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Abstract

We provide a review of the principle of sample-average approximation (SAA) for solving simulation-
optimization problems. Our goal is to provide an accessible overview of the area and emphasize in-
teresting recent work. We explain when one might want to use SAA and when one might expect it to
provide good-quality solutions. We also review some of the key theoretical properties of the solutions
obtained through SAA. We contrast SAA with stochastic approximation (SA) methods in terms of
the computational effort required to obtain solutions of a given quality, explaining why SA “wins”
asymptotically. However, an extension of SAA known as retrospective optimization can match the
asymptotic convergence rate of SA, at least up to a multiplicative constant.

1 Introduction

How does one solve an optimization problem of the form

min
x∈D

f(x), (1)

where D ⊆ Rd (d < ∞) and the real-valued function f(·) cannot be computed exactly, but can be
estimated through a (stochastic) simulation? The principle of Sample Average Approximation (SAA)
allows one to tackle such problems through the use of sampling and optimization methods for deterministic
problems. We introduce SAA, describe its properties through both examples and theory, and relate SAA
to established concepts in stochastic simulation. Our goal is to communicate the essence of the idea and
the key results in the area, rather than to provide an exhaustive discussion of what is known about SAA.
As such, this chapter is best viewed as a guide rather than a survey.
Throughout, we assume that the function f cannot be observed or computed directly, but we know
that f(x) = Ef(x, ξ), where ξ is a random element with a distribution that does not depend on x, and
f(·, ·) is a (deterministic) real-valued function. (We suppress measure-theoretic considerations unless they
come into play at a practical level. Nevertheless, we attempt to state results precisely.) Implicit in this
statement is that for each fixed x ∈ D, E|f(x, ξ)| <∞.
In SAA, we select and fix ξ1, ξ2, . . . , ξn, all having the same distribution as ξ, and set

fn(x) =
1
n

n∑
i=1

f(x, ξi).

Given the (fixed) sample ξ1, ξ2, . . . , ξn, the function fn(·) is deterministic, and so we can apply determin-
istic optimization algorithms to solve the problem

min
x∈D

fn(x). (2)

We then take an optimizer, X∗n say, of (2) as an estimator of an optimal solution of (1). Unless otherwise
stated, we assume that (ξ1, ξ2, . . . , ξn) form an iid sample. (The independence assumption is sometimes
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relaxed, mostly in variance reduction schemes or randomized quasi-Monte Carlo schemes where depen-
dence is deliberately introduced.)
For example, consider the continuous newsvendor problem where we buy x units of some commodity at
a cost c > 0 per unit, observe demand ξ, and sell as many units as we can at price s > c. (This example
has been used many times before to illustrate SAA; see, e.g., Shapiro et al. [2009, p. 330].) The goal
is to choose x so as to maximize profit. (Of course, one can convert this problem to a minimization
problem as in (1) simply by multiplying by -1, but we ignore that.) The profit for a given realization ξ
is f(x, ξ) = smin{x, ξ} − cx. This function is concave in x, has slope s − c > 0 for sufficiently small x
and slope −c < 0 for sufficiently large x. It follows that the same is true for the approximating function
fn(·), which therefore achieves its maximum. In fact, it is straightforward to show that an optimizer X∗n
of fn(·) occurs at the 1− c/s quantile of the empirical distribution associated with the observed demands
ξ1, ξ2, . . . , ξn, i.e., the dn(1−c/s)eth smallest of the observed demands. If we assume that the distribution
of ξ is continuous at its 1 − c/s quantile, which is optimal for the true problem (e.g., Ravindran et al.
[1987, p. 353]), then X∗n converges to this value as n→∞ a.s. So in this case, SAA is successful in that
the sequence of optimizers {X∗n} converges to a true optimizer.
In general, is SAA a reasonable approach? What kinds of problems are such that SAA works, in the
sense that X∗n can be expected to converge to the set of optimizers of (1) as n → ∞ in some sense?
What kinds of problems are such that (2) is amenable to deterministic optimization algorithms? Is this
procedure competitive with alternative algorithms, in the sense that the solutions returned after a given
computational effort are comparable in quality?
Most of these questions have been addressed in previous surveys of SAA, so what is different here? We
emphasize the intuition behind SAA, developing concepts through a range of examples as well as through
theory. Mostly we do not prove results here, but instead give references to complete proofs, and provide
proof sketches where that helps build understanding. Many of those proofs can be found in the excellent
surveys Shapiro [2003], Shapiro et al. [2009]. It is hard to pin down the origin of the SAA concept.
Certainly there are strong ties to maximum likelihood estimation and M -estimation in statistics, but
perhaps the strongest roots of the idea from an Operations Research perspective lie in variants called
the stochastic counterpart method [Rubinstein and Shapiro, 1990, 1993] and sample-path optimization
[Plambeck et al., 1996, Robinson, 1996, Healy and Schruben, 1991].
We focus on the unconstrained optimization problem (1), but SAA can also encompass constrained opti-
mization problems, even when the constraints must also be evaluated using simulation; see Vogel [1988,
1994]. The SAA principle is very general, having been applied to settings including chance constraints
[Ahmed and Shapiro, 2008], stochastic-dominance constraints [Hu et al., 2010] and complementarity
constraints [Gürkan et al., 1999].
We view the key contributions of this chapter as follows.

