given in Theo-
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rem 3, with small modifications. The main difference is in recognizing that the

low priority job (job i) competing against the next unopened job (job k) in the

proof of Theorem 3 is now a low priority job with probability 1− θi, and a high

priority job with probability θi.

As before, we consider the last decision point that deviates from this modi-

fied β-threshold rule. If

pk > β +
α

1− α
ω0

ω0 − ω1

θi
1− θi

and job i is being processed at this decision point, the net change to the objective

upon interchange is

(−z0ω0(1− α) + ω1 (zα + z0(1− α)))︸ ︷︷ ︸
from (2.4)

(1− θi) + z(ω0α)θi

where z is the number of jobs opened whose prior probabilities lie above the

modified β threshold, and z0 is the number of type 0 jobs among them. The first

half of this expression comes directly from our earlier proof, weighted by the

probability that job i is a low priority job. If job i is an urgent job with weight

ω0, it incurs an α unit of delay in completion for each of the z jobs opened during

interchange. Then,

(−z0ω0(1− α) + ω1 (zα + z0(1− α))) (1− θi) + z(ω0α)θi

= −(ω0 − ω1)(1− α)(1− θi)

z0 −
(
β +

α

1− α
ω0

ω0 − ω1

θi
1− θi

)
︸ ︷︷ ︸

modified β

z

 .

In expectation, the overall change to the objective is negative since each of the z

jobs have prior probabilities that lie above the modified β threshold.

The second case uses an identical argument. We modify (2.5) to account for
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the possibility that job i is a type 0 job. Then,

(−`ω1 + wk`(1− α))︸ ︷︷ ︸
from (2.5)

(1− θi)− `(ω0α)θi

and the rest of the proof proceeds similarly.

We recover the original β-threshold rule when θi = 0, which is equivalent to

learning that job i is a non-urgent job with probability 1. This added uncertainty

raises the β threshold bar for opening new jobs to account for the possibility that

job i is an urgent job.

2.3.3 Job Arrivals Over Time

We had previously assumed that all jobs are available for processing at time 0.

In this section, we consider the case where jobs arrive over time and are released

for processing at various points in time. Each job j has an associated release date

rj ≥ 0 and cannot be processed before then. At any given time, we assume no

knowledge of jobs arriving in the future.

The offline version of this problem in which jobs’ true types are known a pri-

ori can be written as 1|rj, pj = 1, pmtn|
∑
{ω0, ω1}Cj in the scheduling notation

of Graham et al. [40]. The following theorem identifies an optimal policy for

this offline problem.

Theorem 6. The weighted shortest remaining processing time (WSRPT) rule is an

optimal policy for 1|rj, pj = 1, pmtn|
∑
{ω0, ω1}Cj .

Proof. Consider an optimal schedule where job k is being processed at time t.
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Suppose there exists another available job j at t such that

wk
xk(t)

<
wj
xj(t)

(2.19)

where xj(t) denotes the amount of work remaining in job j at time t. If wj = wk,

the optimal policy is in violation of the SRPT rule so we immediately have a

contradiction [74]. We therefore assume that wj 6= wk. In addition, we also

assume without loss of generality that job j is the job with the largest weight-to-

remaining-work ratio among all available jobs at t. We establish a contradiction

by interchange.

Despite our assumption that the optimal schedule prioritizes job k over job

j at time t, we do not know whether job k was actually completed prior to job

j. We let Cj and Ck denote the completion times of jobs j and k in the optimal

schedule, respectively, and consider both cases.

i Cj < Ck : we use a pairwise interchange argument similar to that used in

the proof of optimality of SRPT. Starting from t, we take the first xj(t) units

devoted to processing jobs j or k in the optimal schedule, and use that time

to process job j to completion at Ĉj . The remaining xk(t) units of time are

then used to process job k with completion time Ĉk = Ck. This interchange

only affects the completion time of job j, and Ĉj < Cj by construction, so we

have our desired contradiction.

ii Ck < Cj : in this case, we require some additional pieces that are unique to

our problem with two distinct weights. We first claim that job j is the only

job of weight wj that is processed in the interval [t, Cj). At time t, job j has

the largest weight-to-remaining-work ratio, so it would be against the SRPT

rule to process any other available job of weight wj until job j is complete.
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The same is true of any job of weight wj released in the interval [t, Cj) since

xj(t) ≤ 1 and every newly arriving job has 1 unit of remaining work. Using

a similar argument for job k in the interval [t, Ck), we can conclude that only

jobs j and k are processed in [t,min(Ck, Cj)) = [t, Ck).

It is possible, however, that other jobs are processed in [Ck, Cj). By our ear-

lier claim, only jobs of weight wk can be processed in this interval. LetA de-

note the set of jobs processed in [Ck, Cj) where, for every job ` ∈ A, w` = wk

holds. We claim that every job ` ∈ A satisfies

w`
x`(t)

<
wj
xj(t)

. (2.20)

For notational convenience, we shall continue to use x`(t) on jobs that are

released after t, as we can simply set x`(t) = 1 without affecting the analysis.

If job ` has release date r` ≤ t, then x`(t) ≥ xk(t) since the optimal schedule

would otherwise be in violation of the SRPT rule by processing job k instead

of ` at time t. Combined with (2.19), we obtain the inequality. The same is

true if job ` has release date r` ∈ [t, Cj) since xk(t) ≤ x`(t) = 1.

Lastly, we argue that every job ` ∈ A has completion time C` ∈ [Ck, Cj).

Suppose on the contrary that there exists a job that is partially processed

in [Ck, Cj) that completes sometime after Cj . Then, shifting the time units

devoted to processing this job to the end of the [Ck, Cj) interval allows job j

to be completed earlier without affecting the completion time of any other

job. Doing so strictly improves the objective and contradicts the fact that we

have an optimal schedule.

We finally have all the ingredients we need to proceed with the interchange.

We first process job j in the first xj(t) units of [t, Cj), followed by jobs in

A ∪ {k} in the remainder of the interval [t + xj(t), Cj). Then, for each job in
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A ∪ {k}, there is a delay in completion of at most xj(t) units. Job j, on the

other hand, completes xk(t) +
∑

`∈A x`(t) units earlier in the schedule. The

net effect to the objective is thus bounded above by

− wj

(
xk(t) +

∑
`∈A

x`(t)

)
+ |A ∪ {k}|wkxj(t)

=− wjxk(t) + wkxj(t)− wj

(∑
`∈A

x`(t)

)
+ |A|wkxj(t)

=−wjxk(t) + wkxj(t)︸ ︷︷ ︸
< 0 by (2.19)

+
∑
`∈A

(−wjx`(t) + w`xj(t))︸ ︷︷ ︸
< 0 by (2.20)

< 0

which contradicts the fact that we have an optimal schedule.

It is worth adding that the theorem above does not generalize to problems

of the same setting with three or more distinct weights. In particular, given our

assumptions in (2.19), our interchange argument relies on job j being the job

with the largest weight-to-remaining-work ratio among all jobs completing in

the interval [t, Cj). We have shown with (2.20) that this condition always holds

when there are two distinct weights. When there are three or more distinct

weights, we can easily construct examples for which this condition no longer

holds, for example, by scheduling the arrival of a job with very large weight in

[t, Cj).

The WSRPT rule combines two well-known scheduling results: the WSPT

rule (Theorem 1) and the SRPT rule (Theorem 2). The WSRPT rule itself is not

new; it has been used in other works as a popular heuristic (see [13, 87], for ex-

ample). Nevertheless, to our knowledge, Theorem 6 is the first result on WSRPT

optimality, and 1|rj, pj = 1, pmtn|
∑
{ω0, ω1}Cj is the first scheduling problem

for which WSRPT is shown to be optimal.
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Competitive Analysis We now consider the β-threshold rule when jobs arrive

into the system over time. At each decision point, we make decisions based on

an updated set of unopened jobs that accounts for any new job arrivals since our

last decision point. These newly added jobs enter the queue according to their

predicted priorities. Whereas our hybrid policy previously allowed a one-time

switch from a preemptive policy to a nonpreemptive policy, the arrival of a high

priority job could trigger preemptions when necessary, resulting in alternating

preemptive and nonpreemptive regimes.

Online job arrivals add yet another layer of randomness and complexity to

our model. Our efforts in competitive analysis incorporating both job arrivals

and imperfect predictions were not yet fruitful. In what follows, we present our

results when job arrivals are present with perfect type predictions.

Let OPT denote the offline optimum obtained by WSRPT, and let ALG0 de-

note the performance of the online β-threshold policy when job priorities are

known a priori. The main difference between these two policies under consid-

eration is that we are able to preempt a job whenever necessary in OPT, but may

do so at most once at a job’s α-point in ALG.

The online policy ALG0 assumes that true job priorities are given to us at

time of job arrival. This is a deterministic online problem where preemp-

tions are limited to α-points, so we might express this problem as 1|rj, pj =

1, α-pmtn|
∑
{ω0, ω1}Cj in the scheduling notation of Graham et al. [40]. We fol-

low the β-threshold rule at each decision point, where our set of unopened jobs

includes jobs that have arrived since our last decision point. We review each

decision in detail to highlight that each of our decisions are consistent with WS-

RPT. First, the existence of any unprocessed type 0 job will trigger a preemption
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at an α-point. Preempting a type 1 job at an α-point is WSRPT-consistent since,

by Assumption 1,

ω1 < ω0(1− α) ⇐⇒ ω1

1− α
<
ω0

1
.

Type 0 jobs will then complete nonpreemptively. When only type 1 jobs remain,

any partially processed type 1 job will be processed to completion before we

move on to an unopened type 1 job. This is consistent with the β-threshold rule,

the SRPT rule, and by extension, the WSRPT rule. Thus, when true job types are

known a priori, ALG0 is an optimal policy for 1|rj, pj = 1, α-pmtn|
∑
{ω0, ω1}Cj .

We now compare its performance against OPT. Our proofs frequently rely on

the following inequality, widely known as the mediant inequality.

The Mediant Inequality. For any positive real numbers a, b, c, d > 0,

a+ b

c+ d
≤ max

(
a

c
,
b

d

)
.

Theorem 7. ALG0 is max
(
1 + α, 2

1+α

)
-competitive, and

√
2-competitive if we choose

α =
√

2− 1.

Proof. We proceed by running the online β-threshold policy and WSRPT in par-

allel. Both policies schedule the same set of n jobs arriving over time, where

true job priorities are immediately observable upon job arrival. We refer to the

schedule generated by WSRPT as the optimal schedule.

We first discuss some reasonable assumptions we can impose on the data.

Without loss of generality, we assume minj rj = 0, and that there is at least one

job of each type in the dataset. We also assume that each of these n jobs are pro-

cessed without idle time in the optimal schedule so that the last job completes

at time n. To see why, first observe that both policies are work-conserving. Any
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dataset that prompts a machine to become idle in an optimal schedule will si-

multaneously create idle time in a schedule generated by our online policy. Let

us partition the dataset whenever there is idle time. Because our objective func-

tions are linear, we can apply the mediant inequality to the competitive ratio

based on said partition. Thus it suffices to consider a set of jobs that does not

generate idle time.

We proceed by identifying ways to further partition our set of jobs until we

have a minimal set of jobs that gives the worst case performance. In order to do

so, we need the following claims.

Claim 1. Type 1 jobs begin processing at the same time in OPT and in ALG0. This start

time is always integer.

Proof of Claim 1. Let t > 0 be any time at which a type 1 job begins its processing

in an optimal schedule. By the optimality of the WSRPT rule, every type 0 job

released prior to t has completed by t, and no type 1 job that has begun its

processing prior to t is left unfinished. Integrality of t follows naturally.

Type 1 jobs also start at integer time points in the schedule generated by

our online β-threshold policy because the policy requires that any partially pro-

cessed jobs be completed before opening a new type 1 job. Consider time t as

defined above. The optimal schedule implies that all type 0 jobs released prior

to t have release dates no later than t − 1. Because there is at least one deci-

sion point in the interval [t − 1, t), any type 0 job released prior to t must have

completed by t in the schedule generated by the online policy. Then, by our

assumption that precludes any idle time in the schedule, integer units of work

have been done on type 1 jobs by t and the result follows.
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Claim 1 allows us to partition the schedule whenever a type 1 job begins its

processing. Within each partitioned block, the same set of jobs will have com-

pleted processing in both policies. Thus, by the mediant inequality, we consider

one such block. This implies that it suffices to consider a dataset with exactly

one type 1 job. We call this job k. Without loss of generality, we assume that job

k begins its processing at time 0. Let C∗k and C0
k denote the completion time of

job k in OPT and ALG0, respectively.

Claim 2. C∗k ≥ C0
k .

Proof of Claim 2. First observe that C∗k and C0
k are positive integers for the same

reasons given in the proof of Claim 1. Suppose on the contrary that C∗k < C0
k .

Then there exists some job ` 6= k of type 0 that is not processed prior to C∗k in the

optimal schedule that is being processed in ALG0 at time C∗k . Preemptions only

occur at α-points in ALG0, so job `must have begun its processing at C∗k−(1−α),

which implies that r` ≤ C∗k − (1 − α). By Assumption 1, it follows that r` ≤

C∗k − (1− α) < C∗k − (ω1/ω0).

The optimal schedule follows WSRPT, so delaying the processing of any type

0 job in favor of completing job k would occur only if a type 0 job arrives at such

a time that the remaining work in job k, xk, satisfies ω1/xk > ω0/1 ⇐⇒ xk <

ω1/ω0. Said differently, only those type 0 jobs arriving after time C∗k − (ω1/ω0)

would be processed outside of the [0, C∗k) interval in an optimal schedule, and

by Assumption 1, also outside of [0, C∗k) in ALG0. Since r` < C∗k − (ω1/ω0), job `

should have completed before job k in an optimal schedule, which establishes

the desired contradiction.

An important byproduct of the proof of Claim 2 is that every job that com-
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pletes in the interval [0, C∗k) in ALG0 also completes within the same interval in

an optimal schedule. Both policies are work-conserving, so the converse also

holds. Let A denote the set of jobs completing in this interval. Then, by another

application of the mediant inequality, it suffices to consider the set of jobs A,

where job k is the only type 1 job therein. An immediate consequence of this is

an upper bound of max(α, 1− α) on the delay in type 0 job completion times in

ALG0 relative to those in OPT. Intuitively, this bound captures how long a type 0

job will have to wait until the next decision point while job k is being processed.

Thus,

ALG0

OPT
=
ω1C

0
k +

∑
j∈A\{k} ω0C

0
j

ω1C∗k +
∑

j∈A\{k} ω0C∗j

≤
∑

j∈A\{k}��ω0C
0
j∑

j∈A\{k}��ω0C∗j
by the mediant inequality, since C∗k ≥ C0

k

≤ max
j∈A\{k}

(
C0
j

C∗j

)
by the mediant inequality

= max
j∈A\{k}

(
C∗j + δj

C∗j

)
where δj is job j’s delay in completion in ALG0 relative to OPT. Finally, using

δj ≤ max(α, 1− α) and finding the earliest possible completion time in the opti-

mal schedule for each type of delay,

max
j∈A\{k}

(
C∗j + δj

C∗j

)
≤ max

(
1 +

α

1
, 1 +

1− α
1 + α

)
= max

(
1 + α,

2

1 + α

)
,

which proves the result.

Our results offer some guidance as to which values of α might be effective

when dealing with limited preemption points. But given job arrivals and perfect

predictions, the β-threshold rule is 2-competitive regardless of the α value that
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we choose. Given imperfect predictions without job arrivals, on the other hand,

we obtain our earlier result given in Theorem 4. Competitive analysis featuring

both uncertainties remains an open problem.

Figure 2.4: Expected performance when jobs arrive over time

Despite the lack of theoretical guarantees, empirical evaluations of the β-

threshold rule under realistic job arrival scenarios and imperfect prediction

show that our policy still performs very well. Figure 2.4 plots the expected

performance of the β-threshold rule as a function of prediction error, where

performance is normalized by the offline optimum obtained by WSRPT. For il-

lustrative purposes, we assume ε0 = ε1. In this plot, we assume that jobs are

arriving according to a Poisson arrival process with mean interarrival time 0.9

(given unit processing times). The figure shows that our policies exhibit near-

optimal performance, and that our β-threshold rule of alternating between the

nonpreemptive and preemptive regimes outperforms both non-adaptive poli-

cies when we are given high quality advice.

Our experiments thus far reveal that our original stylized model without job
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arrivals results in the worst-case performance. This is surprising to us, and also

somewhat counterintuitive given classic results in scheduling theory involving

job release dates. One possible explanation for this could be the higher oppor-

tunity costs of misprediction stemming from having a long line of jobs waiting

in the queue, but truthfully, we do not have a good answer for this yet.

2.4 Discussion and Future Directions

The work presented in this chapter was motivated by recent interest in using

machine learning algorithms for patient triage and prioritization. We modeled

this as a learning-augmented online scheduling problem in which we are given

good but imperfect predictions of patient risk, and sought to capture the trade-

off between the need to prioritize emergency cases and the potential costs of

misprediction. We presented a simple threshold-based policy that addressed

these concerns and proved that our policy is in fact the best possible in certain

stylized settings. The policy was also shown to remain effective in more realistic

settings.

The model that we studied is grounded in reality. For many radiologists,

preemptions and interruptions are simply facts of life, as is the fact that they are

trained to collect information in real time while processing each patient case. In

that sense, our policy recommendation is intuitive and easy to implement, and

more importantly, does not require an overhaul of existing systems and Modal-

ity Worklists that are already in place. While it would be impossible to imple-

ment the β-threshold rule by the book in a clinical setting, we do believe that

our policy can offer qualitative guidance on how to think about and respond to
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predictions of patient risk in connection with other input parameters.

That said, our work in this area is far from complete. Several concrete next

steps have been outlined in Section 2.3, including exact characterizations of per-

formance with probabilistic classifiers or with probabilistic learning outcomes.

Theoretical guarantees of performance of the β-threshold rule with online job

arrivals also remain an open problem.

Even beyond these extensions, there are many interesting directions that we

can explore for future research. One natural direction would be to generalize

our stylized model by allowing granularity in prioritization schemes beyond

a binary classification of urgent vs. non-urgent. From a practical perspective,

clinics tend to have their own internal methods of categorizing urgency levels.

For example, the Department of Radiology at the Weill Cornell Medical Center

categorizes urgency levels by the following:

• Critical (JCAHO1-designated): immediate communication required

• Emergent: immediate communication required

• Urgent: communication required in under 4 hours

• Important: closed-loop communication required but not in an urgent time

frame (1-2 week limit).

While this is clearly a natural next step to consider, it is less evident whether our

optimal policy structure extends under this more general setting. We have ob-

served, for example, that the optimality of the WSRPT rule breaks immediately

upon adding a third priority class.

1Joint Commission on Accreditation of Healthcare Organizations
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Another direction would be to consider various preemptive strategies that

better reflect clinical scenarios. In our scheduling formulation, preemptions

could be used to model the many different ways in which radiologists learn

true job types over time. One extension might be to consider multiple α-points

of preemption. For example, given 0 < α1 < α2 < · · · < 1, we might imag-

ine radiologists having improved confidence about a job’s true priority with

additional time spent processing that job. We could also consider varying pre-

emption points for each job, for instance by letting job j preempt at a unique

αj-point once a radiologist meets a certain level of confidence. It would then be

interesting to observe how performance evolves as a function of these preemp-

tion confidence levels.

In a similar vein, it is often the case that preemption comes at a cost. Our

model assumes that the work required to complete an interrupted job is ex-

actly the same as if it had not been interrupted. Realistically, it might take a

while for a radiologist to warm up to a job, in which case restarting a previously

preempted job may require an extra factor of γ > 1 in processing time. Early

attempts at tackling this problem with friction costs have not been successful

due to difficulties in having to differentiate decision points by continuity in job

processing.

Continued advances in machine learning techniques mean that, over time,

algorithms will likely become better at detecting abnormalities in medical im-

ages. Our current model assumes fixed error rates based on guarantees on ex-

pected generalization error, but we could also consider applying Bayesian in-

ference techniques to update error rates over time based on observed data. This

might lead to an adaptive β-threshold policy for which we might seek conver-
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gence results.

Finally, in the spirit of scheduling research, we could consider how the policy

performs when there are multiple radiologists, i.e., parallel machines.
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CHAPTER 3

SPT OPTIMALITY VIA LINEAR PROGRAMMING

Consider the problem of scheduling jobs on identical parallel machines to

minimize average job completion times. Each job j is available at time 0 and

requires pj > 0 units in uninterrupted processing time. Each machine can only

process one job at a time. Letting Cj denote the completion time of job j, this

problem is P ||
∑
Cj in the notation of Graham et al. [40]. One of the oldest and

most widely known results in scheduling theory is that this problem is solvable

in polynomial time [20]. An optimal schedule can be constructed by the Shortest

Processing Time (SPT) rule that begins processing a job not yet processed with

the shortest processing time whenever a machine is idle.

We present a new proof of correctness of SPT via linear programming (LP).

We use an LP formulation previously introduced by Balas [8] and further de-

veloped by Wolsey [86], Queyranne [70], Queyranne and Wang [72], Schulz [75]

and Hall et al. [42]. Earlier proofs of correctness of the SPT rule rely on coefficient

matching (see Brucker [17], Lawler et al. [52], and Lenstra and Shmoys [53], for

example), but to the best of our knowledge, this is the first LP-based proof.

Our proof of correctness of SPT uses a second scheduling problem that in-

volves job weights wj > 0 for each job j. The general problem P ||
∑
wjCj is

NP-hard [52]. One reaction to this NP-hardness result is that an LP-based proof

for P ||
∑
Cj (and the associated structural results then implied by LP duality)

should not be possible. However, some special cases of the weighted problem

P ||
∑
wjCj are known to be polynomial-time solvable, and in fact, one such spe-

cial case has an equivalence with our main problem P ||
∑
Cj . This equivalent

weighted problem comes with strong structural properties that we are able to
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exploit using LP techniques. The resulting LP solution is then transformed into

an optimal solution for P ||
∑
Cj , which gives an alternate LP-based proof of

correctness of SPT.

Identifying an appropriate weighted variant is a critical step in our proof.

Our methods generalize a single-machine result based on a 1997 observation

by Hall and Chudak [41], and are based on geometric insights from two-

dimensional Gantt charts. Gantt charts have already proven useful for tackling

various scheduling problems [75, 42, 35], so we expect our methods to also find

further uses. To demonstrate this, we apply the same principles in more gener-

alized settings in the last section of this chapter.

The remainder of this chapter is organized as follows. In Section 3.1, we

discuss the geometric insights from two-dimensional Gantt charts that reveal

a related scheduling problem. Linear programming methods are used to solve

this problem and establish SPT optimality in Section 3.2. Section 3.3 extends the

idea in uniform and unrelated parallel machine settings.

3.1 Insights from Two-Dimensional Gantt Charts

Gantt charts are useful for visualizing schedules over time, especially for a sin-

gle machine. Traditional Gantt charts are unidimensional in time. In a nonpre-

emptive schedule, a machine may block off pj units in uninterrupted process-

ing time for job j. If job j begins processing at time t, then its completion time

Cj = t+ pj . See Figure 3.1.

We introduce job weights in two-dimensional Gantt charts. With time on the

horizontal axis and the total remaining unprocessed job weight on the vertical
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Figure 3.1: A one-dimensional Gantt chart

Figure 3.2: A two-dimensional Gantt chart

axis, job j with weight wj is represented as a rectangular block of width pj and

height wj . When job j begins processing with coordinate (t, w) on its upper-

left corner, it completes with coordinate (Cj, w − wj) on its lower-right corner

as illustrated in Figure 3.2. Letting N denote the set of all jobs in a schedule,∑
j∈N wjCj is the area under the curve in a two-dimensional Gantt chart. Solv-

ing the single-machine problem 1||
∑
wjCj is therefore equivalent to finding a

sequence of jobs that minimizes this area under the curve in a two-dimensional

Gantt chart.

Two-dimensional Gantt charts have been widely explored for various single-

machine problems, as shown in Hall et al. [42], Schulz [75], and Goemans and

Williamson [35], for example. In comparison, their applications in parallel-

machine settings are relatively limited (a notable exception is the paper by East-

man et al. [29] that introduced the concept of two-dimensional Gantt charts in

1964). Parallel-machine schedules are difficult to interpret graphically when

multiple jobs of varying widths are being processed at the same time, each on a
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different machine.

Two observations are used to transform a two-dimensional Gantt chart for

P ||
∑
Cj for better interpretability. This procedure will also reveal a second

scheduling problem that has an equivalence relation with P ||
∑
Cj . As will be-

come clear shortly, the equal-weighted nature of our objective is a key feature in

this process.

The first observation is that any feasible parallel-machine schedule with m

machines may be decomposed into m feasible single-machine schedules with-

out altering the objective value. Of course, the converse is also true when the

set of jobs N is partitioned into m disjoint sets of jobs.

The next insight is due to Hall and Chudak’s 1997 observation that reflect-

ing any feasible, bounded two-dimensional Gantt chart over the identity line

preserves the objective value [41]. More precisely, suppose there is a feasi-

ble schedule for 1||
∑
wjCj where jobs are described by the set of parameters

{(pj, wj) : j ∈ N}. Then, we can construct an instance that shares the same

area under the curve by scheduling in reverse order the set of jobs described by

{(p̂j, ŵj) : j ∈ N}, where p̂j = wj and ŵj = pj for each j. See Figure 3.3 for an

illustration.

Now consider any feasible schedule for P ||
∑
Cj with job inputs {(pj, wj) :

j ∈ N}. In the absence of weights, let wj = p where p is some constant. We

decompose this schedule into m single-machine schedules and flip the weights

and processing times of each job according to the Hall and Chudak observation.

Doing so creates a set of jobs with equal processing times and general weights de-

scribed by {(p̂j, ŵj) : j ∈ N}, where p̂j = wj = p and ŵj = pj , and reverses the
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Figure 3.3: An illustration of Hall and Chudak’s 1997 observation

order in which jobs are processed on each machine. Putting these m newly cre-

ated single-machine schedules together, we obtain a feasible parallel-machine

schedule for the problem P |pj = p|
∑
wjCj : an equal-processing-time variant of

the weighted problem. The schedules for P ||
∑
Cj and P |pj = p|

∑
wjCj share

the same objective value.

This bijection between an input to P ||
∑
Cj and what we shall call a flipped

input to P |pj = p|
∑
wjCj implies that solving one solves the other. Between

the two, P |pj = p|
∑
wjCj is a much more attractive problem to solve given

its equal processing time structure. Since all jobs are available at time 0 and

require p units in processing time, job completion times are always at integer

multiples of p in an optimal schedule. A two-dimensional Gantt chart for P |pj =

p|
∑
wjCj therefore reads like that of a single-machine problem in which each

job is a collection of at most m jobs of equal width p. Sequencing jobs in order

of nonincreasing wj/pj is optimal for the single-machine problem 1||
∑
wjCj
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by Smith’s Weighted Shortest Processing Time (WSPT) rule [78]. By extension,

sorting jobs in order of nonincreasing wj and sequencing collections of m jobs

in sorted order is optimal for P |pj = p|
∑
wjCj . We give a formal proof of this

in the following section.

3.2 SPT Optimality

Consider the following linear program for P |pj = p|
∑
wjCj , which refines the

frameworks of Wolsey [86] and Queyranne [70].

min
∑
j∈N

wjCj (3.1)

s.t.
∑
j∈S

Cj ≥ f(S) for all S ⊆ N , (3.2)

where

f(S) =
p

2

(⌈
|S|
m

⌉2
· (|S| mod m) +

⌊
|S|
m

⌋2
· (m− |S| mod m) + |S|

)
.

The derivation for the functional form of f(S) builds on earlier works that

describe the convex hull of feasible completion time vectors. Balas [8], Wolsey

[86], Queyranne and Wang [72], Queyranne [70], and Queyranne and Schulz

[71] have extensively studied scheduling polyhedra for single machines. Of

particular interest are the valid inequalities

∑
j∈S

pjCj ≥
1

2

(∑
j∈S

pj

)2

+
1

2

∑
j∈S

p2j for all S ⊆ N (3.3)

that capture all permutations of completion times as shown by Wolsey [86] and

Queyranne [70]. Valid inequalities have also been derived for parallel machines

and subsequently tightened by Schulz [75] and Hall et al. [42]. We expand on
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Schulz’s 1996 derivation [75] to obtain tighter inequalities given equal process-

ing times. For every S ⊆ N , consider any partition S = S1 ∪ S2 ∪ · · · ∪ Sm:

∑
j∈S

pjCj =
m∑
i=1

∑
j∈Si

pjCj

≥
m∑
i=1

1

2

(∑
j∈Si

pj

)2

+
1

2

∑
j∈Si

p2j

 by (3.3)

=
1

2


m∑
i=1

(∑
j∈Si

pj

)2

+
∑
j∈S

p2j

 .

Given pj = p, it follows that

∑
j∈S

Cj ≥
p

2

(
m∑
i=1

|Si|2 + |S|

)
.

Here, we exploit the fact that set cardinalities are integral: the right-hand

side is minimized when the number of jobs assigned to each machine is as bal-

anced as possible. That is, given |S| = am + b where a, b ∈ Z+ and b < m,

then b machines will be assigned a + 1 jobs and the remaining m − b ma-

chines will be assigned a jobs. Thus, the following inequalities remain valid

for P |pj = p|
∑
wjCj , resulting in (3.2):

∑
j∈S

Cj ≥
p

2

(⌈
|S|
m

⌉2
· (|S| mod m) +

⌊
|S|
m

⌋2
· (m− |S| mod m) + |S|

)

for every S ⊆ N , where bxc is the largest integer less than or equal to x and dxe

is the smallest integer greater than or equal to x.

Let P be the polyhedron defined by the valid inequalities in (3.2).

Lemma 4. P is a supermodular polyhedron with integer vertices.

Proof. First, we show that the set function f is integer-valued. For any |S| =
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am+ b such that a, b ∈ Z+ and b < m,

f(S) =
p

2

(⌈
|S|
m

⌉2
· (|S| mod m) +

⌊
|S|
m

⌋2
· (m− |S| mod m) + |S|

)

=
p

2

(
(a+ 1)2 · b+ a2(m− b) + am+ b

)
=
p

2

(
a2m+ am+ 2ab+ 2b

)
=
p

2
(a(a+ 1)m+ 2(a+ 1)b)

which establishes integrality.

Next, we show that f is supermodular. First observe that f(∅) = 0. By

definition, a function is supermodular if, ∀A ⊆ B ⊆ N and i /∈ B,

f(B ∪ {i})− f(B) ≥ f(A ∪ {i})− f(A).

Suppose that |A| = a1m+ a2 and |B| = b1m+ b2, where a1, a2, b1, b2 ∈ Z+ and

a2, b2 < m. Since A ⊆ B, we know a1 ≤ b1. Notice that f(A ∪ {i}), compared

to f(A), will place one additional job into a machine with a1 jobs. All other

machines remain unaffected. Therefore,

f(A ∪ {i})− f(A) =
p

2

(
(a1 + 1)2 − a21 + 1

)
= p (a1 + 1)

and similarly,

f(B ∪ {i})− f(B) = p (b1 + 1) .

By assumption, a1 ≤ b1 and so the result follows.

Theorem 8. The valid inequalities in (3.2) completely describe the scheduling polyhe-

dron for P |pj = p|
∑

j wjCj .

Proof. Since we already know the validity of the inequalities in question, what

remains to show is that P is contained in the scheduling polyhedron for P |pj =
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p|
∑

j wjCj . Let C∗ be an arbitrary vertex of P , and let w be a vector such that

C∗ is the unique solution to the linear program min{wᵀC : C ∈ P}. Without loss

of generality, suppose jobs are sorted in nonincreasing order of weights. Given

Lemma 4, the greedy algorithm for supermodular polyhedra implies that

C∗j = f ({1, . . . , j})− f ({1, . . . , j − 1})

= p

(⌊
j − 1

m

⌋
+ 1

)
(3.4)

for all j ∈ N . Given our equal-processing-time assumption, all completion

times must occur at multiples of p. We conclude that C∗ is a completion time

vector in P |pj = p|
∑

j wjCj .

A direct consequence of Theorem 8 is that the solutions in (3.4) give the fol-

lowing parallel-machine extension to Smith’s WSPT rule for P |pj = p|
∑

j wjCj .

Corollary 8. An optimal solution for P |pj = p|
∑

j wjCj can be constructed by pro-

cessing a job not yet processed with the largest weight whenever a machine is idle.

For completeness, we construct a feasible solution to the dual of the lin-

ear program (3.1)-(3.2), and show that our dual solution obeys complementary

slackness conditions with respect to the completion time vector given by Corol-

lary 8. The dual LP is

max
∑
S⊆N

f(S)yS

s.t.
∑

S⊆N :j∈S

yS = wj ∀j ∈ N

yS ≥ 0 ∀S ⊆ N

with dual variables yS for each primal constraint S ⊆ N . Let n = |N | and

suppose without loss of generality that jobs are sorted in nonincreasing order of
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wj . The dual solution

y{1} = w1 − w2

y{1,2} = w2 − w3

...

y{1,...,n−1} = wn−1 − wn

y{1,...,n} = wn,

with all other variables set to zero, is feasible. The corresponding primal con-

straints that hold with equality are

k∑
j=1

Cj = f ({1, . . . , k}) for each k = 1, . . . , n

which, as in our earlier discussion, implies that

Cj = f ({1, . . . , j})− f ({1, . . . , j − 1})

= p

(⌊
j − 1

m

⌋
+ 1

)
for each job j ∈ N .

Finally, we use the equivalence between an input for P |pj = p|
∑
wjCj and

a flipped input for P ||
∑
Cj , in which pj and wj are interchanged for every job

j and the order in which jobs are processed is also reversed. This sorts jobs

in nondecreasing order of processing times. SPT optimality follows directly from

Theorem 8 and Corollary 8.

Corollary 9. An optimal solution for P ||
∑
Cj can be constructed by processing a job

not yet processed with the shortest processing time whenever a machine is idle.
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3.3 Extensions

Our methods and the geometric insights therein may find further uses. We ap-

ply the same principle in two generalizations that are both well known to be

polynomial-time solvable [17, 52, 53].

3.3.1 Uniform Machines

The first extension considers uniform machines, where each machine i has speed

si > 0 and so processing job j on machine i takes pj/si time units. This prob-

lem is denoted Q||
∑
Cj . Much of the same principle applies in establishing an

equivalence between Q||
∑
Cj and Q|pj = p|

∑
wjCj . A polyhedral approach

similar to Theorem 8 can be used to solve the latter problem.

Observe that machines in Q|pj = p|
∑
wjCj become idle at the following

multiset of possible job completion times:{
p

s1
, . . . ,

p

sm
,
2p

s1
, . . . ,

2p

sm
, . . . ,

np

s1
, . . . ,

np

sm

}
.

Let t1 ≤ t2 ≤ · · · ≤ tn be the n smallest numbers in the above multiset. We use

the following linear program for Q|pj = p|
∑
wjCj :

min
∑
j∈N

wjCj

s.t.
∑
j∈S

Cj ≥
|S|∑
j=1

tj for all S ⊆ N . (3.5)

The validity of the inequalities in (3.5) is immediate.

Theorem 9. The valid inequalities in (3.5) define a supermodular polyhedron that com-

pletely describes Q|pj = p|
∑
wjCj .
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Proof. For ease of exposition, let g(S) =
∑|S|

j=1 tj . We first show that g is super-

modular. Observe that g(∅) = 0. By definition, a function is supermodular if,

∀A ⊆ B ⊆ N and i /∈ B,

g(B ∪ {i})− g(B) ≥ g(A ∪ {i})− g(A).

By assumption, |B| ≥ |A|, so

g(B ∪ {i})− g(B) = t|B|+1 ≥ t|A|+1 = g(A ∪ {i})− g(A)

which establishes supermodularity.