• Section 2 provides a set of examples that showcase when SAA is appropriate in the sense that the
optimization problem (2) has reasonable structure that allows for numerical solution.

• Section 3 provides verifiable conditions under which one can expect the problems (1) and (2) to share
important structural properties such as continuity and differentiability. This section also showcases
the close connection between problems that are “SAA appropriate” and those that are amenable
to infinitesimal perturbation analysis (IPA) [Fu, 2006, Glasserman, 1991] for gradient estimation.
This section can also be viewed as a review of IPA with particular emphasis on multidimensional
problems.

• Section 4 reviews some key properties of SAA, particularly with regard to large-sample performance.

• Sections 5 and 6 delve into the selection of the sample size n in some detail. These sections relate
the computational effort required to achieve a given solution quality in SAA to that of a competing
method known as stochastic approximation. It turns out that SAA is not as efficient as stochastic
approximation, at least in the asymptotic sense considered there. (In the non-asymptotic world
of small sample sizes, it is harder to make clear conclusions, although some results are known for
idealized versions of both approaches; see, e.g., Shapiro [1996].) This leads one to the class of
methods collectively known as retrospective optimization, which is an extension of SAA. We review
some recent results on retrospective optimization that show that this class of methods can match
stochastic approximation in terms of asymptotic efficiency.
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2 When is SAA Appropriate?

In this section we provide examples that illustrate how SAA works, what issues may arise when SAA is
applied, and how we may deal with them in various settings. Henceforth, all vectors are assumed to be
column vectors, and x> denotes the transpose of x.

Example 1. Multi-dimensional Newsvendor Problem
Consider a firm that manufactures p products from q resources. For given resource type i = 1, . . . , q and
product type j = 1, . . . , p, let aij be the amount of resource i required to produce one unit of product j,
and vj be the unit margin for product j (that is, revenue minus processing cost). Suppose that a manager
must decide on a resource vector x = (x1, . . . , xq) before the product demand vector ξ = (ξ1, . . . , ξp) is
observed. After the demand becomes known, the manager chooses a production vector y = (y1, . . . , yp) so
as to maximize the operating profit in the linear program

P(x,ξ) : maxy∈Rp
+

v>y

s.t. Ay ≤ x (capacity constraints)
y ≤ ξ (demand constraints).

Here, A is a (q × p) matrix and aij is the (i, j) element of A. Let Π(x, ξ) denote the maximal operating
profit function for a given resource level vector x and a given demand vector ξ. This is precisely the
optimal objective value of the problem P(x,ξ). Then Π(x, ξ) = v>y∗(x, ξ), where y∗(x, ξ) is an associated
optimal production vector.
Suppose that the demand ξ can be viewed as a random vector and the probability distribution of ξ is
known. Let π(x) denote the expected maximal operating profit, where

π(x) = E [Π(x, ξ)] ,

for all x ∈ Rq+. Let ci, i = 1, . . . , q, be the unit investment cost for resource i. By incorporating the
investment cost into the operating profit, the value of the firm is defined as Π(x, ξ) − c>x, for a fixed
(x, ξ). The manager’s objective is now to choose the resource level x so as to maximize the expected firm
value. This leads to the following stochastic optimization problem:

max
x∈Rq

+

f(x) = π(x)− c>x. (3)

This problem is known as the multi-dimensional newsvendor problem [Van Mieghem and Rudi, 2002].
For simplicity, we focus our attention on the single-period newsvendor model, but the structure of the
optimal policy in the single-period model can be extended to a dynamic setting under reasonable con-
ditions [Harrison and Van Mieghem, 1999]. In general, a closed-form solution for the multi-dimensional
newsvendor problem is unattainable, unlike the single-dimensional problem. We illustrate how the SAA
approach can be applied to this example and present some technical details.
From linear programming theory, we can show that both the sample path function Π(·, ξ) and the expected
objective function π exhibit nice structural properties. First, Π(·, ξ) is concave for any fixed ξ, and so
is π(·) = E[Π(·, ξ)]. If ξ has a discrete probability distribution, then both Π(·, ξ) and π(·) are piecewise
linear and concave. However, we focus on random demand with a continuous probability distribution,
and we would like to determine conditions under which π(·) is differentiable everywhere. Assume that ξ
is finite with probability 1 (w.p.1). Consider the dual problem of the linear program P(x,ξ):

D(x,ξ) : min(µ,λ)∈Rp+q
+

x>λ+ ξ>µ

s.t. A>λ+ µ ≥ v.

Since ξ is finite, the primal problem has a finite optimal solution and the optimal value of the primal
problem is equal to that of the dual problem. Let λ(x, ξ) denote the optimal shadow value of the capacity
constraint in the primal problem P(x,ξ). Using duality theory, it can be shown that

Π(x, ξ) ≤ Π(x0, ξ) + λ(x0, ξ)>(x− x0), (4)
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and hence λ(·, ξ) is a subgradient of Π(·, ξ). Since Π(·, ξ) is concave for a fixed ξ, it is differentiable except
on a set A with Lebesgue measure zero. Since ξ is a continuous random variable, A is also negligible
with respect to the probability measure. Thus, λ(x, ξ) is unique and ∇xΠ(x, ξ) = λ(x, ξ) at a fixed x
almost surely (a.s.). Taking the expectation in Equation (4) yields that E [λ(·, ξ)] is a subgradient of
π(·). Therefore, E [λ(x, ξ)] is unique for all x ∈ Rq+ so that π(·) is differentiable and

∇π(·) = E [λ(·, ξ)] = E [∇xΠ(·, ξ)] . (5)

Note that Π(·, ξ) does not have to be differentiable everywhere, but expectation with respect to a contin-
uous random variable ξ yields a smooth function π(·). Equation (5) establishes that one can interchange
the expectation and differentiation operators. In Section 3 we will discuss how this interchange property
basically ensures that SAA is appropriate for tackling an optimization problem.
The analysis above shows that the true function π(·) and the sample function Π(·, ξ) share the same nice
structural properties; smoothness and concavity. This allows the multi-dimensional newsvendor problem
to be effectively solved by the SAA method. The sample average approximation function

fn(x) =
1
n

n∑
k=1

Π(x, ξk)− c>x

is piecewise linear and concave, but not smooth everywhere. However, the sample average approximation
function can be quickly smoothed out as the sample size n grows, so in practice, one can choose sufficiently
large n, and then apply an algorithm for optimization of smooth concave functions to solve the sample
average approximation problem using the gradient estimator 1

n

∑n
k=1 λ(x, ξk)− c. If the sample average

function is not smooth enough and any gradient-based algorithm is not appropriate to use, a subgradient
method for convex optimization can be applied to −fn(·). One can also apply two-stage stochastic linear
programming algorithms to solve the sampled problem [Birge and Louveaux, 1997].
One hopes that X∗n that we obtain by solving the SAA problem converges to a solution of the true
problem x∗. The critical condition for convergence is a uniform version of the strong law of large numbers
(ULLN), which takes the form

sup
x∈D
|fn(x)− f(x)| = sup

x∈D

∣∣∣∣∣ 1n
n∑
i=1

f(x, ξi)− E[f(x, ξ)]