Without loss of generality, suppose jobs are sorted in nonincreasing order of

weights. The greedy algorithm for supermodular polyhedra implies that

Cj = g ({1, . . . , j})− g ({1, . . . , j − 1})

= tj

for all j ∈ N , so C is indeed a completion time vector in Q|pj = p|
∑
wjCj .

By Theorem 9, an optimal schedule for Q|pj = p|
∑
wjCj sorts jobs in nonin-

creasing order of weights and processes job k for completion at time tk. When tk

takes the form tk = `p/si, job k is the `th job scheduled on a machine with speed

si. We therefore conclude that job k is the `th last job scheduled on machine i in

an optimal schedule for Q||
∑
Cj .

3.3.2 Eligibility Constraints

Consider a generalization of P ||
∑
Cj in which each job j is compatible only

with a subset of machines Mj . We denote this problem P |Mj|
∑
Cj

1. The
1This problem may also be denoted R|pij ∈ {pj ,∞}|

∑
Cj as a special case of scheduling on

unrelated machines where processing job j on machine i takes pj units if i ∈Mj and∞ otherwise.
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same principle from Section 3.1 can be used to establish an equivalence with

P |Mj, pj = p|
∑
wjCj .

We present a new result on SPT optimality given the following highly

structured set of inputs where machine eligibility sets Mj are nested, and the

highest-weight jobs are also the least restrictive, i.e., w1 ≤ w2 ≤ · · · ≤ wn and

|M1| ≤ |M2| ≤ · · · ≤ |Mn| hold.

Theorem 10. Suppose machine eligibility setsMj are nested and jobs are sorted such

that w1 ≤ w2 ≤ · · · ≤ wn and |M1| ≤ |M2| ≤ · · · ≤ |Mn| hold. For this highly struc-

tured set of inputs, an optimal solution for P |Mj, pj = p|
∑
wjCj can be constructed

by inserting jobs over time, in sorted order, into the first slot in an eligible machine with

the smallest sum of job weights.

Proof. For a proof by contradiction, consider an optimal schedule that cannot be

produced by this procedure. We show that we can always construct a schedule

that follows this procedure that is as good as the optimal schedule.

Let Wij denote the sum of job weights in machine i when job j is about to

be scheduled. Let job j be the maximum-weight job in an optimal schedule

that could not have been placed there in a schedule generated by the procedure.

More precisely, we assume that job j is assigned to machine i when there exists

some machine ı̂ 6= i such that ı̂ = arg mink∈Mj
Wkj . Let job ̂ be the job scheduled

where job j should have been, that is, the first job scheduled in machine ı̂ after

job j. If no such job ̂ exists, then job j must be the maximum-weight job in

machine i: job j is the maximum-weight job that violates the procedure, and

sinceMj is nested, any job that comes after job j that is eligible for machine i

is also eligible for machine ı̂. Finally, Wı̂j ≤ Wij ≤ Wij + wj , so a job must be

scheduled in ı̂ before another can be scheduled in machine i. Reassigning job j
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into the first slot of machine ı̂ places job j into a position compatible with the

procedure and changes the objective by (−Wij + Wı̂j)p ≤ 0, which establishes a

contradiction.

Suppose job ̂ exists, and let Cj and Ĉ be the completion times of jobs j and

̂ in an optimal schedule, respectively. If Cj ≤ Ĉ, swapping jobs j and ̂ changes

the objective by

wjĈ + ŵCj − (wjCj + ŵĈ) = (wj − ŵ)(Ĉ − Cj) ≤ 0.

Otherwise, if Cj > Ĉ, we can swap the segment [0, Cj) in machine i with the

segment [0, Ĉ) in machine ı̂, which changes the objective by (−Wij +Wı̂j)(Cj −

Ĉ) ≤ 0. In both cases, we place job j into a position compatible with the proce-

dure and obtain a contradiction. Repeating this process for every job not com-

patible with the procedure gives an optimal solution.

By the equivalence created by flipped inputs, an optimal solution for

P |Mj|
∑
Cj can be constructed by processing jobs in sorted order in an eligi-

ble machine with the shortest total processing time.

A primal-dual interpretation We conclude by outlining an LP-based ap-

proach for solving P |Mj, pj = p|
∑
wjCj for general inputs. This problem re-

quires a new LP formulation that explicitly considers job-to-machine assign-

ments. Define a binary variable xijk where xijk = 1 if job j is the kth job pro-

cessed on machine i, and 0 otherwise. Let cijk denote the cost of this assignment
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such that cijk = wjkp. Then the integer program for P |Mj, pj = p|
∑

j wjCj is

min
n∑
j=1

∑
i∈Mj

n∑
k=1

cijkxijk

s.t.
∑
i∈Mj

n∑
k=1

xijk = 1 ∀j = 1, . . . , n (3.6)

∑
j:i∈Mj

xijk ≤ 1 ∀i = 1, . . . ,m; k = 1 . . . , n (3.7)

xijk ∈ {0, 1} ∀j = 1, . . . , n; i ∈Mj; k = 1 . . . , n.

Constraint (3.6) ensures that every job is scheduled. By constraint (3.7), a ma-

chine can process at most one job at any given time. This is a bipartite matching

problem with n jobs on one hand and nm machine-slot pairs on the other. It

is well known that integrality constraints may be relaxed without altering the

feasible region. The dual of the LP relaxation is

max
n∑
j=1

uj −
m∑
i=1

n∑
k=1

vik

s.t. uj ≤ cijk + vik ∀j = 1, . . . , n; i ∈Mj; k = 1 . . . , n (3.8)

vik ≥ 0 ∀i = 1, . . . ,m; k = 1 . . . , n.

Dual variables uj and vik both have natural pricing interpretations: uj is the

total cost of assignment for job j, which includes both a baseline cost cijk and

a premium vik attached to the kth slot in machine i. Naturally, job j ultimately

chooses an assignment that minimizes its total cost.

Primal-dual algorithms that solve minimum cost bipartite matching prob-

lems have been widely studied in the literature [68]. In what follows, we de-

scribe an iterative approach that led to the insights behind Theorem 10.

For each j = 1, . . . , n, define a bipartite graph Gj = (Lj, R,Ej) where Lj =
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{1, . . . , j} is a subset of jobs, R = M×N is the set of machine-slot pairs, and

Ej = {(`, ik)| ` ∈ Lj, (i, k) ∈ R}. We initialize with an empty set of assignments

M = ∅ and a dual feasible solution u = v = 0, and run a primal-dual matching

algorithm onG1. At each iteration j = 2, . . . , n, we run the same algorithm onGj

with solutions obtained in the previous iteration as our initial feasible solutions.

Upon termination, correctness follows automatically if |M | = n.
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CHAPTER 4

THE VALUE OF FLEXIBILITY VIA JOIN THE SHORTEST-OF-D QUEUES

Imagine a patient who has an undiagnosed health concern who wants to

see a physician. Oftentimes a patient’s Primary Care Physician (PCP) is the

first medical practitioner that she will contact to address her concern. Suppose

that, unfortunately, the PCP is fully booked for the next couple of weeks and the

patient will have to wait for a prolonged period of time to see the PCP. This long

of a wait is not an uncommon scenario in the United States’ healthcare system.

According to a recent survey, the average wait time for a patient to see a doctor

for non-emergency issues can be as long as 66 days in a large city [2]. Thus, the

patient, in need of seeing a medical professional, might choose to forgo a visit

with their PCP to see the next available physician and resolve their medical

concern sooner. To this end, a patient may choose to use an online appointment

scheduling platform such as ZocDoc where there is a large number of available

doctors to choose from.

ZocDoc is a two-sided online medical platform that allows patients to search

and view available appointment times of doctors and make appointments in-

stantly. ZocDoc’s sync technology [1] allows patients to search based on the

doctor’s location, medical specialty, insurance coverage, and patient ratings. On

the ZocDoc patient platform, there are typically 10 doctors listed per page. In

Figure 4.1, we provide an example of the ZocDoc platform where doctors are

listed by earliest available appointment time and perceived quality. Appoint-

ment booking is not just online, but also can be made via smartphone devices

as well. Doctors can also choose to be listed on ZocDoc and allow the platform

to access and integrate with their appointment calendars so that their updated
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Figure 4.1: A snapshot of the ZocDoc platform

calendars can be viewed by patients in real-time. From a patient’s perspective,

using a service like ZocDoc can help patients book appointments sooner. Earlier

appointments typically result in earlier detection of illnesses, which can affect

the final cost of healthcare expenses. Thus, we ask the question, what is the

value of being able to see another physician on a patient platform like ZocDoc

if one is flexible?

In this chapter, we abstract the above scenario and model it as a multi-server

queueing system under heavy traffic and partial load balancing. Similar types

of queueing systems have been studied in the literature, see for example Whitt

[85], Vvedenskaya et al. [84], Lin and Raghavendra [54], Mitzenmacher [59],

Graham [37, 36, 38], Foley and McDonald [32], Mitzenmacher [60], Graham [39],

Dai et al. [21], He and Down [43], Bramson [14], Lu et al. [56], Tsitsiklis and Xu

[81], Bramson et al. [15], Mukherjee et al. [64], Aghajani et al. [3], Tao and Pender
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Figure 4.2: ZocDoc’s success in reducing wait lead times

[79], Foss and Stolyar [33].

However, we analyze the performance of the multi-server queue with the

addition of a key feature: patient types, where patients of different types react

differently to the idea of waiting to see their PCP. For example, some patients are

quite particular about only being seen by their PCP for various reasons. These

reasons might include familiarity, ease of communication, and accessibility of

location. On the other hand, there also exist flexible patients who are willing to

see another physician other than their PCP if they can have access to a medical

professional within a shorter time frame. In fact, these flexible patients might be

willing to call several physician’s offices, observe waiting times for each physi-

cian, and finally join the queue by scheduling an appointment with the physician

that offers the shortest wait time among those contacted or listed on the ZocDoc

platform. In the context of ZocDoc, this flexibility decreases the booking lead
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time significantly for those who are willing to be flexible [1]. In Figure 4.2, we

observe that the rising popularity of ZocDoc as a patient platform has reduced

the wait lead time significantly by offering substitute doctors who are willing

to see the patient in an earlier time frame. In doing so, flexible patients will

acquire queue length information that dedicated patients do not have access to.

The question we aim to address in this chapter is, how does the overall system

perform if only a fraction p ∈ [0, 1] of the patients are flexible and are willing to

use a platform like ZocDoc?

The model that we consider is highly stylized. We consider a system of N

physicians and assume that patients who arrive to the system are one of two

types: flexible or dedicated. We fix a flexibility parameter p ∈ [0, 1], which de-

notes the probability with which each arriving patient is flexible. We further

assume that each patient type has a different policy for joining a physician’s

queue. The dedicated patients join their designated PCP’s queue regardless of

queue length, i.e., they join one of the N queues uniformly at random. In other

words, these patients either have no information and do not use a platform like

ZocDoc to search for earlier appointments. They are in some sense loyal to their

PCP regardless of the wait they might experience. Flexible patients, on the other

hand, are willing to see any physician that reduces their waiting time and are

considered impatient. In our model, flexible patients choose d physicians, in-

dependently and uniformly at random, and observe the queue lengths of each.

Flexible patients subsequently respond to this newly obtained information by

joining the shortest queue among the d physician queues sampled. In some of

the current literature, the parameter d scales with the number of servers N , see

for example Dieker and Suk [25]. However, we assume that d is a fixed constant

since the ZocDoc patient platform displays roughly 10 physicians at a time on
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each page. The value d = 10 is therefore a reasonable value for the purposes of

our work.

Our goal is to study the performance of the system for varying degrees of

flexibility and power of choices, as expressed by parameters p and d, respectively.

In doing so, we use a fluid approximation where the queue length dynamics are

approximated with a deterministic fluid model as N → ∞ and the fluid model

behaves according to an infinite dimensional system of non-linear ordinary dif-

ferential equations. We are especially interested in studying and deriving an

upper bound for the average queue length in the system, which, as we will see,

also has some interesting interpretations.

In addition to the healthcare motivation presented by the ZocDoc platform,

one can also imagine a supermarket where customers join lines independently

without any knowledge of the number of customers at each cashier. Our model

is equivalent to having a proportion of informed customers who have the ability

to look at d queues and join the shortest among those queues. Thus, our goal is

to understand the value that a few informed customers can have on the system.

We will show in the sequel that even when the proportion of flexible patients

is small, these flexible patients can have a large impact on the overall system

performance.

Related Work There has been a lot of activity in the recent years of re-

searchers analyzing a number of variants of the join the shortest queue model.

See, for example, recent work by Eschenfeldt and Gamarnik [30], Braverman

[16], Mukherjee et al. [65], Banerjee and Mukherjee [11]. Despite the large

amount of activity in this area, there are relatively few papers that explore

the impact of flexibility or information in the underlying system. This chap-
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ter is inspired by the work of Tsitsiklis and Xu [81] where they explicitly study

the trade-off between centralized and distributed processing. In their work,

they consider an N -station system where their system designer is given a total

amount N of divisible computing resources. Moreover, the system designer in

their work can allocate resources to local and central servers. More specifically,

for some fraction p ∈ (0, 1), local servers process tasks at a maximum rate of 1−p

tasks per second, while the centralized server processes tasks at rate of pN tasks

per second. Our work is different from theirs in two main ways. First, we con-

sider a different model where we are joining the shortest of d queues. Second,

we do not assume a centralized server processes tasks. In our setting, flexi-

bility can be viewed as information each arrival has about the system. Some

customers have some partial information about the system and the others do

not have any information about the system and join uniformly at random. We

also differ from Tsitsiklis and Xu [81] since we also analyze the diffusion scaled

system. By studying the diffusion scaled process, we are able to gain important

insights on how flexibility impacts the fluctuations or variance of the queueing

system. This is also helpful in building confidence intervals around the fluid

limit.

Main Contributions The main contributions in this work are:

• We develop a new stochastic queueing model that incorporates the struc-

ture of dedicated and flexible customers. We explore the trade-off between

these types of customers through the parameters p and d, which represent

flexibility and the amount of partial information about the system.

• We prove fluid and diffusion limit theorems for the queueing process,
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thus showing that the fluid limit is an infinite dimensional system of non-

linear odes and that the diffusion limit is an infinite dimensional Ornstein-

Uhlenbeck process.

• We prove an interchange of limits for the fluid and diffusion scaled pro-

cesses, thereby showing that the steady state fluid and diffusion limits are

good approximations for the original fluid and diffusion scaled processes.

In fact, we derive a closed form expression for the steady state distribution

using a non-linear recursion. This recursion also allows us to derive new

upper and lower bounds on the first and second moments of the queue

length in steady state, which converge to each other as p→ 0 or p→ 1.

• From a mathematical perspective, we derive a new method for proving

the global stability of the steady state fluid limit by using a comparison

approach. Our approach exploits the fact that if the integral of the differ-

ence of two solutions are bounded, then the two solutions converge to the

same point. We also derive new infinite horizon bounds for the diffusion

scaled process, which are important ingredients for establishing tightness

for steady state diffusion limits. The infinite horizon bounds are in general

difficult to prove because they must be proved in the appropriate func-

tional space when the sub-generator of an associated birth-death process

is not self-adjoint. Moreover, proving these infinite horizon bounds is dif-

ficult in our model because the self-adjoint property of the sub-generator

depends on the flexibility parameter p.

The remainder of this chapter is as follows. In Section 4.1, we describe the

stochastic model. In Section 4.2, we present a fluid model for the tail distribu-

tion of the queue length. We prove both a transient and a steady state fluid limit

for our stochastic model. The transient fluid limit is proved using martingale
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techniques and the steady state fluid limit is proved using a new comparison

approach. We also prove an interchange of limits, which shows in a rigorous

sense that the steady state limit can be used as an approximation for our stochas-

tic model. In Section 4.3, we present a diffusion model for the tail distribution

of the queue length and prove a transient diffusion limit, a steady state diffu-

sion limit, and an interchange of limits for the stochastic model. In Section 4.4,

we prove that the steady state fluid limit can be written in closed form using a

nonlinear recursion. We also prove tight upper and lower bounds on the first

and second moments of the queue length. We also demonstrate through numer-

ical examples that small values of p can have a large impact on the behavior the

system. Section 4.5 concludes.

Notation The following table summarizes the notations that will be used

throughout this chapter.

Table 4.1: Notation

N # of physicians
λ Arrival rate of patients
p Fraction of flexible patients
d # of physicians flexible patients sample

QN
i (t) Number of patients at physician i at time t

SNi (t) Fraction of queues with at least i patients at time t
si(t) The fluid limit of process SNi (t)
sI The steady state of fluid limit s(t)

DN(t) The fluctuation of SN(t) around its fluid limit s(t)
D(t) The diffusion limit of process DN(t)
`1 The space of sequences whose series is absolutely convergent
`2 The space of square-summable sequences
S {s ∈ [0, 1]Z+ : 1 ≥ s0 ≥ s1 ≥ · · · ≥ 0,

∑∞
i=0 si <∞}

Preliminaries of Weak Convergence In this chapter, we assume that all ran-

dom variables are defined on a common probability space (Ω,F ,P). Moreover,
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for all positive integers k, we let D([0,∞),S) be the space of right continuous

functions with left limits (RCLL) in S that have a time domain in [0,∞). As is

usual, we endow the space D([0,∞),S) with the usual Skorokhod J1 topology,

and let M be defined as the Borel σ-algebra associated with the J1 topology.

We also assume that all stochastic processes are measurable functions from our

common probability space (Ω,F ,P) into (D([0,∞),S),M). Thus, if {ζ}∞n=1 is

a sequence of stochastic processes, then the notation ζn → ζ implies that the

probability measures that are induced by the ζn’s on the space (D([0,∞),S),M)

converge weakly to the probability measure on the space (D([0,∞),S),M) in-

duced by ζ . For any x ∈ (D([0,∞),S),M) and any T > 0, we define

||x||`2 ≡
∞∑
i=0

x2i (4.1)

and note that ζn converges almost surely to a continuous limit process ζ in the

J1 topology if and only if

||ζn − ζ||`2 → 0 a.s. (4.2)

4.1 A Stochastic Queueing Model

In this section, we present a stochastic queueing model that has N physicians.

Each physician operates a single server queue of scheduled patients who are

seen in a first in first out manner. We denote the queue length for physician n at

time t with Qn(t) where n ∈ {1, 2, · · · , N} and t ≥ 0. Each physician processes

the work of their current patients at rate 1 if there are patients in their queue.

For the patients, we assume there are two types of patients: dedicated and

flexible. The two types of patients are split into according to our flexibility pa-

rameter p. A patient is flexible with fixed probability p ∈ [0, 1]. We assume that
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flexible patients are willing to sample d physician queues, independently and

uniformly at random, and join the shortest-of-d queues at their time of arrival.

This is an abstraction of patients choosing among the available physicians on

the ZocDoc platform. Dedicated patients, on the other hand, are only willing to

see their designated PCP and are not flexible. Thus, assuming equal popular-

ity among all physicians, this is equivalent to saying that they join any queue

at random. Finally, we assume that once a patient joins a queue, the patient is

completely locked in and cannot switch to another queue.

Each of the N physicians has a stream of dedicated patients arriving ac-

cording to independent Poisson processes with a common rate λ(1 − p), where

λ ∈ [0, 1]. Thus, the total arrival rate of dedicated patients to the system is

λ(1 − p)N . In addition, the overall system also has a stream of flexible patients

arriving according to an independent Poisson process with rate λpN .

Once patients are routed to the appropriate physician queue (dedicated pa-

tients to their PCP queues, and flexible patients to the shortest-of-d physician

queues), each physician queue operates as an M/M/1 queue. The queue length

vector at time t, (Q1(t), Q2(t), · · · , QN(t)), is a Markov process. In addition, the

system is fully symmetric and exchangeable in that the arrival of dedicated pa-

tients and patient services are independent and identical, and the arrival of flexi-

ble patients depends solely on the length of the physician queues, and not on the

specific identity of physicians. Thus, we can use a Markov process {SNi (t)}∞i=0

to describe the evolution of the system, where we defined SNi (t) as

SNi (t) =
1

N

N∑
n=1

1{Qn(t) ≥ i}. (4.3)

Here SNi (t) represents the fraction of queues with at least i patients. By defi-

nition, SN0 (t) = 1 for all values of N and t ≥ 0. Furthermore, SNi (t) is a non-
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increasing process in the variable i, meaning that

1 ≥ SNi (t) ≥ SNi+1(t) ≥ 0

for all values of i, N and t ≥ 0. We define the infinite dimensional vector of

this queueing process as SN(t) = (SN0 (t), SN1 (t), · · · , SNn (t), · · ·SN∞(t)). Our goal

is to study the process SN(t) in two scenarios. The first is in the transient setting

where we let N → ∞ and the second is in the steady state setting where we let

both N →∞ and t→∞.

4.2 Fluid Model

Here we summarize the results in this section, which are related to the fluid

model of the queueing process SN(t). In Theorem 11, we prove a functional law

of large numbers (LLN) in the transient case for process SN(t) to its fluid limit

s(t). In Theorem 14, we prove an interchange of limits for the stochastic pro-

cess model. We use a compactness-uniqueness approach, which shows that the

limiting point sI of the fluid limit s(t) is also the limit of the invariant measure

SN(∞) of SN(t).

4.2.1 Transient Analysis

We start with the functional law of large numbers in the transient case for the

fluid limit.

Theorem 11 (Functional Law of Large Numbers). Assume that (SN(0))N≥d con-

verges in distribution to s(0) in S. Then, (SN(t))N≥d converges in probability to the
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unique solution s = (s(t))t≥0 i.e. on any compact time interval t0 > 0 and ε > 0, we

have

lim
N→∞

P
(

sup
t≤t0
‖SN(t)− s(t)‖`2 > ε

)
= 0. (4.4)

Moreover, s(t) has initial condition s(0) and is the solution to the following infinite

dimensional system of differential equations

dsi
dt

= λ(1− p)(si−1 − si)︸ ︷︷ ︸
arrival of dedicated patients

+ λp
(
sdi−1 − sdi

)︸ ︷︷ ︸
arrival of flexible patients

− (si − si+1)︸ ︷︷ ︸
departure of patients

i ≥ 1. (4.5)

Proof. We prove this result using Doob’s inequality for martingales and Gron-

wall’s lemma. We use Proposition 4 and Lemma 8 in the proof, which are stated

after the proof of Theorem 11. To give readers a high-level understanding of the

proof idea, we list the essential steps and the related theorem numbers below.

1. We decompose the queueing process SN(t) into three parts. The first is

the initial condition SN(0), the second is a martingale MN(t) term, and the

final term is an integral of the drift term
∫ t
0
FN(SN(u))du. (Equation 4.6)

2. We bound the difference between SN(t) and its fluid limit s(t) on any finite

interval [0, T ] by the difference in their initial conditions ‖SN(0)−s(0)‖, the

supremum of martingale supu≤T ‖MN(t)‖, the difference in drift function

and its limit
∫ T
0
‖FN(SN(u)) − F (SN(u))‖du, and finally the difference in

limiting drift function evaluated at SN(t) and s(t), i.e.,
∫ T
0
‖F (SN(u)) −

F (s(u))‖du. (Inequality 4.7)

3. We show that the limiting drift function F is Lipschitz. (Proposition 4)

4. We apply Gronwall’s lemma to the difference. (Inequality 4.8)

5. We apply Doob’s L2 martingale inequality to MN(t) and the bounds on

quadratic variation. (Inequality 4.10, Lemma 8)
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6. We prove existence and uniqueness of the fluid limit s(t). (Proposition 5)

We begin by introducing the falling factorial notation (x)k = x(x−1) · · · (x−k+1)

for x ∈ R, and define the following mappings for s in c0:

F+(s)(i) = λ(1− p)(si−1 − si) + λp(sdi−1 − sdi ),

F−(s)(i) = (si − si+1),

FN
+ (s)(i) = λ(1− p)(si−1 − si) + λp

(Nsi−1)d − (Nsi)d
(N)d

, i ≥ 1,

FN(s) = FN
+ (s)− F−(s),

F (s) = F+s)− F−(s).

Then, the nonlinear differential equation can be written as ṡ = F (s). It is easy

to show that SN(t) is a Markov process that, when in state s, has a jump in

the ith coordinate of size +1/N with rate NFN
+ (s)(i) and of size −1/N with rate

NF−(s)(i), for all i ≥ 1. Since SN(t) is a semi-martingale, we have the following

decomposition of SN(t),

SN(t) = SN(0)︸ ︷︷ ︸
initial condition

+ MN(t)︸ ︷︷ ︸
martingale

+

∫ t

0

FN(SN(u))︸ ︷︷ ︸
drift term

du, (4.6)

where SN(0) is the initial condition and MN(t) is a independent family of mar-

tingales. Moreover,
∫ t
0
FN(SN(u))du is the integral of the drift term where the

drift term is given by FN : S → RZ+ or

FN(s)(k) =
∑
x 6=s

(x− s)QN(s, x)(k)

= λ(1− p)(sk−1 − sk) + λp
(Nsk−1)d − (Nsk)d

(N)d
− (sk − sk+1),

where QN(s, x)(k) represents the transition rate from state s to x on the kth co-

ordinate. Now we want to compare SN(t) with its fluid limit s(t) defined by

s(t) = s(0) +

∫ t

0

F (s(u))du.
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Letting ‖ · ‖ denote the `2 norm in RZ+ ,

∥∥SN(t)− s(t)
∥∥ =

∥∥∥∥SN(0) +MN(t) +

∫ t

0

FN(SN(u))du− s(0)−
∫ t

0

F (s(u))du

∥∥∥∥
=

∥∥∥∥SN(0)− s(0) +MN(t) +

∫ t

0

(
FN(SN(u))− F (SN(u))

)
du

+

∫ t

0

(F (SN(u))− F (s(u)))du

∥∥∥∥ .
Now we define the random function fN(t) = supu≤t

∥∥SN(u)− s(u)
∥∥. By the

triangle inequality we have

fN(t) ≤ ‖SN(0)− s(0)‖+ sup
u≤t
‖MN(u)‖+

∫ t

0

‖FN(SN(u))− F (SN(u))‖du

+

∫ t

0

‖F (SN(u))− F (s(u))‖du. (4.7)

By Proposition 4, F (s) is Lipschitz with respect to `2 norm. LetL be the Lipschitz

constant of F (s), then

fN(t) ≤ ‖SN(0)− s(0)‖+ sup
u≤t
‖MN(u)‖+

∫ t

0

‖FN(SN(u))− F (SN(u))‖du

+

∫ t

0

‖F (SN(u))− F (s(u))‖du

≤ ‖SN(0)− s(0)‖+ sup
u≤t
‖MN(u)‖+

∫ t

0

‖FN(SN(u))− F (SN(u))‖du

+L

∫ t

0

‖SN(u)− s(u)‖du

≤ ‖SN(0)− s(0)‖+ sup
u≤t
‖MN(u)‖+

∫ t

0

‖FN(SN(u))− F (SN(u))‖du

+L

∫ t

0

fN(u)du.

By Gronwall’s lemma,

fN(t) ≤
(
‖SN(0)− s(0)‖+ sup

u≤t
‖MN(u)‖+

∫ t

0

‖FN(SN(u))− F (SN(u))‖du
)
eLt.

(4.8)

Now we proceed to bound fN(t) term by term. To this end, we define function
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α : S → RZ+ as

α(s)(k) =
∑
x 6=s

‖x− s‖2QN(s, x)(k)

=
1

N

[
FN
+ (s)(k) + F−(s)(k)

]
=

1

N

[
λ(1− p)(sk−1 − sk) + λp

(Nsk−1)d − (Nsk)d
(N)d

+ (sk − sk+1)

]
.

By Lemma 8, we have that ‖α(s)‖`2 = 1
N
O(‖s‖`2). Thus, there exist a constant

C > 0 such that ‖α(s)‖`2 ≤ C
N

for any s. Now consider the following four sets

Ω0 = {‖SN(0)− s(0)‖ ≤ δ},

Ω1 =

{∫ t0

0

‖FN(SN(t))− F (SN(t))‖dt ≤ δ

}
,

Ω2 =

{∫ t0

0

‖α(SN(t))‖dt ≤ A(N)t0

}
,

Ω3 =

{
sup
t≤t0
‖MN(t)‖ ≤ δ

}
,

where δ = εe−Lt0/3. Here, the set Ω0 is for bounding the initial condition, the set

Ω1 is for bounding the drift term FN and the limit of the drift term F , and the

sets Ω2 and Ω3 are for bounding the martingale MN(t). Therefore, on the event

Ω0 ∩ Ω1 ∩ Ω3,

fN(t0) ≤ 3δeLt0 = ε. (4.9)

Consider the stopping time

T = t0 ∧ inf

{
t ≥ 0 :

∫ t

0

α(SN(u))du > A(N)t0

}
,

by Doob’s `2 martingale inequality,

E
(

sup
t≤T
‖MN(t)‖2

)
≤ 4E‖MN(T )‖2 = 4

∫ T

0

‖α(SN(u))‖du. (4.10)

On Ω2, we have T = t0, so Ω2 ∩ Ωc
3 ⊂ {supt≤T ‖MN(t)‖ > δ}. By Chebyshev’s

inequality,

P(Ω2 ∩ Ωc
3) ≤ P

(
sup
t≤T
‖MN(t)‖ > δ

)
≤

E
(
supt≤T ‖MN(t)‖2

)
δ2

≤ 4A(N)t0/δ
2.
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Thus, by Equation (4.9), we have the following result,

P
(

sup
t≤t0
‖SN(t)− s(t)‖ > ε

)
≤ P(Ωc

0 ∪ Ωc
1 ∪ Ωc

3)

≤ P(Ω2 ∩ Ωc
3) + P(Ωc

0 ∪ Ωc
1 ∪ Ωc

2)

≤ 4A(N)t0/δ
2 + P(Ωc

0 ∪ Ωc
1 ∪ Ωc

2)

= 36A(N)t0e
2Lt0/ε2 + P(Ωc

0 ∪ Ωc
1 ∪ Ωc

2).

Let A(N) = C
N

, then Ωc
2 = ∅. And since SN(0)

p−→ s(0), limN→∞ P(Ωc
2) = 0.

Therefore we have

lim
N→∞

P
(

sup
t≤t0
‖SN(t)− s(t)‖ > ε

)
= lim

N→∞
P(Ωc

1).

By Lemma 8, limN→∞ P(Ωc
1) = 0, so

lim
N→∞

P
(

sup
t≤t0
‖SN(t)− s(t)‖ > ε

)
= 0.

Proposition 4 (Lipschitz bound on drift functions). The mappings F, F+, F− are

Lipschitz with respect to the `2 norm.

Proof. By the identity ud− vd = (u− v)(ud−1 + ud−2v+ · · ·+ vd−1) ≤ d(u− v), we

have the Lipschitz bound

‖F+(u)− F+(v)‖2`2 ≤
∞∑
i=1

(
‖λ(1− p)(ui−1 − vi−1)‖2 + ‖λ(1− p)(ui − vi)‖2

+ ‖λp(udi−1 − vdi−1)‖2 + ‖λp(udi − vdi )‖2
)

≤ 4
∞∑
i=0

[
λ2(1− p)2‖ui − vi‖2 + (λpd)2‖ui − vi‖2

]
≤ 8λ2d2‖u− v‖2`2 .

Similarly we can show that

‖F−(u)− F−(v)‖2`2 ≤ 2‖u− v‖2`2 .

Thus, the mappings F, F+, F− are Lipschitz with respect to the `2 norm.
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Proposition 5 (Existence and Uniqueness of the fluid limit). There exists a unique

solution (s(t))t≥0 ∈ S to the differential equation (4.5) and s(t) is continuous in t.

Proof. This is a direct application from the Lipschitz property of F in Proposition

4 and Gronwall’s lemma.

4.2.2 Steady State Analysis

In addition to understanding the transient behavior of the fluid model, it is im-

portant to understand the steady state behavior as well. In this section, we out-

line the steady state analysis of the stochastic queueing model. We first denote

the steady state of the queueing model as sI . Then, sI satisfies the following

equation,

λ(1− p)(sIi−1 − sIi ) + λp
(
(sIi−1)

d − (sIi )
d
)
− (sIi − sIi+1) = 0, i ≥ 1 (4.11)

Theorem 12. The steady state of the queueing model sI has a unique solution given by

the following recursion

sI0 = 1,

sI1 = λ,

sIi = λ(1− p)sIi−1 + λp(sIi−1)
d for all i ≥ 2.
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Proof. We prove the result by induction. For i = 1,

sI1 =
∞∑
i=1

(sIi − sIi+1)

=
∞∑
i=1

[
λ(1− p)(sIi−1 − sIi ) + λp

(
(sIi−1)

d − (sIi )
d
)]

= λ(1− p)sI0 + λp(sI0)
d

= λ.

Now for i ≤ k, we assume that

sIi = λ(1− p)sIi−1 + λp(sIi−1)
d.

Then, for i = k + 1,

sIk+1 = sIk − λ(1− p)(sIk−1 − sIk)− λp
(
(sIk−1)

d − (sIk)
d
)

= λ(1− p)sIk + λp(sIk)
d.

Remark: Note that the existence and uniqueness of the equilibrium point sI is

obtained from the fact that sIi is completely determined by sIi−1 and we have the

initial condition sI0 = 1 holds.

4.2.3 Interchanging Limits

In this section, we prove an interchange of limits for the fluid model, i.e. the

limiting point sI of the fluid limit s(t) is also the limit of the invariant measure

SN(∞) of SN(t). A visual interpretation of the interchange of limits result cor-
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responds to showing that the following diagram commutes.

SN(t) N→∞ //

t→∞

��

s(t)

t→∞

��
SN(∞)

N→∞
// sI

We have already proved in Section 4.2 that SN(t)
p−→ s(t) and the existence

and uniqueness of sI . Now we will show the other two directions of the dia-

gram, which are the existence of invariant measure SN(∞) for each N ≥ 1, and

the convergence of the invariant measure SN(∞) to sI . Our method of proof

is a modification of the compactness-uniqueness method pioneered by Graham

[36]. We can decompose the compactness uniqueness method into three essen-

tial steps.

1. Show that the fluid limit (Equation (4.5)) has a globally attractive stable

point sI . (Lemma 5, Theorem 13)

2. Show that there exists an invariant measure SN(∞) for SN for each N ≥ 1.

(Proposition 6, Theorem 14 (1))

3. Show that these invariant measures (SN(∞))N≥1 are tight in S. (Theorem

14 (2))

In order to prove that the fluid limit has a globally attractive stable point, we

will use a comparison result for finite dimensional ordinary differential equa-

tions. This result is outlined below.

Lemma 5 (Comparison Result). Let u and v be two solutions for Equation (4.5) such

that u(0) ≤ v(0). Then u(t) ≤ v(t) for all t ≥ 0.
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Proof. We first consider the finite dimensional case. For any fixed constant

K ∈ N, we assume WLOG that uk(0) < vk(0), k = 1, · · · , K, and that uK+1(t) <

vK+1(t) for all t ≥ 0. We aim to show that uk(t) < vk(t) for all t ≥ 0 and

k = 1, · · · , K.

Assume that u(t) < v(t) for t ∈ [0, t0) but ui(t0) = vi(t0) for some i ∈

{1, · · · , K}. Then we know that uj(t0) ≤ vj(t0) for all j ∈ {1, · · · , K}. Now

from the fluid limit equation (4.5) we have that

u̇i(t0) = λ(1− p)(ui−1(t0)− ui(t0)) + λp(udi−1(t0)− udi (t0))− (ui(t0)− ui+1(t0))

≤ λ(1− p)(vi−1(t0)− vi(t0)) + λp(vdi−1(t0)− vdi (t0))− (vi(t0)− vi+1(t0))

= v̇i(t0),

suggesting that ui(t) ≤ vi(t) for t ≥ t0.

Now for any s(0) ∈ S , there exists a unique solution s(t) ∈ S for (4.5).

We will show that the solution s(t) can be obtained as the limit of solutions

{sK(t)}∞K=1 to (4.5) with sK+1(t) = 0.