∣∣∣∣∣→ 0

as n→∞ a.s. The ULLN ensures that the optimal objective value of the SAA problem converges to that
of the true problem. With additional conditions, the optimal SAA solution converges to the true optimal
solution. When the sample function is convex (concave), the pointwise law of large numbers ensures that
the ULLN holds on a compact set. We will further discuss conditions under which the ULLN holds in
Section 4.
In many problems, sample functions are not smooth and may have discontinuities. However, the true
problem may still exhibit nice structure, being smooth and even convex. In such a case, if the ULLN holds,
we may still be able to use a deterministic optimization technique to effectively solve the non-smooth
sample average problem and thereby obtain a good approximate solution.

Example 2. Multi-Mix Blending Problem
Consider a simple blending problem in which q products are made with p raw materials. The blend
products have to satisfy certain pre-specified quality requirements. The total processing costs incurred
depend on the product blending options used. Additionally, the production output has to meet minimum
requirements. A complication arises when some materials are available in different quantities at different
prices.
For the sake of illustration, we consider a problem with only one quality measure. For given raw material
type i = 1, . . . , p, and product type j = 1, . . . , q, let

• Qi be the value of the quality parameter for raw material i,

• bj be the threshold acceptable level of quality per unit of product j,

• cij be the cost of processing one unit of raw material i for product j,
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• xij be the amount of raw material i blended into product j,

• dj be the minimum output level required of product j, and

• ai be the available amount of raw material i.

The classical multi-mix blending problem is to determine the amount of raw material xij that minimizes
the total processing cost subject to quality requirements. This problem can be formulated as a linear
program. We modify this problem with the assumption that the raw material quality parameters Qi are
random with known probability distributions. In this case, the quality requirement constraints can only
be satisfied with a certain probability. Thus, instead of minimizing the total processing cost, the manager
chooses the amounts x of raw material to be blended in order to maximize the probability of achieving
the target quality while keeping the total processing cost within a certain level. This leads to the following
constrained stochastic optimization problem:

minx∈Rp×q
+

f(x) = P

(
p∑
i=1

(bj −Qi)xij > 0, j = 1, . . . q,

)
(6)

s.t.
p∑
i=1

q∑
j=1

cijxij ≤ τ (total processing cost constraints)

p∑
i=1

xij ≥ dj , j = 1, . . . , q (demand constraints)

q∑
j=1

xij ≤ ai, i = 1, . . . , p (resource constraints)

In general, analytic evaluation of the probability objective function is intractable, particularly when the
quality parameters Qi are correlated. In applying SAA, the random element ξ is taken to be all the quality
parameters Qi. The corresponding sample function f(x, ξ) is

f(x, ξ) = I

(
p∑
i=1

(bj −Qi)xij > 0, j = 1, . . . q,

)
.

Suppose that ξ is a nonnegative random vector with a continuous density function. Note that for any
feasible solution x, f(x) is an integral of a density function over a polyhedral set parameterized by
x. By using a classical result in mathematical analysis, it can be shown that the true function f is
differentiable and the gradient can be expressed as a surface integral [Kibzun and Kan, 1996]. By applying
Propositions 3 and 8 in Section 3, we can show that the ULLN for fn holds. Therefore, as long as we can
obtain a solution to the sample problem, we can gurantee the convergence of the SAA optimal values.
However, the sample function has a discontinuity whenever

∑p
i=1(bj − Qi)xij = 0 for some j = 1, . . . q,

and ∇xf(x, ξ) = 0 for any x except discontinuity points. That is, the sample average function fn(x) is
differentiable except on a set A of probability zero, and ∇fn(x) = 0 on Ac. This problem is ill-posed
and any point x ∈ Ac is a stationary point. Thus, any locally convergent algorithm that searches for a
stationary point is not applicable.
One approach to this problem is to approximate the sample function by using a smooth (or piece-wise
linear) function. The indicator sample function has a very simple structure, only taking on values of zero
or one. At any discontinuous point x ∈ A, we can obtain a smooth approximate function by smoothly
connecting the sample function on an open neighborhood of x. The resulting approximate function can
have a non-zero gradient that is selected to point in an uphill direction in this neighborhood. Then, we
can develop an algorithm that employs the gradient to search for an approximate optimal solution. In
the example above, we can use the following smooth approximation of the sample function f(x, ξ):

f(x, ξ, ε) = φ(h(x, ξ), ε),

where, h(x, ξ) = min{
∑p
i=1(bj −Qi)xij , j = 1, . . . , q} and φ : R× R\{0} → R is a continuously differen-

tiable real-valued function such that for any z ∈ R and a given ε > 0,
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a) φ(z, 0) = I(z ∈ (0,∞)), and

b) I(z ∈ (0,∞)) ≤ φ(z, ε) ≤ I(z ∈ (−ε,∞)).

If the smoothing parameter ε goes to zero as n increases, then under a set of regularity conditions, the
optimal solution of the smooth approximate problem converges to a stationary point of the true problem.
This smoothing technique has been widely used, particularly for minimizing risk measures such as VaR
and CVaR [Gaivoronski and Pflug, 2005, Alexander et al., 2006] as well as for handling chance constraints
[Hong et al., 2011]. Xu and Zhang [2009] provide simple examples of smoothing techniques and discuss
the local convergence of the SAA method with a smoothed sample function.
The smoothing approach above changes the true objective function to be optimized, and while the
magnitude of the change can be controlled through the parameter ε, one might wonder whether this
approximation can be avoided. Sometimes a conditional expectation can be used to smooth jumps in
the sample function f(·, ξ). This is called smoothed perturbation analysis (SPA) [Fu and Hu, 1997].
SPA was developed to overcome difficulties in applying infinitesimal perturbation analysis (see Section
3) in nonsmooth settings, and has been applied to a large class of stochastic discrete event systems. To
illustrate the SPA technique, we consider a company that produces only one type of product using two
types of raw material. Then, for any x = (x1, x2) > 0, the corresponding objective function is

f(x) = E[f(x, ξ)] = E

[
I

(
b

2∑
i=1

xi −Q1x1 −Q2x2 > 0

)]

= E

[
E

[
I

(
b

2∑
i=1

xi −Q1x1 −Q2x2 > 0

)
| Q2

]]

= E

[
FQ1

(
b
∑2
i=1 xi −Q2x2

x1

)]
, (7)

where FQ1 is the cumulative distribution function of Q1 (under the assumption that Q1 has a density).
If the density of Q1 is continuous, then at any fixed Q2, the function inside the expectation in (7) is
differentiable at x. Thus, if FQ1 is known, f(·) can be approximated instead by taking the the sample
average of this smooth sample function, the expectation of which is the exact function we truly wish to
minimize.
Smoothing techniques may not always be applicable, particularly when the sample function has a complex
structure. However, even in such a case, the gap between the sample function fn(·) and the true function
f(·) may still converge to 0 uniformly on the domain D as the sample size n grows, so that provided that
one can solve the SAA problem (2) the sequence of optimal objective function values will converge.

Example 3. Bus Scheduling Problem
Passengers arrive at a bus stop according to a Poisson process with rate λ over the interval [0, 1]. We
wish to schedule the arrival times of d infinite-capacity buses over this time interval so as to minimize
the expected sum of passenger wait times. We assume that an additional bus arrives at time 1.
Let x̃j denote the scheduled time of arrival of the jth bus, j = 1, 2, . . . , d + 1 where x̃d+1 = 1, and
let xj = x̃j − x̃j−1 denote the length of the time interval between the arrivals of buses j − 1 and j,
j = 1, 2, . . . , d + 1, where x̃0 = 0. The random element ξ here may be taken to be N , the number of
passengers to arrive over the time interval [0, 1], along with the times T1, T2, . . . , TN of their arrival.
The sample function f(x, ξ) may be written

f(x, ξ) =
N∑
i=1

d+1∑
j=1

(x̃j − Ti)I(Ti ∈ (x̃j−1, x̃j ]).