Denote sK(t) as the solution to (4.5) with sKK+1 = 0. Then we have sK+1
K+1(t) ≥

sKK+1(t) = 0. By the previous argument, we have that for fixed t and i ≤ K,

sK+1
i (t) ≥ sKi (t). Then there exists the limit limK→∞ s

K
i (t) = si(t) for each i and

s(t) = {si(t)}∞i=0 ∈ S̄. Notice that si(t) satisfies the fluid limit equation (4.5).

It follows by uniqueness of the solution that the limit limK→∞ s
K(t) = s(t) is

the solution to fluid limit Equation (4.5). Finally, combining the two previous

arguments, we conclude the comparison theorem for infinite dimensional case.

Theorem 13 (Global Stability of Fluid Limit). The fluid limit equation (4.5) has

90



globally attractive stable point sI . That is, starting from any initial condition s(0) ∈ S,

lim
t→∞

s(t) = sI

Proof. It is sufficient to show that the conclusion limt→∞ s(t) = sI holds for any

s(0) ∈ S for which either s(0) ≤ sI or s(0) ≥ sI , since Lemma 5 implies that

s(t,min[s(0), sI ]) ≤ s(t, s(0)) ≤ s(t,max[s(0), sI ])

where we use s(t, u) to denote the solution to Equation (4.5) with initial condi-

tion u.

Since the derivative of sk(t, s(0)) is bounded for all k, the convergence of

s(t, s(0))→ sI will follow from∫ ∞
0

[sk(u, s(0))− sIk]du <∞, where s(0) ≥ sI (4.12)

and from ∫ ∞
0

[sIk − sk(u, s(0))]du <∞, where s(0) ≤ sI .

The proof is similar for both cases so here we only discuss (4.12).

Define vk(s(t)) =
∑∞

i=k sk(t), and v(s) = {vi(s)}∞i=0. Then we have for any

k ∈ N and fix t ≥ 0,

0 ≤ vk(s(t)) ≤ v1(s(t)) =
∞∑
i=1

si(t) <∞.

We also know that

d(v1(s(t))− v1(sI))
dt

= λ(1− p)s0 + λpsd0 − s1(t) = λ− s1(t) = sI1 − s1(t) ≤ 0,
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which implies that v1(s(t)) does not increase with t. Thus, v1(s(t)) is uniformly

bounded for all t ≥ 0. Notice that

dvk(s(t))

dt
= λ(1− p)sk−1(t) + λpsk−1(t)

d − sk(t)

= λ(1− p)(sk−1(t)− sIk−1) + λp((sk−1(t))
d − (sIk−1)

d)− (sk(t)− sIk),

which implies that

vk(s(t))− vk(s(0))

=

∫ t

0

[
λ(1− p)(sk−1(u)− sIk−1) + λp((sk−1(u))d − (sIk−1)

d)− (sk(u)− sIk)
]
du.

By the uniform boundedness of vk(s(t))− vk(s(0)), we know that∫ ∞
0

[
λ(1− p)(sk−1(u)− sIk−1) + λp((sk−1(u))d − (sIk−1)

d)− (sk(u)− sIk)
]
du <∞.

Using an induction argument, we can assume that the integral converges for all

i ≤ k − 1, i.e. ∫ ∞
0

(si(t)− sIi )dt <∞, i ≤ k − 1.

Then for i = k, again by the uniform boundedness of vk(s(t))−vk(s(0)) we have

that ∫ ∞
0

(sk(t)− sIk)dt <∞,

which completes the proof of global stability of the fluid limit limt→∞ s(t) = sI

for any initial condition s(0).

Now we will construct a coupling which compares the behavior of the sys-

tem SN(t) when d = 1 vs. d > 1. When d = 1, the fluid limit equation becomes

ṡi(t) = λ(si−1(t)− si(t))− (si(t)− si+1(t)),

which is a system of N i.i.d M/M/1 queues. And we know that if and only

if λ < 1, when such system is positive recurrent, with a geometric stationary
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distribution being

sIk = λk, k ∈ N.

Let’s consider coupling three systems with choices between 1 queue, d

queues and with probability p of being flexible respectively, and we call them

system 0, system 1 and system p. We use σ = {0, 1, p} to denote quantities

related to system σ by superscript σ. We use cN,σm (t) to denote the number of

patients which have at least m patients queueing in front of then at time t ≥ 0,

which can be written as

cN,σm (t) = N
∑

k≥m+1

SN,σk (t), m ∈ N.

We will first focus on comparing system 0 and system p. We use a single

Poisson process of rate Nλ for arrivals for both systems. At each jump time, we

generate a random variable with Bernoulli(p) distribution to decide whether

the patient is flexible or not. If he/she is flexible, we choose uniformly jp1 <

· · · < jpd among 1, · · · , N and then j0 among jp1 < · · · < jpd , and set jp = jpd . If

the patient is not flexible, we simply choose uniformly j among {1, · · · , N} and

set jp = j0 = j. In system σ, we order the queues by decreasing length (ties are

resolved with uniform probability), and let the task join the queue ranking jσ in

this order. Note that j0 ≤ jp.

We use a single Poisson process of rate N for potential departures for both

systems. At each jump time, we choose j uniformly in {1, · · · , N}. In system σ,

we again order the queues by decreasing length, and remove a task from the jth

queue in this order if that queue is not empty.

Our goal is to show that performance is ranked as follows ( system 1 ≤ sys-

tem p ≤ system 0 ) with respect to the number of patients in the system. Our
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proof of this coupling is a modification of the proof given in Theorem 4 of Turner

[82].

Proposition 6 (Coupling Result). For N ∈ N, if cN,1m (0) ≤ cN,pm (0) ≤ cN,0m (0) for all

m ∈ N, then

cN,1m (t) ≤ cN,pm (t) ≤ cN,0m (t), m ∈ N, t ≥ 0.

Proof. Let τ be a jump time of the Poisson processes used for arrivals and de-

partures. We first compare system p with system 0. Our goal is to show that

assuming

cN,pm (τ−) ≤ cN,0m (τ−), m ∈ N, (4.13)

then we have

cN,pm (τ−) ≤ cN,0m (τ), m ∈ N.

Since we know that

cN,σm (t) = cN,σm+1(t) +NSN,σm+1(t), m ≥ 0, t ≥ 0.

Applying (4.20) to m = n− 1 and m = n implies

cN,1n (τ−) = cN,0n (τ−)⇒ SN,1n (τ−) ≤ SN,0n (τ−) and SN,1n+1(τ−) = SN,0n+1(τ−).

When τ represent a departure time, let xσ denote the respective lengths of

the queue chosen for potential departure. A patient will depart from the system

σ if and only if xσ > 0, and there will be one less patient with exactly xσ − 1

patients in front of them, therefore

cN,σm (τ) = cN,σm (τ−)− 1, m < xσ, (4.14)

and

cN,σm (τ) = cN,σm (τ−), m ≥ xσ. (4.15)
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Assume that there exists n ≥ 0 such that cN,pn (τ) > cN,0n (τ), then (4.20), (4.14)

and (4.15) imply that it is true if and only if

cN,pn (τ) = cN,1n (τ), xp ≤ n < x0. (4.16)

Now let j ∈ {1, · · · , N} denotes the rank in decreasing order chosen for depar-

tures, then

NSN,σxσ+1(τ−) < j ≤ NSN,σxσ (τ−)

which yields in particular that

SN,px1+1(τ−) < SN,px1 (τ−) ≤ SN,0x0 (τ−).

Then combining (4.14), (4.15) and (4.16) yields

SN,0n+1(τ−) ≤ SN,pn+1(τ−) ≤ SN,px1+1(τ−) < SN,0x0 (τ−) ≤ SN,0n+1(τ−)

which is a contradiction. Thus cN,pm (τ) ≤ cN,0m (τ), m ∈ N holds.

When τ represent an arrival time, let xσ denote the respective lengths of the

queues chosen for either patient. There is a new patient in either system with xσ

patients in front of him, therefore

cN,σm (τ) = cN,σm (τ−) + 1, m ≤ xσ (4.17)

and

cN,σm (τ) = cN,σm (τ−), m > xσ (4.18)

Assume that there exists n ≥ 0 such that cN,pn (τ) > cN,0n (τ), then (4.20), (4.17)

and (4.18) imply that it is true if and only if

cN,0n (τ) = cN,pn (τ), x0 ≤ n < xp (4.19)
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Now let jσ ∈ {1, · · · , N} denotes the rank in decreasing order of the queue

joined by the patient in system σ, then

NSN,σxσ+1(τ−) < jσ ≤ NSN,σxσ (τ−)

which yields in particular that

SN,0x0+1(τ−) < j0 ≤ jp ≤ SN,pxp (τ−).

Then combining (4.17), (4.18) and (4.19) yields

SN,pn (τ−) ≤ SN,0n (τ−) ≤ SN,0x0+1(τ−) < SN,pxp (τ−) ≤ SN,pn (τ−)

which is a contradiction. Thus cN,pm (τ) ≤ cN,0m (τ), m ∈ N holds.

Similar techniques apply to the case of comparing system 0 and system p,

and we have that if

cN,1m (τ−) ≤ cN,pm (τ−), m ∈ N, (4.20)

then

cN,1m (τ−) ≤ cN,pm (τ), m ∈ N.

Theorem 14 (Convergence of Stationary Distributions).

1. The Markov process SN(t) is positive recurrent for all N , and therefore has a

unique stationary distribution πN ∈ P(S̄) for each N .

2. The sequence of stationary distribution πN of process SN(t) converges weakly to

the Dirac mass at sI as N →∞.

Proof. By Theorem 6, the system 1 is empty whenever system 0 is. Therefore

system 1 is also positive recurrent when λ < 1 and have a stationary distribution

πN . Irreducibility implies the uniqueness of the stationary distribution.
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Since S̄ is compact, so is the setP(S̄) of the probability measures on S̄. There-

fore the sequence of probability measures {πN}∞N=1 is tight and has limit points.

We aim to show that any limit point of {πN}∞N=1 is the Dirac mass at sI .

Assume that SN(0) has the same distribution as the stationary distribution

πN , for each N . By Theorem 11, let π∞(0) be the limiting distribution of a sub-

sequence of (SN(0))N≥1, and let π∞(t) be the limiting distribution for the same

subsequence of (SN)N≥1. For t ≥ 0 and N ≥ 1, since the process started with its

stationary distribution, we have that SN(t) also follows distribution πN . Apply-

ing Theorem 11, we have that the fluid limit s(t) = limN→∞ S
N(t) has the same

distribution as π∞(0).

Now let ε > 0 and V be an open neighborhood of sI . For j ∈ N, let Pj be

the set of all a in P(S) such that the solution for the (4.5) starting at a is in V

for all times t ≥ j. Since Pj is measurable, Pj ⊂ Pj+1, and by the fact that sI is

a globally attractive point (Theorem 13), we have P(S) = ∪jPj , therefore there

exists k such that P (π∞(0) ∈ Pk) > 1− ε. Then

P (π∞(0) ∈ V ) = P (π∞(k) ∈ V ) ≥ P (π∞(0) ∈ Pk) > 1− ε.

Since ε and V arbitrary, we have P (π∞(0) = sI) = 1. Hence (SN(0))N≥1 con-

verges in distribution to the Dirac mass at sI , and the limiting distribution of

(SN)N≥1 is the constant sI .
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4.3 Diffusion Model

In this section, we analyze a diffusion scaled version of the queueing process.

Since the fluid limit does not capture stochastic fluctuations, the diffusion model

can help us gain important insights on the fluctuations of the system, which can

be used to build confidence intervals for various performance measures. To do

this, we first prove a functional central limit theorem (CLT) in the transient case

for the scaled diffusion process DN(t) =
√
N(SN(t) − s(t)) to its limit D(t). We

identify D(t) as an infinite dimensional Ornstein Uhlenbeck (OU) process. By

computing the variance of D(t), we can construct rigorous confidence intervals

for characterizing the deviations from the fluid limit in the transient setting.

Second, we prove the functional CLT in the equilibrium setting, thereby estab-

lishing an interchange of limits result for the diffusion scaled empirical process.

We prove the interchange by showing convergence in the appropriate Hilbert

spaces and deriving novel infinite horizon bounds for the diffusion scaled pro-

cess.

4.3.1 Transient Analysis

In this section, we derive the diffusion limit of our stochastic queueing model

in the transient setting. We define our scaled diffusion process as

DN(t) =
√
N(SN(t)− s(t)).

Theorem 15 (Functional Central Limit Theorem). Consider `2 with its weak topol-

ogy and D(R+, `2) with corresponding Skorokhod topology. Let s(0) be in S
⋂
`1, SN(0)

in SN . If (DN(0))N≥d converges in distribution to D(0) and is tight, then (DN(t))N≥d
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is tight and converges in distribution to the unique OU process

D(t) = D(0) +

∫ t

0

K(s(u))D(u)du+M(t)

where the infinite dimensional matrix K(s) is given by

Ki,i(s) = −λ(1− p)− λpdsd−1i − 1,

Ki,i+1(s) = 1,

Ki+1,i(s) = λ(1− p) + λpdsd−1i

for i ∈ Z+ and the martingale M(t) is defined by the Doob-Meyer brackets

< Mk(t) > =

∫ t

0

[F+(s(u))(k) + F−(s(u))(k)] du.

Consider a linearization of Equation (4.5) around a particular solution g such

that

d(t) = g(t)− s(t),

where g is a generic solution to Equation (4.5). Then we have

ḋ(t) = K(s(t))d(t), (4.21)

where K is a matrix in Z+ × Z+ with entries

Ki,i(s) = −λ(1− p)− λpdsd−1i − 1,

Ki,i+1(s) = 1,

Ki+1,i(s) = λ(1− p) + λpdsd−1i

for i ∈ Z+.

Let (Mk(t))k∈N be a family of independent, real, continuous centered Gaus-

sian martingales, determined in law by their deterministic Doob-Meyer brackets
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given by

< Mk(t) >

=

∫ t

0

[
λ(1− p)(si−1(u)− si(u)) + λp

(
si−1(u)d − si(u)d

)
+ (si(u)− si+1(u))

]
du

=

∫ t

0

[F+(s(u))(k) + F−(s(u))(k)] du.

for t ≥ 0.

To give readers a high-level understanding of the proof idea, we summarize the

following list of steps for showing the functional CLT in the transient case,

1. Prove the Lipschitz property for the mappings F, F+, F− in `2. (Theorem

4)

2. Prove the Gaussian martingale M(t) is square-integrable in `2. (Theorem

16)

3. Prove the existence and uniqueness of the diffusion limit D(t) by using

steps 1 and 2 to show that Equation (4.23) is well-defined and solves the

SDE.

4. Show the difference between the drift function FN(s) and the limiting drift

function F (s) is 1
N
O(s). (Lemma 8)

5. Show the finite horizon bound

lim sup
N→∞

E
(
‖DN(0)‖2`2

)
<∞⇒ lim sup

N→∞
E
(

sup
t≤T
‖DN(t)‖2`2

)
<∞

using Doob’s inequality, Gronwall’s lemma and steps 1,2, and 4 .

6. Use step 5 to show the tightness of the diffusion process. (Lemma 10).

7. Use steps 1-6 to show the functional CLT, i.e. when initial condition con-

verges, the diffusion processDN converges to the unique OU process solv-

ing Equation (4.23). (Theorem 15)
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Theorem 16. Assume s(0) to be in S. Then, the Gaussian martingale M(t) is square-

integrable in `2.

Proof. Because of the Lipschitz property of mappings F+, F−, we have

‖M(t)‖`2 =

∫ t

0

‖F+(s(u)) + F−(s(u))‖`2du ≤
∫ t

0

(2
√

2λd+
√

2)‖s(u)‖`2du

By Gronwall’s lemma, we know that ‖s(u)‖`2 is uniformly bounded on 0 ≤ u ≤

t. Thus, M(t) is square-integrable in `2.

LetD(t) be the diffusion limit for the fluctuationsDN(t), which is a Gaussian

perturbation of Equation (4.21), then D(t) satisfies the following SDE for any

given t ≥ 0,

D(t) = D(0) +

∫ t

0

K(s(u))D(u)du+M(t). (4.22)

Theorem 17 (Existence and Uniqueness of Diffusion Limit). 1. For s in S, the

operator K(s) is bounded in `2 with operator norm uniformly bounded in s.

2. Let s(0) be in S
⋂
`1. Then there exists a unique strong solution to Equation

(4.22) in `2

D(t) = exp

{∫ t

0

K(s(u))du

}
D(0) +

∫ t

0

exp

{∫ t

u

K(s(r))dr

}
dM(u),

(4.23)

and

E
(
‖D(0)‖2`2

)
<∞⇒ E

(
sup
t≤T
‖D(t)‖2`2

)
<∞.
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Proof. Consider s ∈ S, we have

‖K(s)x‖2`2

=
∑
k≥1

[
λ(1− p)(xk−1 − xk) + λpd

(
sd−1k−1xk−1 − s

d−1
k xk

)
+ xk − xk+1

]2
≤

∑
k≥1

(
(λ(1− p) + λpd)2 + (λ(1− p) + λpd+ 1)2 + 1)2 + 12

)
(x2k−1 + x2k + x2k+1)

≤ 6(λ(1− p) + λpd+ 1)2‖x‖2`2 .

Then (1) follows. For (2), since the martingale M(t) is square-integrable

in `2 by Theorem 16, if E
(
‖D(0)‖2`2

)
< ∞, then the formula (4.23) for

D(t) is well-defined, solves the SDE, and using Gronwall’s lemma yields

E
(
supt≤T ‖D(t)‖2`2

)
<∞.

For the following Lemma 6 and Theorem 15, the proofs are detailed in sub-

sections 4.3.1 and 4.3.1.

Lemma 6 (Finite Horizon Bound). Let s(0) be in S
⋂
`1 and SN(0) be in SN . Then

for any T ≥ 0,

lim sup
N→∞

E
(
‖DN(0)‖2`2

)
<∞⇒ lim sup

N→∞
E
(

sup
t≤T
‖DN(t)‖2`2

)
<∞.