The order-statistic property of Poisson processes may be used to show directly (e.g., Ross [1996, p. 68])
that

f(x) = Ef(x, ξ) =
λ

2

d+1∑
j=1

x2
j ,

so that f(x) is convex and quadratic, and hence smooth. However, the sample functions have a disconti-
nuity whenever the arrival time of a bus coincides with the time of a passenger arrival.
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Like the multi-mix blending problem, for any fixed ξ, f(·, ξ) is differentiable except on a set A of prob-
ability zero. Unlike the multi-mix blending problem, the gradient of the sample function ∇xf(x, ξ) at
x ∈ Ac can take a non-zero value. For example, when d = 1, the derivative of f(x, ξ) for a fixed ξ is
zero on (0, T1) and positive at any differentiable point x ∈ (T1, 1). Note that the gradient of the sample
function does not provide any useful information about the (quadratic) true function, and hence any
gradient-based algorithm is highly unlikely to work well in this setting. Approximating the sample func-
tion with smoothing techniques is not a trivial problem in this case due to the complexity of the sample
function.
Instead, one might consider meta-modeling to solve this problem. If the difference between the sample
average and the true function is small enough for sufficiently large sample size n, then the true function
can be well approximated with a quadratic meta-model. Indeed, by applying Propositions 3 and 8, we can
show that the gap between the sample and the true function does not persist and eventually converges
to 0 uniformly on [0, 1]d.

3 Detecting When SAA is Appropriate

The key principles exemplified in Section 2 are that

1. SAA is appropriate only when the approximating functions fn have some structure that enables
the application of an efficient deterministic optimization algorithm, and

2. the limiting function f that we actually want to minimize shares that structure, so that the prop-
erties of the limiting function such as the location of local minima are similar to those of the
approximating function.

The approximating functions fn are observable because we can generate them in finite time, while the
limiting function f is not directly observable. Nevertheless, one can often infer structural properties of f
through the corresponding properties of the approximating functions fn and regularity conditions that
ensure that these properties persist in the limit as n→∞.
In this section we give sufficient conditions involving only the sample functions f(·, ·) (from which the
approximating functions fn(·) are built) for the true function f(·) to be continuous or differentiable at
a fixed point x. If these conditions apply at each point x in the domain, then one can conclude that
f(·) is continuous or differentiable over that domain. Perhaps surprisingly, one can often arrive at this
conclusion even when the sample functions do not possess these same properties over the entire domain.
Therefore, Principle 2 does not follow automatically from Principle 1.
These observations will not be surprising to those who are familiar with infinitesimal perturbation analysis
(IPA), and indeed, the results presented here can be viewed as a recasting of those ideas in the SAA
setting. If we take as given that SAA-appropriate problems are those for which both the approximating
functions fn(·) and f(·) are differentiable, and the derivatives of fn(·) converge to those for f(·) then we
arrive at an underlying theme of this section, which is the following “meta principle:”

SAA-appropriate problems are almost exactly those in which IPA applies.

In contrast to much of the IPA literature, we explicitly treat the case where d, the dimension of the
domain D, can be greater than one. The ideas involved are similar to the one-dimensional case, but some
care is required. See Glasserman [1991, Chapter 1] for an excellent treatment of the one-dimensional
case.
Our first result [Kim and Henderson, 2008] gives sufficient conditions for f(·) to be continuous at a fixed
point x ∈ D. The result is disarmingly straightforward to state and prove. Let B(x, δ) = {y : ‖y−x‖ ≤ δ}
denote the closed ball of radius δ around x.

Proposition 1. Fix x ∈ D. Suppose that f(·, ξ) is continuous at x a.s., i.e., for all ξ in a set of
probability 1, f(x+ h, ξ)→ f(x, ξ) as h→ 0. Suppose further that the family of random variables

(f(x+ h, ξ) : x+ h ∈ B(x, δ))

is uniformly integrable, for some δ > 0. Then f(·) is continuous at x.
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Proof. Continuity of f(·, ξ) on a set A of probability 1 ensures that

f(x) = E[f(x, ξ)I(ξ ∈ A)]

= E

[
lim
h→0

f(x+ h, ξ)I(ξ ∈ A)
]

= lim
h→0

E[f(x+ h, ξ)I(ξ ∈ A)] (8)

= lim
h→0

f(x+ h),

where the interchange (8) is justified by our assumption of uniform integrability.

As an immediate corollary we have the following result on the global continuity of f(·).

Corollary 2. Suppose that the conditions of Proposition 1 hold at each x ∈ D. Then f(·) is continuous
on D.

What is perhaps surprising about this corollary is that we may be able to establish that f(·) is continuous
on D even when the sample functions f(·, ξ) are discontinuous on D almost surely! The apparent
contradiction dissolves when one realizes that the assumption of Proposition 1 requires continuity of
f(·, ξ) only locally at x. There may be discontinuities of this function at points outside a neighbourhood
of x, and this neighbourhood can depend on ξ.
As an example, let us revisit the bus-scheduling problem from Section 2. The sample functions f(·, ξ) have
discontinuities at all points x such that a bus arrival time coincides with a passenger arrival time in the
interval (0, 1). Consequently, the sample functions f(·, ξ) are discontinuous on D almost surely. However,
for a fixed x ∈ D, f(·, ξ) is continuous at x unless a passenger arrival coincides with one of the bus arrival
times encoded in x. This happens with probability 0. Furthermore, the sum of the waiting times of
the N arriving passengers is bounded by N which has finite expectation, and so (f(y; ξ) : y ∈ B(x, δ))
is uniformly integrable. Proposition 1 then ensures that f is continuous at x, and Corollary 2 allows
us to conclude that f is continuous on D. We already knew that f is continuous on D because it is a
convex quadratic. However, this same argument can be used to show continuity in other examples where
the form of f(·) is unknown. See Kim and Henderson [2008] for an example involving locating multiple
ambulances. This result for the bus-scheduling example is a special case of the following general result.

Proposition 3. Suppose that

(i) for any fixed ξ, f(·, ξ) is a piecewise Lipschitz continuous function, that is, there exists a countable
partition of D such that the restriction of f(·, ξ) to the interior of each component is Lipschitz
continuous,

(ii) the Lipschitz constants in all components are bounded by an integrable random variable L(ξ),

(iii) the jump size at any discontinuous point x ∈ D is bounded by a random variable J(ξ) with
E[J(ξ)2] <∞, and

(iv) for any x ∈ D, m(x, x+h, ξ)→ 0 a.s. as ‖h‖ → 0, where m(x, x+h, ξ) is the number of discontinuity
points of the sample function f(·, ξ) restricted to the line segment joining x and x+ h and satisfies

sup
x+h∈B(x,δ)

m(x, x+ h, ξ) ≤M(ξ),

for some δ > 0 and a random variable M(ξ) with E[M2(ξ)] <∞.

Then the assumptions in Proposition 1 hold, and hence f(·) is continuous on D.

Proof. Fix x ∈ D. We have

|f(x+ h, ξ)− f(x, ξ)| ≤ ‖h‖L(ξ) + J(ξ)m(x, x+ h, ξ). (9)

By Assumption (iv), the right hand side of (9) converges to zero a.s. as h→ 0. Thus, f(·, ξ) is continuous
at x a.s. Since m(x+ h, x, ξ) ≤ M(ξ) (over x+ h ∈ B(x, δ)), the right hand side of (9) is dominated by
an integrable random variable ‖h‖L(ξ) + J(ξ)M(ξ). Thus, {|f(x + h, ξ) − f(x, ξ)| : x + h ∈ B(x, δ)} is
uniformly integrable, and so is {f(x+ h, ξ) : x+ h ∈ B(x, δ)}.
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As with continuity, one can obtain differentiability results for f(·) based on local properties of the sample
functions f(·, ·).