Theorem 18. Define the two matrices A(t) = K(s(t)), B(t) =
(
d
dt
〈Mi(t),Mj(t)〉

)
ij

,

then the expectation E(D(t)) is

E[D(t)] = e
∫ t
0 A(s)dsE[D(0)],

and the covariance matrix Σ(t) = Cov[D(t), D(t)] is

Σ(t) = e
∫ t
0 A(s)dsΣ(0)e

∫ t
0 A
>(s)ds +

∫ t

0

e
∫ t
s A(u)duB(s)e

∫ t
s A
>(u)duds.

Moreover, differentiation with respect to t yields

dE[D(t)]

dt
= A(t)E[D(t)],
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dΣ(t)

dt
= Σ(t)A(t)> +A(t)Σ(t) + B(t). (4.24)

Componentwise, we have

dΣi,i(t)

dt
= 2

[
λ(1− p) + λpdsd−1i−1

]
Σi,i−1 − 2

[
λ(1− p) + λpdsd−1i + 1

]
Σi,i + 2Σi,i+1

+λ(1− p)(si−1 − si) + λp(sdi−1 − sdi ) + si − si+1,

dΣi,j(t)

dt
=

[
2λ(1− p) + λpd(sd−1i−1 + sd−1j−1)

]
Σj,i−1

−
[
2λ(1− p) + λpd(sd−1i + sd−1j ) + 2

]
Σj,i + 2Σj,i+1.

Proof. Take expectation on both sides of Equation (4.23), since

E
[∫ t

0

e
∫ t
s K(s(u))dudM(s)

]
= 0,

we have

E[D(t)] = e
∫ t
0 A(s)dsE[D(0)].

Therefore

D(t)− E[D(t)] = e
∫ t
0 A(s)ds (D(0)− E[D(0)]) +

∫ t

0

e
∫ t
s A(u)dudM(s),

and

Σ(t) = E
[
(D(t)− E[D(t)])(D(t)− E[D(t)])>

]
= e

∫ t
0 A(s)dsE

[
(D(0)− E[D(0)])(D(0)− E[D(0)])>

] (
e
∫ t
0 A(s)ds

)>
+

(∫ t

0

e
∫ t
s A(u)dudM(s)

)(∫ t

0

e
∫ t
s A(u)dudM(s)

)>
= e

∫ t
0 A(s)dsΣ(0)e

∫ t
0 A
>(s)ds +

∫ t

0

e
∫ t
s A(u)duB(s)e

∫ t
s A
>(u)duds.
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The Derivation of the Ornstein-Uhlenbeck Process

We introduce a few lemmas which help show the final functional CLT result in

the transient case.

Lemma 7. Let SN(0) be in SN , s solves Equation (4.5) with s(0) ∈ S. Then

DN(t) = DN(0) +

∫ t

0

√
N(FN(SN(u))− F (s(u)))du+MN(t) (4.25)

defines an independent family of square-integrable martingales MN independent of

SN(0) with Doob-Meyer brackets given by

< MN
k (t) >=

∫ t

0

(
FN
+ (SN(u)(k)) + F−(SN(u))(k)

)
du.

Proof. This follows from a classical application of Dynkin’s formula.

Lemma 8. Define function AN(a) for a ∈ R and N ≥ d ≥ 1 as

AN(a) ,
(Na)d
(N)d

− ad.

Then, AN(a) = 1
N
O(a) uniformly on 0 ≤ a ≤ 1 and AN(k/N) ≤ 0 for k =

0, 1, · · · , N .

Proof. Since

(Na)d
(N)d

=
d−1∏
i=0

Na− i
N − i

=
d−1∏
i=0

(
a+ (a− 1)

i

N − i

)

=
d−1∑
j=1

ad−j(a− 1)j
∏

1≤i1<···<ij≤d−1

i1 · · · ij
(N − i1) · · · (N − ij)
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It is obvious that AN(a) is 1
N
O(a). For a = k

N
where k = 0, 1, · · · , N ,

d−1∏
i=0

Na− i
N − i

=
d−1∏
i=0

k − i
N − i

≤
d−1∏
i=0

k

N
= ad

The inequality comes from the fact that each term k−i
N−i is either bounded by a or

the product contains a term exactly equal to 0. Thus AN(k/N) ≤ 0.

Lemma 9. For d ≥ 1 and a, h ∈ R, define

B(a, h) , (a+ h)d − ad − dad−1h =
d∑
i=2

(
d

i

)
ad−ihi.

Then B(a, h) = 0 for d = 1 and B(a, h) = h2 for d = 2. For d ≥ 2 we have

0 ≤ B(a, h) ≤ hd + (2d − d− 2)ah2 for a, a+ h ∈ [0, 1].

Proof. For a, a+ h ∈ [0, 1],

B(a, h) ≤ hd +
d−1∑
i=2

ah2 = hd + (2d − d− 2)ah2.

Proof of the functional CLT Consider the mapping GN : S → c00 given by

GN(s)(k) = λp
(
AN(sk−1)− AN(sk)

)
, k ≥ 1

and H : S × c00 → c00 given by

H(s, x)(k) = λp(B(sk−1, xk−1)−B(sk, xk)), k ≥ 1

so that for s+ x ∈ S, we have

FN = F +GN , F (s+ x)− F (s) = K(s)x+H(s, x). (4.26)
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Proof of Lemma 6 (Finite-horizon bound). By Equations (4.25) and (4.26), we have

DN(t) = DN(0)+MN(t)+
√
N

∫ t

0

GN(SN(u))du+

∫ t

0

√
N(F (SN(u))−F (s(u)))du.

(4.27)

Since Lemma 8 indicates that

GN(SN(u))(k) = λp
(
AN(SN(u)(k − 1))− AN(SN(u)(k)

)
=

1

N
O
(
SN(u)(k − 1) + SN(u)(k)

)
,

we can conclude that

‖GN(SN(u))‖`2 =
1

N
O
(
‖SN(u)‖`2

)
. (4.28)

By definition of the diffusion process we have

‖SN(u)‖`2 ≤ ‖s(u)‖`2 +
1√
N
‖D(u)N‖`2 . (4.29)

Since mappings F+, F−, F are Lipschitz with respect to `2 norm, Gronwall’s

lemma yields that

‖s(u)‖`2 ≤ LT‖s(0)‖`2 (4.30)

for some constant LT <∞. Then

‖DN(t)‖`2 ≤ ‖DN(0)‖`2 + ‖MN(t)‖`2 +
√
N

∫ t

0

‖GN(SN(u))‖`2du

+

∫ t

0

√
N(‖F (SN(u))− F (s(u))‖`2)du

≤ ‖DN(0)‖`2 + ‖MN(t)‖`2 +
√
N

∫ t

0

1

N
O
(
‖SN(u)‖`2

)
du

+

∫ t

0

√
NL(‖SN(u)− s(u)‖`2)du

≤ ‖DN(0)‖`2 + ‖MN(t)‖`2 +

∫ t

0

1√
N
O

(
‖s(u)‖`2 +

1√
N
‖D(u)N‖`2

)
du

+

∫ t

0

L(‖D(u)N‖`2)du

≤ ‖DN(0)‖`2 + ‖MN(t)‖`2 +
1√
N
O (LT‖s(0)‖`2)

+

∫ t

0

(
L+O

(
1

N

))
‖D(u)N‖`2du.
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By Gronwall’s lemma we have

sup
0≤t≤T

‖DN(t)‖`2

≤ exp

{(
L+O

(
1

N

))
T

}(
‖DN(0)‖`2 + sup

0≤t≤T
‖MN(t)‖`2 +

LT√
N
O (‖s(0)‖`2)

)
.

(4.31)

Using Doob’s `2 inequality we know that,

E
(

sup
0≤t≤T

‖MN(t)‖`2
)
≤ 2E

(
‖MN(T )‖`2

)
.

By Lemma 7 and Lipschitz property of F+, F−,

‖MN
T ‖`2 =

∫ T

0

‖FN
+ (SN(u)) + F−(SN(u))‖`2du

(Equation (4.26)) =

∫ T

0

‖F+(SN(u)) +GN(SN(u)) + F−(SN(u))‖`2du

(Equation (4.28)) ≤
∫ T

0

(
2L‖SN(u)‖`2 +

1

N
O(‖SN(u)‖`2)

)
du

(Equation (4.29)) ≤
∫ T

0

O

(
‖s(u)‖`2 +

1√
N
‖D(u)N‖`2

)
du

(Equation (4.30)) = KTO(‖s(0)‖`2).

Finally combining all the above equations, we conclude that when

lim sup
N→∞

E
(
‖DN(0)‖2`2

)
<∞,

we have

lim sup
N→∞

E
(

sup
0≤t≤T

‖DN(t)‖`2
)

≤ exp {O(T )}

·
(

lim sup
N→∞

E
(
‖DN(0)‖`2

)
+ lim sup

N→∞
E
(

sup
0≤t≤T

‖MN(t)‖`2
)

+
LT√
N
O (‖s(0)‖`2)

)
≤ exp {O(T )}

·
(

lim sup
N→∞

E
(
‖DN(0)‖`2

)
+ lim sup

N→∞
2E
(
‖MN(T )‖`2

)
+

LT√
N
O (‖s(0)‖`2)

)
≤ exp {O(T )}

(
lim sup
N→∞

E
(
‖DN(0)‖`2

)
+

(
2KT +

LT√
N

)
O (‖s(0)‖`2)

)
< ∞.
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Lemma 10 (Tightness of the Process). Consider `2 with its weak topology and

D(R+; `2) with the corresponding Skorokhod topology. Assume s(0) ∈ S ∩ `1 and

SN(0) ∈ SN , and DN as defined in the beginning of the section. If (DN(0))N≥d is

tight, then (DN)N≥d is tight and its limit points are continuous.

Proof. Since D(R+; `2) is a reflexive Banach space, relatively compact sets are the

bounded sets for the norm `2. Then here a process DN is tight if and only if for

any ε > 0 there exists rε < ∞ such that P(DN ∈ B(rε)) > 1 − ε for N ≥ 1. We

refer to Ethier and Kurtz [31] the tightness criteria for showing that (DN)N≥d is

tight. That is, (DN)N≥d is tight if

1. For each T ≥ 0 and ε > 0 there is a bounded subset KT,ε ∈ `2 such that

P(DN ∈ D([0, T ];KT,ε)) > 1− ε for N ≥ d.

2. For each k ≥ 1, the k-dimensional process (DN
1 , D

N
2 , · · · , DN

k )N≥d are tight.

For Condition 1, it is easy to see that using finite-horizon bound in Lemma

6 and Markov inequality, we can derive the tightness of process DN on

D([0, T ];KT,ε).

For Condition 2, we refer to Graham [39] for the fact that bounds in Lemma

6 and that DN
k has jump size of 1√

N
classically imply the tightness of the finite-

dimensional process.

Proof of Theorem 15 (Functional CLT). Using Lemma 10, we know that any subse-

quence of DN has a further subsequence that converges to some limit D∞ with

continuous sample path. D∞(0) should have the same distribution as D(0). We

can rewrite Equation (4.27) as
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DN(t) = DN(0) +MN(t) +

∫ t

0

K(s(u))DN(u)du

+
√
N

∫ t

0

(
GN(SN(u)) +H

(
s(u), DN(u)/

√
N
))

du.

Using Equations (4.28), (4.29), we have that

√
N‖GN(SN(u))‖`2 =

1√
N
O(‖SN(u)‖`2)→ 0

as N →∞. Using Lemma 9, we have

√
N‖H(s(u), DN(u)/

√
N)‖`2

≤
√
Nλp

[
1

Nd/2
‖(DN(u))d‖`2 +

1

N
(2d − d− 2)‖s(u)‖`2 · ‖DN(u)‖2`2

]
→ 0

as N →∞. We also have the martingale brackets

< MN
k (t) > =

∫ t

0

(
FN
+ (SN(u))(k) + F−(SN(u))(k)

)
du

→
∫ t

0

(F+(s(u))(k) + F−(s(u))(k)) du

= < Mk(t) >

as N →∞.

By Theorem 4.1 in Ethier and Kurtz [31], together with Lipschitz property

of F in Lemma 4, finite horizon bounds in Lemma 6 and tightness results in

Lemma 10, we deduce by a martingale characterization that D∞ has the distri-

bution of the OU process which is the unique solution for (4.22) in `2 starting

at D∞(0). Thus, this distribution D∞ is the unique accumulation point for the

relatively compact sequence of distributions of (DN)N≥1, therefore itself must

then converge to it, proving Theorem 15.
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4.3.2 Steady State Analysis

In this section, we analyze the steady state of the diffusion model. This allows us

to gain insights about the long-time behavior of the nonlinear system dynamics

appearing at the large N limit. Assume we have λ < 1, and that s(0) = sI .

Define the infinite-dimensional matrix K = K(sI). Then we have

Ki,i(s) = −λ(1− p)− λpd(sIi )
d−1 − 1,

Ki,i+1(s) = 1,

Ki+1,i(s) = λ(1− p) + λpd(sIi )
d−1

for i ∈ Z+.

Note that K = A∗ where A is the generator of a sub-Markovian birth-death

process. We use π = (πk)k≥1 to denote the tail cdf of the the stationary distribu-

tion to A. Then, π solves the following balance equations

π1 = 1,

πk+1 =
[
λ(1− p) + λpd(sIk)

d−1] πk, k ≥ 1.

Consider the independent and centered Brownian motionsB(t) = (Bk(t))k≥0

such that B(0) = 0, and for k ≥ 1

υk , Var(Bk(1)) = E(Bk(1)) = 2(sIk − sIk+1)

and B has an infinitesimal covariance matrix diag(υ). The OU process D(t) =

(Dk(t))k∈N solves the affine SDE given for t ≥ 0 by

D(t) = D(0) +

∫ t

0

KD(s)ds+B(t) (4.32)

which is a Brownian perturbation of the following differential equation

ḋ(t) = Kd(t). (4.33)
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Our ultimate goal is to show the interchanging of limits for the diffusion

model. However, a main difficulty is that the scalar product for which the oper-

ator K is self-adjoint is too strong for the limit dynamical system and the invari-

ant measures for finite N . Thus, we need to consider appropriate Hilbert spaces

in which the operator K is not self-adjoint and prove the exponential stability

of the fluid limit in the newly introduced space. As a result, we introduce the

following weighted Hilbert space

L2(w) ,

{
x ∈ RN : x(0) = 0, ‖x‖2L2(w)

=
∑
k≥1

x(k)2w(k)−1 <∞

}
.

We also consider the following `1 space with same weights

L1(w) ,

{
x ∈ RN : x(0) = 0, ‖x‖2L1(w)

=
∑
k≥1

|x(k)|w(k)−1 <∞

}
.

For easier notation, we denote the sequence gθ = (θk)k≥1. WLOG we assume

that d ≥ 2 and p ∈ (0, 1) since otherwise the system goes back to JSQ(d) (refer

to Graham [39] for their results). Notice that by induction we can show that for

k ≥ 2,

λk(1− p)k−1 < sIk < λk

λk−1(1− p)k−1 < πk < λk−1

which means that both sI and π have exponential decay. In the rest of the chap-

ter, we assume that w satisfies the following condition,

∃c, d > 0,∀k ≥ 1, 0 < cw(k + 1) ≤ w(k) ≤ dw(k + 1). (4.34)

This condition implies w(1)d(1/d)k ≤ w(k) ≤ w(1)c(1/c)k, which means w is

bounded by geometric sequences.

Theorem 19 (Functional Central Limit Theorem in Equilibrium). Let w satisfies

condition (4.34), then
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1. In L2(w), the operator K is bounded, and Equation (4.33) has a unique solution

dt = eKtd(0). The assumptions and conclusions hold for w = π and w = gθ for

θ > 0.

2. In addition, let w be such that sI is in L1(w). The SDE (4.32) has a unique

solution

D(t) = eKtD(0) +

∫ t

0

eK(t−s)dB(s)

in L2(w). This is the case for w = gθ for θ ≥ λ when d ≥ 2.

Proof. Using the condition in Equation (4.34) and our convexity bounds, we

have

‖Kx‖L2(w)

=
∑
k≥1

[(
λ(1− p) + λpd

(
sIk−1

)d−1)
xk−1

−
(
λ(1− p) + λpd

(
sIk
)d−1

+ 1
)
xk + xk+1

]2
w(k)−1

≤ 3

(∑
k≥1

(
λ(1− p) + λpd

(
sIk−1

)d−1)2
x2k−1w(k)−1

+
(
λ(1− p) + λpd

(
sIk
)d−1

+ 1
)2
x2kw(k)−1 + x2k+1w(k)−1

)

≤ 3

(∑
k≥1

(λ(1− p) + λpd)2x2k−1dw(k − 1)−1

+ (λ(1− p) + λpd+ 1)2x2kw(k)−1 + x2k+1c
−1w(k + 1)−1

)
≤ 3

(
d(λ(1− p) + λpd)2 + (λ(1− p) + λpd+ 1)2 + c−1

)
‖x‖L2(w). (4.35)

Then by applying Gronwall’s lemma we have the uniqueness result. When B

is an Hilbertian Brownian motion, the formula for D(t) yields a well-defined

solution.
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4.3.3 Interchanging Limits

Our goal in this section is to prove the following diagram commutes.

DN(t) N→∞ //

t→∞

��

D(t)

t→∞

��
DN(∞)

N→∞
// D(∞)

We have showed in Section 4.3.1 that DN(t)
d−→ D(t), and the existence and

uniqueness of D(t). Now we will show the existence and uniqueness of the

equilibrium point D(∞) of the diffusion limit, and show the weak convergence

of invariant measureDN(∞) toD(∞). The proof idea of the interchanging limits

of diffusion limits takes the following list of steps:

1. Prove the equilibrium operator K has bounded spectral gap in the self-

adjoint space L2(π), which implies exponential stability of linearized solu-

tion dt in L2(π). (Theorem 20)

2. Prove exponential stability of fluid limit s(t) in non self-adjoint space

L2(g(θ)), by constructing a specific birth-death process and obtain expo-

nential stability of its solution z(t) via step 1, then bounding the difference

between the fluid limit s(t) and z(t). (Theorem 21, Lemma 12, Lemma 13)

3. Show the infinite horizon bound in space L2(g(θ)) using the exponential

stability result of s(t) in step 2. (Theorem 22)

4. Show the weak convergence of stationary distributionsDN(∞) to the equi-

librium point D(∞) of the diffusion limit D(t). (Theorem 23).

Consider A = K∗, the infinitesimal generator of the sub-Markovian birth

death process with birth rates λk = λ(1− p) + λpd(sIk)
d−1 and death rates µk = 1
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for k ≥ 1. Let Q(x) = (Qn(x))n≥1 denote an eigenvector for A of eigenvalue

−x. Then, we have λ1Q2(x) = (λ1 + µ1 − x)Q1(x) and λnQn+1(x) = (λn + µn −

x)Qn(x) − µnQn−1(x) for n ≥ 2. Such a sequence of polynomials is orthogonal

with respect to a probability measure ψ on R+ such that

diag(π−1) =

∫ ∞
0

Q(x)Q(x)∗ψ(dx).

Such a probability measure is called the spectral measure, with its support S

called the spectrum. We denote the spectral gap γ = minS. The representation

formula of Karlin and McGregor [47, 46] yields

eKt = diag(π)

∫ ∞
0

e−xtQ(x)Q(x)∗ψ(dx). (4.36)

Therefore, we have the following lemma which gives the solution of the

unique equilibrium point of the OU process.

Lemma 11. The OU process D(t) in Theorem 19, its equilibrium point D(∞), and its

covariance matrix Σ(∞) can be written as

D(t) = diag(π)

∫
S

e−xtQ(x)∗
(
D(0) +

∫ t

0

exsdB(s)

)
Q(x)ψ(dx)

D(∞) = diag(π)

∫
S

(
Q(x)∗

∫ ∞
0

e−xtdB(t)

)
Q(x)ψ(dx)

Σ(∞) = diag(π)

∫
S2

Q(x)∗diag(v)Q(y)

x+ y
Q(x)Q(y)∗ψ(dx)ψ(dy)diag(π).(4.37)
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Proof. We have the unique solution D(t) as

D(t)

= eKtD(0) +

∫ t

0

eK(t−s)dB(s)

= diag(π)

∫ ∞
0

e−xtQ(x)Q(x)∗ψ(dx)D(0)

+

∫ t

0

(
diag(π)

∫ ∞
0

e−x(t−s)Q(x)Q(x)∗ψ(dx)

)
dB(s)

= diag(π)

∫ ∞
0

e−xtQ(x)∗D(0)Q(x)ψ(dx)

+ diag(π)

∫ ∞
0

e−xtQ(x)∗
(∫ t

0

exsdB(s)

)
Q(x)ψ(dx)

= diag(π)

∫
S

e−xtQ(x)∗
(
D(0) +

∫ t

0

exsdB(s)

)
Q(x)ψ(dx).

Note that here we define Q(x) = (Q1(x), Q2(x), · · · , Qn(x), · · · )>, which is

a infinite dimensional column vector of polynomials. Thus Q(x)∗D(0) and

Q(x)∗dB(s) are 1-dimensional numbers and are exchangeable with Q(x) in ma-

trix multiplication.

For the equilibrium point D(∞) of the OU process, we have

D(∞) =

∫ ∞
0

eKtdB(t)

=

∫ ∞
0

(
diag(π)

∫ ∞
0

e−xtQ(x)Q(x)∗ψ(dx)

)
dB(t)

= diag(π)

∫
S

(
Q(x)∗

∫ ∞
0

e−xtdB(t)

)
Q(x)ψ(dx),
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and its covariance matrix Σ(∞) is as follows,

Σ(∞)

=

∫ ∞
0

eKtE[B(1), B(1)∗]eK
∗tdt

=

∫ ∞
0

eKtdiag(v)eK
∗tdt

=

∫ ∞
0

[∫
S

(
diag(π)e−xtQ(x)Q(x)∗ψ(dx)

)
· diag(v)

∫
S

(
diag(π)e−ytQ(y)Q(y)∗ψ(dy)

)]
dt

= diag(π)

·
∫
S2

(∫ ∞
0

e−(x+y)tdt

)
Q(x)(Q(x)∗diag(v)Q(y))Q(y)∗ψ(dx)ψ(dy)diag(π)

= diag(π)

∫
S2

Q(x)∗diag(v)Q(y)

x+ y
Q(x)Q(y)∗ψ(dx)ψ(dy)diag(π).

Theorem 20 (Spectral Gap for self-adjoint case). The operator K is bounded self-

joint in L2(π). The least point γ of the spectrum of K is such that 0 < γ ≤

(
√
λ(1− p) − 1)2. The solution d(t) = eKtd(0) for Equation (4.33) in L2(π) satis-

fies ‖d(t)‖L2(π) ≤ e−γt‖d(0)‖L2(π).

Proof. The potential coefficients π solve the detailed balance equations for A

and hence K = A∗ is self-adjoint in L2(π). It is established in Theorem 5.1 and

Theorem 5.3 in Doorn [27] that γ > 0 if and only if

σ =

(√
lim
k
λk −

√
lim
k
µk

)2

=
(√

λ(1− p)− 1
)2
> 0.

For exponential stability, we have ‖d(t)‖2L2(π)
=
(
eKtd(0), eKtd(0)

)
L2(π)

and the
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fact that eKt is self-adjoint in L2(π) and the spectral representation yield

(
eKtd(0), eKtd(0)

)
L2(π)

=
(
d(0), e2Ktd(0)

)
L2(π)

=

∫
S

e−2xtd(0)∗Q(x)Q(x)∗d(0)ψ(dx)

≤ e−2γt
∫
S

d(0)∗Q(x)Q(x)∗d(0)ψ(dx)

= e−2γt(d(0), d(0))L2(π).

For the proof of exponential stability for non self-adjoint case, we modify

an argument of Graham [39]. We first consider the centered dynamical system

y(t) = s(t)− sI , then y solves the centered equation

ẏ(t) = F (sI + y) = Ky(t) +H(sI , y(t)),

or

ẏk(t) = [λ(1− p) + λpd(sIk−1)
d−1]yk−1(t) + λpB

(
sIk−1, yk−1(t)

)
−[λ(1− p) + λpd(sIk)

d−1 + 1]yk(t)− λpB
(
sIk, yk(t)

)
+ yk+1(t).(4.38)

We also have

ẏk(t)+ ẏk+1(t)+ · · · = [λ(1−p)+λpd(sIk−1)
d−1]yk−1(t)+λpB

(
sIk−1, yk−1(t)

)
−yk(t).

Lemma 12. Let Â be the generator of the sub-Markovian birth and death process with

birth rate λ̂k ≥ 0 and death rate 1 for k ≥ 1. Assume supk λ̂k < ∞. Let z(t) solves

ż = Â∗z in `01. Let h(t) be given in `01 by

hk(t) =
∑
i≥k

(zi(t)− yi(t)), k ≥ 1

Then,
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(1) Let λ̂k ≥ [λ(1− p) + λpd(sIk)
d−1] + λp(1 + (2d − d− 2)sIk) for k ≥ 1, y(0) ≥ 0

and h(0) ≥ 0. Then h(t) ≥ 0 for t ≥ 0.

(2) Let λ̂k ≥ [λ(1 − p) + λpd(sIk)
d−1] for k ≥ 1, y(0) ≤ 0 and h(0) ≤ 0. Then

h(t) ≤ 0 for t ≥ 0.

Proof. We first prove (1). We can assume WLOG that λ̂k > [λ(1 − p) +

λpd(sIk)
d−1] + λp(1 + (2d − d − 2)sIk) for k ≥ 1. Since z(t) = eÂ

∗tz(0) depends

continuously on z(0) in `01, we may assume h(0) > 0. Let τ = inf{t ≥ 0 : {k ≥

1 : hk(t) = 0} = ∅} be the first time when hk = 0 for some k ≥ 1. We know that

τ > 0 and the result holds when τ =∞.

If τ <∞, we have

ḣk(τ) = λ̂k−1yk−1(τ)− [λ(1− p) + λpd(sIk−1)
d−1]yk−1(τ)− λpB

(
sIk−1, yk−1(τ)

)
+λ̂k−1(zk−1(τ)− yk−1(τ))− (zk(τ)− yk(τ)).

Lemma 5 and y(0) ≥ 0 implies that y(t) ≥ 0 for all t ≥ 0. Any by Lemma 9

we have that

B
(
sIk−1, yk−1(τ)

)
≤ ydk−1 + (2d − d− 2)sIk−1y

2
k−1 ≤

(
1 + (2d − d− 2)sIk−1

)
yk−1.

Therefore by the assumption that λ̂k ≥ [λ(1−p)+λpd(sIk)
d−1]+λp(1+(2d−d−2)sIk)

we have that

λ̂k−1yk−1(τ)− [λ(1− p) + λpd(sIk−1)
d−1]yk−1(τ)− λpB

(
sIk−1, yk−1(τ)

)
≥ 0,

and equality holds only when yk−1 = 0. For k ∈ Z = {k ≥ 1 : hk(τ) = 0} we

have

zk−1(τ)− yk−1(τ) = hk−1(τ)− hk(τ) = hk−1(τ) ≥ 0,

zk(τ)− yk(τ) = hk(τ)− hk+1(τ) = −hk+1(τ) ≤ 0,
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hence ḣk(τ) ≥ 0 with equality only when k − 1 ∈ Z ∪ {0} and k + 1 ∈ Z . We

also know that hk(t) > 0 for t < τ and hk(τ) = 0 which implies ḣk(τ) ≤ 0.

Thus ḣk(τ) = 0 and zk−1(τ) = yk−1(τ) = 0 and k − 1 ∈ Z ∪ {0} and k + 1 ∈

Z . By induction we have that zk(τ) = yk(τ) = 0 for all k ≥ 1, which means

z(t) = y(t) = 0 for all t ≥ τ , thus h(t) ≥ 0 for t ≥ 0. The proof for (2) follows

similarly.

Lemma 13. For any 0 ≤ θ < 1 there exists Kθ <∞ such that for x in L2(gθ) ⊂ `01

‖(xk + xk+1 + · · · )k≥1‖L2(gθ) ≤ Kθ‖x‖L2(gθ).

Proof.

‖(xk + xk+1 + · · · )k≥1‖L2(gθ)

=
∑
k≥1

(xk + xk+1 + · · · )2θ−k

≤
∑
k≥1

n
(
x2k + x2k+1 + · · ·+ x2k+n−2 + (xk+n−1 + xk+n + · · · )2

)
θ−k

≤ n(1 + θ + · · ·+ θn−2)
∑
k≥1

x2kθ
−k + nθn−1

∑
k≥1

(xk + xk+1 + · · · )2θ−k.

Since this holds for any n ≥ 1 we can choose n large enough such that nθn−1 < 1,

then

(1− nθn−1)‖(xk + xk+1 + · · · )k≥1‖L2(gθ) ≤ n(1 + θ + · · ·+ θn−2)‖x‖L2(gθ).

Letting Kθ = n(1 + θ + · · ·+ θn−2)/(1− nθn−1), we have the result.

Now we finish the proof of Theorem 21 using the previous two lemmas.

Theorem 21 (Exponential stability for non self-adjoint case). Let λ ≤ θ < 1 and

s be the solution to Equation (4.5) starting at s(0) in S ∩ L2(gθ). There exists γθ > 0

and Cθ <∞ such that

‖s(t)− sI‖L2(gθ) ≤ e−γθtCθ‖s(0)− sI‖L2(gθ).
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Proof. Assume s(0) ∈ S is in L2(gθ). Denote s+(0) = max{s(0), sI} and s−(0) =

min{s(0), sI}, and s+, s− as the corresponding solution to (4.5) with such initial

condition. Then by Lemma 5 we have that s+(t) ≤ s(t) ≤ s−(t) and s+(t) ≤ sI ≤

s−(t) for all t ≥ 0. Again we use y(t) = s(t) − sI to denote the solution to the

recentered equation, and that y+(t) = s+(t)−sI , y−(t) = s−(t)−sI . We also have

|y(0)| = max{y(0)+, y(0)−}, |y(t)| ≤ max{y(t)+,−y(t)−}, t ≥ 0.

Now consider a birth death process with generator Â where birth rate λ̂k is as

follows,

λ̂k = max{[λ(1− p) + λpd(sIk)
d−1] + λp(1 + (2d − d− 2)sIk), θ}, k ≥ 1.

For λ ≤ θ < 1, we know that for large enough k λ̂k is equal to θ. Using the same

method as in the proof of theorem 20, we have that the spectral gap γ̂ for the

birth death process with generator Â satisfies that 0 < γ̂ ≤ σ̂ = (
√
θ − 1)2. This

means that the solution z(t) to ż = Â∗z has exponential stability, i.e.

‖z(t)‖L2(π̂) ≤ e−γ̂t‖z(0)‖L2(π̂), t ≥ 0

where π̂ is the stationary distribution to Â∗.

We know that

π̂k =
k−1∏
i=1

λ̂k = θk−1
k−1∏
i=1

max{θ−1[λ+ λpd(sIk)
d−1 + λp(2d − d− 2)sIk], 1} ≥ θk−1

and the product converges. Thus π̂k = O(θk) and θk = O(π̂k) and therefore the

two norms L2(π̂) and L2(gθ) are equivalent, so there exists c, d > 0 such that

‖z(t)‖L2(gθ) ≤ d‖z(t)‖L2(π̂) ≤ de−γ̂t‖z(0)‖L2(π̂) ≤ cde−γ̂t‖z(0)‖L2(gθ).

Let z+, z− be the corresponding solutions to z+ = Â∗z+ and z− = Â∗z− starting

y(0)+ ≥ 0 and y(0)− ≤ 0 respectively. Then, by Lemma 12 and Lemma 13, we
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have

‖y+(t)‖L2(gθ) ≤ ‖(y+k (t) + y+k+1(t) + · · · )k≥1‖L2(gθ)

≤ ‖(z+k (t) + z+k+1(t) + · · · )k≥1‖L2(gθ)

≤ Kθ‖z+(t)‖L2(gθ)

≤ cdKθe
−γ̂t‖y+(0)‖L2(gθ),

and similarly ‖y−(t)‖L2(gθ) ≤ cdKθe
−γ̂t‖y−(0)‖L2(gθ). Letting γθ = γ̂ and Cθ =

c2d2K2
θ , we have

‖y(t)‖2L2(gθ)
≤ ‖y+(t)‖2L2(gθ)

+ ‖y−(t)‖2L2(gθ)
(4.39)

≤ e−2γθtCθ
(
‖y+(0)‖2L2(gθ)

+ ‖y−(0)‖2L2(gθ)

)
= e−2γθtCθ‖y(0)‖2L2(gθ)

.

Theorem 22 (Infinite Horizon Bound). Assume λ ≤ θ < 1, then

lim sup
N→∞

E
(
‖DN(0)‖2L2(gθ)

)
<∞⇒ lim sup

N→∞
sup
t≥0

E
(
‖DN(t)‖2L2(gθ)

)
Proof. We consider the case when s(0) = sI . Since sI is the equilibrium, we have

s(t) = sI for all t ≥ 0. Let s(ν, h) be the solution of Equation (4.5) at time h ≥ 0

with initial value ν. For t0 ≥ 0 let DN(t0, h) =
√
N(SN(t0 + h) − s(SN(t0), h)).

Then we have DN(t0 + h) = DN(t0, h) +
√
N
(
s(SN(t0), h)− sI

)
. By Lemma 21,

‖DN(t0 + h)‖L2(gθ) ≤ ‖D
N(t0, h)‖2 + Cθe

−γθh‖DN(t0)‖L2(gθ). (4.40)

The conditional distribution of DN(t0, h) given SN(t0) = s is the distribution

of DN started with SN(t0) = s(0) = s. In particular, DN(t0) = DN(t0, 0) = 0.
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Following a similar argument as in Equation (4.31), we have that there exists

constant CT > 0 such that

sup
0≤h≤T

‖DN(t0, h)‖L2(gθ) ≤ CT

(
1√
N
‖sI‖L2(gθ) +

1

N
Cθ‖DN(t0)‖L2(gθ)

+ sup
0≤h≤T

∥∥MN(t0 + h)−MN(t0)
∥∥
L2(gθ)

)
.

Combined with (4.40), we have that for some LT > 0 and 0 ≤ h ≤ T ,

E
(
‖DN(t0 + h)‖2L2(gθ)

)
≤ LT + 2

(
CT
N

+ e−γθh
)2

C2
θE
(
‖DN(t0)‖2L2(gθ)

)
. (4.41)

Now for fixed T large enough we have 8e−2γθTC2
θ ≤ ε < 1. Then uniformly for

N ≥ CT e
γθT , for m ∈ N, we have

E
(
‖DN((m+ 1)T )‖2L2(gθ)

)
≤ LT + εE

(
‖DN(mT )‖2L2(gθ)

)
.

By induction,

E
(
‖DN(mT )‖2L2(gθ)

)
≤ LT

m∑
j=1

εj−1 + εmE
(
‖DN(0)‖2L2(gθ)

)
≤ LT

1− ε
+ E

(
‖DN(0)‖2L2(gθ)

)
.

From (4.41), we know that

sup
0≤h≤T

E
(
‖DN(mT + h)‖2L2(gθ)

)
≤ LT + 8C2

θE
(
‖DN(mT )‖2L2(gθ)

)
,

hence we have the infinite horizon bound

sup
t≥0

E
(
‖DN(t)‖2L2(gθ)

)
≤ LT + 8C2

θE
(

LT
1− ε

+ E‖DN(0)‖2L2(gθ)

)
.

Ergodicity and the Fatou Lemma yield that for DN(∞)

E(‖DN(∞)‖2L2(gθ)
) ≤ lim inf

t≥0
E(‖DN(t)‖2L2(gθ)

) ≤ sup
t≥0

E(‖DN(t)‖2L2(gθ)
) <∞.
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We now prove that the interchanging of limits is valid, through the following

steps:

1) The sequence (DN(∞), N ≥ 1) is tight.

2) There is a unique possible limit to any convergent subsequence of

(DN(∞), N ≥ 1).

Theorem 23. The stationary distribution DN(∞) of the diffusion process DN(t) con-

verges weakly to the equilibrium point of the diffusion limit D(∞), whose explicit form

is specified in Equation (4.37).

Proof. Since for any K > 0, using Markov inequality we have

P (‖DN(∞)‖L2(gθ) > K) = lim
t→∞

P (‖DN(t)‖L2(gθ) > K)

= lim
t→∞

E[‖DN(t)‖2L2(gθ)
]

K2

= O

(
1

K2

)
.

This shows that (DN(∞), N ≥ 1) is tight. Now we only need to prove that there

is a unique possible limit to any convergent subsequence of (DN(∞), N ≥ 1).

We still denote by DN(∞) such a converging subsequence. Its limit is denoted

by ν. By properties of Markov processes, DN(t) with initial condition DN(0) =

DN(∞) is a stationary process, hence D(t) = ν for any t. Then D(∞) = ν, which

proved that any convergent subsequence of DN(∞) converge to D(∞).

123



Figure 4.3: P(Q ≤ k) for various values of p
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Figure 4.4: The pdf and cdf of Q for various values of p

Now that we have proved both fluid and diffusion limits for the queue

length process, we can apply those results to some numerical examples. In Fig-

ure 4.3, we provide five plots where the flexibility parameter p changes through-

out each plot. The green dotted lines indicate one standard deviation computed

according to Theorem 18 with a cutoff at 1,000 iterations. We observe that p has

a large effect on the shape of the distribution. In fact, by increasing p, the distri-

bution develops an inflection point. Moreover, we observe that by having ten

percent of flexible customers reduces the max queue length by an order of 10.

As one continues to increase p, the max queue length decreases, but not as much

as the initial few flexible customers.

In Figure 4.4, we plot the probability density function and the cdf of the

queue length for a variety of values of p. On the left of Figure 4.4, we observe

that as we increase p, the pdf mode moves to the left. Moreover, as p decreases,

the pdf becomes more flat. On the right of Figure 4.4, we see that flat behavior

of systems with small p is confirmed since the cdf of the queue length appears

to have a linear shape.
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4.4 Insights on Dependence on p and d

In this section, we provide new insights about our model with flexible cus-

tomers. To this end, we prove two new results and also provide numerical ex-

periments that validate our fluid and diffusion approximations. The first result

shows that we can obtain a closed form solution for the tail cdf of the queue

length distribution. The second result proves upper and lower bounds on the

mean, second moment, and variance of the queue length process. We first start

with a closed form solution of the steady state tail cdf.

4.4.1 Steady State Fluid Limit Solution

The steady state of the fluid limit admits a unique closed-form solution for the

tail cdf. In order to show this result, we exploit a similar argument used by

Rabinovich et al. [73].

Proposition 7 (Closed-form Solution of the Steady State). The steady state solution

of the queueing model sI satisfies a nonlinear recursion

sIi = λ(1− p)sIi−1 + λp(sIi−1)
d for all i ≥ 2.

λ(1− p)
(
sIi−1 − sIi

)
+ λp

((
sIi−1

)d − (sIi )d)− (sIi − sIi+1

)
= 0

and has a unique closed-form solution given by

sIi =
d∑

k1=1

dk1∑
k2=k1

dk2∑
k3=k2

· · ·
dki−1∑
ki=ki−1

(
1

k1−1
d−1

)(
k1

k2−k1
d−1

)
· · ·
(

ki−1
ki−ki−1

d−1

)
· (λ(1− p))1+k1+k2+···+ki−1−

ki−1

d−1 (λp)
ki−1

d−1 .
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Proof. By Rabinovich et al. [73], the solution to any first-order recursion equa-

tion given by

si+1 = P (si)

can be written as

si = 〈e|T i|s〉.

Here |s〉 =
{
sj0
}∞
j=0

and 〈e| = [δj1]
∞
j=0 where δjk is the Kronecker symbol. T is a

transfer matrix that transforms the column
{
sji
}

to a column
{

[P (si)]
j
}

.

In our case,

P
(
sIi
)

= λ(1− p)sIi + λp
(
sIi
)d

and
{[
P
(
sIi
)]j} can be expanded as the following:

[
λ(1− p)sIi + λp

(
sIi
)d]j

=

j∑
l=0

(
j

l

)
(λp)l

(
(sIi )

d
)l

(λ(1− p))j−l
(
sIi
)j−l

=

j∑
l=0

(
j

l

)
(λp)l (λ(1− p))j−l

(
sIi
)j+(d−1)l

.

Denoting k = j + (d− 1)l so that l = k−j
d−1 , we have

dj∑
k=j

(
j
k−j
d−1

)
(λp)

k−j
d−1 (λ(1− p))j−

k−j
d−1
(
sIi
)k
.

Thus the matrix elements Tjk are

Tjk =

(
j
k−j
d−1

)
(λp)

k−j
d−1 (λ(1− p))j−

k−j
d−1 .

Given sI0 = 1, the solution to our nonlinear recursion sIi = 〈e|T i|sI〉 is the

sum of all elements in the first row of T i:
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sIi =
di∑
ki=0

(
T i
)
1,ki

=
di∑
ki=0

di∑
ki−1=0

· · ·
di∑

k1=0

T1,k1Tk1,k2 · · ·Tki−1,ki

=
di∑
ki=0

di∑
ki−1=0

· · ·
di∑

k1=0

(
1

k1−1
d−1

)(
k1

k2−k1
d−1

)
· · ·
(

ki−1
ki−ki−1

d−1

)
· (λ(1− p))1+k1+···+ki−1−

ki−1

d−1 (λp)
ki−1

d−1

=
d∑

k1=1

dk1∑
k2=k1

dk2∑
k3=k2

· · ·
dki−1∑
ki=ki−1

(
1

k1−1
d−1

)(
k1

k2−k1
d−1

)
· · ·
(

ki−1
ki−ki−1

d−1

)
· (λ(1− p))1+k1+k2+···+ki−1−

ki−1

d−1 (λp)
ki−1

d−1 .

Now that we have a closed form expression for the tail cdf of the queue length

process, this result allows us to write the expected queue length E[Q] explicitly

as well.

E[Q]

=
∞∑
i=1

d∑
k1=1

dk1∑
k2=k1

dk2∑
k3=k2

· · ·
dki−1∑
ki=ki−1

(
1

k1−1
d−1

)(
k1

k2−k1
d−1

)
· · ·
(

ki−1
ki−ki−1

d−1

)
· (λ(1− p))1+k1+k2+···+ki−1−

ki−1

d−1 (λp)
ki−1

d−1

≈
i∗∑
i=1

d∑
k1=1

dk1∑
k2=k1

dk2∑
k3=k2

· · ·
dki−1∑
ki=ki−1

(
1

k1−1
d−1

)(
k1

k2−k1
d−1

)
· · ·
(

ki−1
ki−ki−1

d−1

)
· (λ(1− p))1+k1+k2+···+ki−1−

ki−1

d−1 (λp)
ki−1

d−1

where i∗ is the smallest x such that P (Q ≥ x) < ε.

In Table 4.2, we provide a table of mean queue lengths as a function of the

flexibility parameter p and the choice parameter d when λ = 0.99. We observe
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that for d = 2, the mean queue is decreased by 30% by having 1% of the cus-

tomers be flexible and a 75% reduction in mean queue length for 10 % of the

customers being flexible. Thus, just a small amount of flexibility can go a long

way. We also observe that these dramatic improvements are only strengthened

when we increase the choice parameter d.

To study the impact of the flexibility and choice parameters on the fluctua-

tions, we provide a table in Table 4.3 that describes the variance of the queue

length as a function of the flexibility parameter p and the choice parameter d

when λ = 0.99. We observe that for d = 2, the variance of the queue length is

decreased by 65% by having 1% of the customers be flexible and a 97% reduc-

tion in variance queue length for 10 % of the customers being flexible. Thus,

the reduction in variance is even better than the mean. Once again just a small

amount of flexibility can significantly impact the performance of the system. We

also observe for the variance that performance improvements increase when we

increase the choice parameter d.

p

d 0 0.01 0.05 0.1 0.2 0.5 0.8 0.9 0.95 0.99 1
2 99 69 36 24 15 8 6 6 6 5 5
3 99 62 28 18 11 6 4 4 4 4 4
4 99 59 25 15 9 5 4 3 3 3 3
5 99 57 23 14 8 4 3 3 3 3 3
10 99 53 20 12 7 3 3 2 2 2 2
20 99 51 18 10 6 3 2 2 2 2 2
50 99 50 17 10 5 3 2 2 2 2 2
100 99 50 17 9 5 2 2 1 1 1 1

Table 4.2: E(Q) for various values of p and d
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p

d 0 0.01 0.05 0.1 0.2 0.5 0.8 0.9 0.95 0.99 1
2 9890 3397 544 186 57 11 4 4 3 3 3
3 9890 2849 367 114 32 5 2 2 1 1 1
4 9890 2678 319 96 26 4 1 1 1 1 1
5 9890 2603 299 88 23 3 1 1 1 1 1
10 9890 2506 274 79 20 3 1 1 0 0 0
20 9890 2482 268 76 19 2 1 0 0 0 0
50 9890 2476 266 76 19 2 1 0 0 0 0
100 9890 2474 266 75 19 2 1 0 0 0 0

Table 4.3: var(Q) for various values of p and d

4.4.2 First and Second Moment Bounds

In this section, we prove upper and lower bounds for the mean, variance, and

second moment of the queue length. We show numerically, that these bounds

(especially the lower bounds) are quite accurate at approximating the queue

length dynamics.

Proposition 8 (Moment Estimates). Let E[Q] denote the expected queue length, then

λ
(

1 + pλd

1−λd(1−p)d

)
1− λ+ λp

< E[Q] <
λ
(

1 + pλd
(

1−p
1−λd + p

1−λd2

))
1− λ+ λp

.

Let E[Q2] denote the the second moment of queue length, then

E[Q]2 >

2λd+1p
(1−λd(1−p)d)2 + (1 + λ(1− p))

λ

(
1+ pλd

1−λd(1−p)d

)
1−λ+λp

1− λ+ λp
,

E[Q2] <
2λd+1

(
1−p

(1−λd)2 + p

(1−λd2 )2

)
+ (1 + λ(1− p))

λ

(
1+pλd

(
1−p
1−λd

+ p

1−λd2

))
1−λ+λp

1− λ+ λp
.

Moreover, let W be the patient waiting time, then

1 + pλd

1−λd(1−p)d

1− λ+ λp
< E[W ] <

1 + pλd
(

1−p
1−λd + p

1−λd2

)
1− λ+ λp

.
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Proof. Since we have the following bounds of the equilibrium sI for p ∈ (0, 1)

and d ≥ 2,

λk(1− p)k−1 < sIk < λk, k ≥ 1. (4.42)

Applying the above inequality to the recursion again, we get

sIk < λ(1− p)λk−1 + λpλ(k−1)d = (1− p)λk + pλ(k−1)d+1. (4.43)

We can also bound the expected queue length the same way. Denote xi =

si − si+1 as the pdf of queue length Q, then

E[Q] =
∞∑
i=1

ixi =
∞∑
i=1

i(sIi − sIi+1) =
∞∑
i=1

sIi

=
∞∑
i=0

[
λ(1− p)sIi + λp(sIi )

d
]

= λ(1− p)(E[Q] + 1) + λp

(
1 +

∞∑
i=1

(sIi )
d

)
,

which implies that

E[Q] =
λ(1 + pZ)

1− λ+ λp
(4.44)

where Z =
∑∞

i=1(s
I
i )
d. Thus, we can obtain an upper bound for Z,

Z =
∞∑
i=1

(sIi )
d

(Inequality (4.43)) <
∞∑
i=1

((1− p)λi + pλ(i−1)d+1)d

(Jensen’s Inequality) ≤ (1− p)
∞∑
i=1

λid + p
∞∑
i=1

λ((i−1)d+1)d

= λd
(

1− p
1− λd

+
p

1− λd2
)
.
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Similarly we can obtain an lower bound for Z,

Z =
∞∑
i=1

(sIi )
d

(Inequality (4.42)) >

∞∑
i=1

(
λi(1− p)i−1

)d
=

λd

1− λd(1− p)d
.

Combined with equation (4.44), we obtain the upper and lower bound for

E[Q] as follows,

λ
(

1 + pλd

1−λd(1−p)d

)
1− λ+ λp

< E[Q] <
λ
(

1 + pλd
(

1−p
1−λd + p

1−λd2

))
1− λ+ λp

.

For the second moment, similarly we have that

E[Q2] =
∞∑
i=1

i2xi =
∞∑
i=1

i2(sIi − sIi+1)

=
∞∑
i=1

(i2 − (i− 1)2)sIi

= 2
∞∑
i=1

isIi − E[Q]

= 2
∞∑
i=0

(i+ 1)
[
λ(1− p)sIi + λp(sIi )

d
]
− E[Q]

= 2λ(1− p)

(
∞∑
i=0

isIi

)
+ 2E[Q] + 2λp

(
∞∑
i=1

i(sIi )
d

)
− E[Q]

which implies that

E[Q2] = 2
∞∑
i=1

isIi − E[Q], (4.45)

and
∞∑
i=1

isIi =
λpZ2 + E[Q]

1− λ+ λp
(4.46)
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where Z2 =
∑∞

i=1 i(s
I
i )
d. We can obtain an upper bound for Z2,

Z2 =
∞∑
i=1

i(sIi )
d

(Inequality (4.43)) <

∞∑
i=1

i((1− p)λi + pλ(i−1)d+1)d

(Jensen’s Inequality) ≤ (1− p)
∞∑
i=1

iλid + p

∞∑
i=1

iλ((i−1)d+1)d

= λd
(

1− p
(1− λd)2

+
p

(1− λd2)2

)
.

Similarly we can obtain an lower bound for Z2,

Z2 =
∞∑
i=1

i(sIi )
d

(Inequality (4.42)) >
∞∑
i=1

i
(
λi(1− p)i−1

)d
=

λd

(1− λd(1− p)d)2
.

Combined with Equations (4.45) and (4.46), we obtain the upper and lower

bound for E[Q2] as follows,

E[Q2] = 2 · λpZ2 + E[Q]

1− λ+ λp
− E[Q] =

2λpZ2 + (1 + λ(1− p))E[Q]

1− λ+ λp

and

E[Q2] >

2λd+1p
(1−λd(1−p)d)2 + (1 + λ(1− p))

λ

(
1+ pλd

1−λd(1−p)d

)
1−λ+λp

1− λ+ λp
,

E[Q2] <
2λd+1

(
1−p

(1−λd)2 + p

(1−λd2 )2

)
+ (1 + λ(1− p))

λ

(
1+pλd

(
1−p
1−λd

+ p

1−λd2

))
1−λ+λp

1− λ+ λp
.

If we use subscript U to denote upper bound and subscript L to denote lower

bound, then we can obtain an upper bound for Var[Q],

Var[Q] < VarU [Q] = EU [Q2]− EL[Q].
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Similarly we can also obtain a lower bound for Var[Q],

Var[Q] > VarL[Q] = EL[Q2]− EU [Q].

In Figure 4.6, we plot E[Q],E[Q2],Var[Q] as well as their upper and lower

bounds obtained from Proposition 8. We note that our upper and lower bounds

are quite accurate at approximating the moment behavior as a function of the

flexibility parameter p. In Figure 4.5, we observe that the compare the wait

times of dedicated patients, flexible patients, the average patients, and the sys-

tem where all the flexible patients are not present. It is clear from Figure 4.5,

that the average wait time decreases by adding flexible patients and the flexi-

ble patients benefit themselves from being flexible. Throughout our analysis,

one might be tempted to approximate the queue length and waiting time with

a model where the flexible patients disappeared i.e. a non-flexible queue where

the arrival rate is λ(1−p). However, we observe that the wait time is very much

under-approximated if one pretends the flexible patients are not there. Thus,

it is still important to capture the flexible patients and they cannot be simply

ignored from the performance analysis.
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Figure 4.5: Waiting times by patient type
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Figure 4.6: Upper and lower bounds for E(Q), E(Q2), and var(Q)
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4.5 Discussion and Future Directions

In this chapter, we construct a stochastic queueing model that captures the

performance trade-off between customers valuing flexibility (or time) vs. cus-

tomers wanting dedicated services, through setting a fraction p of all customers

to be flexible via joining the shortest of d queues. First, we prove the fluid

model results in both transient and steady-state behaviors. We show that the

scaled queue-length process converges to a unique fluid trajectory on any finite

time interval, and that this fluid trajectory converges to a unique steady state sI ,

for which a closed-form expression is obtained. We also show that the steady

state distribution of the N -physicians system concentrates on sI as N goes to

infinity. Second, we prove the diffusion model results in both transient and

steady-state behaviors. We show that the scaled diffusion process converges

to a unique Ornstein-Uhlenbeck process, and that the interchanging of limits

limt→∞ limN→∞ = limN→∞ limt→∞ holds for the diffusion limit in equilibrium.

Finally, we prove an upper and lower bound for the first and second moment

of the expected queue length of the system, and show through numerical exam-

ples that having just a small fraction of flexible customers can benefit the system

tremendously, both in lowering the mean queue length as well as its variance.

Despite our analysis, there are many future directions for research.

1. The first direction would be to generalize the arrival rate of dedicated pa-

tients to each physician to be non-uniform, i.e. taking into account the

popularity of different physicians.

2. A second direction would be to generalize our results for non exponential

arrival and service distributions, like in the work of Bramson et al. [15],
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Aghajani et al. [3].

3. It would also be interesting to generalize the work to system of M/M/c

queues or system of M/M/∞ queues, and derive new limit theorems in

those regimes. One could also incorporate the impact of delayed infor-

mation to model delays in communicating the queue length to customers.

Recent work by Nirenberg et al. [66], Novitzky et al. [67] could help in this

regard.

4. Finally, there is recent work that analyzes self-exciting point processes as

arrival processes to queues, see for example Gao and Zhu [34], Daw and

Pender [23], Koops et al. [49], Daw and Pender [22], Daw et al. [24], Chen

and Wang [19]. It would be interesting to analyze similar JSQ models with

Hawkes arrival processes.

We intend to pursue these extensions in future work.
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