Proposition 4. Fix x in the interior of D. Suppose that f(·, ξ) is differentiable at x w.p.1, and let
∇f(x, ξ) be its gradient. Suppose further that the family of random variables(

f(x+ h, ξ)− f(x, ξ)
‖h‖

: 0 < ‖h‖ ≤ δ
)

(10)

is uniformly integrable, for some δ > 0. Then f(·) is differentiable at x, and ∇f(x) = E∇f(x, ξ).

Proof. We have that for all ξ in a set A of probability 1,

f(x+ h, ξ) = f(x, ξ) + h>∇f(x, ξ) + ‖h‖R(x, ξ, h), (11)

where the remainder term R(x, ξ, h) → 0 as h → 0. For ξ 6∈ A, define ∇f(x, ξ) = 0 and R(x, ξ, h) = 0.
Taking h = rei, i.e., the ith unit vector scaled by r, for each i = 1, 2, . . . , d, and letting r → 0, the uniform
integrability assumption implies that E|∂f(x, ξ)/∂xi| < ∞. Hence all d components of E∇f(x, ξ) exist
and are finite. Taking expectations in (11) we obtain that

f(x+ h) = f(x) + h>E∇f(x, ξ) + ‖h‖ER(x, ξ, h),

so the result will follow if we show that ER(x, ξ, h)→ 0 as h→ 0. From (11) we have that for ξ ∈ A,

f(x+ h, ξ)− f(x, ξ)
‖h‖

=
h>

‖h‖
∇f(x, ξ) +R(x, ξ, h),

and the left-hand side is uniformly integrable (over ‖h‖ ∈ (0, δ]) by assumption. But each component
of ∇f(x, ξ) is integrable, and therefore h>∇f(x, ξ)/‖h‖ is uniformly integrable for ‖h‖ ∈ (0, δ]. It
follows that R(x, ξ, h) is uniformly integrable for h ∈ (0, δ], and therefore ER(x, ξ, h) → 0 as h → 0 as
required.

Corollary 5. Suppose that the conditions of Proposition 4 hold at each x in the interior of D. Then
f(·) is differentiable on the interior of D with ∇f(x) = E∇f(x, ξ).

It is again striking that under certain verifiable conditions, one can show that f(·) is differentiable
throughout the interior of D, even if the sample functions f(·, ξ) are not. In fact, this is the norm in ap-
plications arising in discrete-event simulation, in that the functions f(·, ξ) typically fail to be differentiable
on “seams” in D that have measure 0.
The uniform integrability assumption is almost always verified (either locally or on the interior of D) by
showing that f(·, ξ) is Lipschitz with Lipschitz constant L(ξ) on the appropriate set, where EL(ξ) <∞.
Indeed, the Lipschitz condition ensures that |f(x+h, ξ)−f(x, ξ)| ≤ L(ξ)‖h‖ and the uniform integrability
requirement follows immediately. But how can this property be verified? In one dimension, one can appeal
to the following result, known as the generalized mean value theorem, in which the Lipschitz constant
for a sample function f(·, ξ) arises from a bound on the (sample) derivative. For a proof, see Dieudonné
[1960, Section 8.5].

Theorem 6. Let g be a continuous real-valued function on the closed interval [a, b] that is differentiable
everywhere except possibly on a set C of at most countably many points. Then for all x and x+h in [a, b]
with h 6= 0, ∣∣∣∣g(x+ h)− g(x)

h

∣∣∣∣ ≤ sup
y∈[a,b]\C

|g′(y)|.

In higher dimensions, we can again apply this result. One difficulty is that real-valued (sample) func-
tions arising in discrete-event simulation often fail to be differentiable along “seams,” so the set of
non-differentiable points can be uncountable. Fortunately, it is sufficient for our purposes to apply the
generalized mean-value theorem along certain line segments only. So long as these line segments intersect
the non-differentiable set in at most countably many places, we can apply the generalized mean-value
theorem. The following proposition gives sufficient conditions for the uniform integrability condition (10)
in Proposition 4.

9



Proposition 7. For some δ > 0 suppose that for all ξ in a set of probability 1,

(i) f(·, ξ) is continuous in B(x, δ);

(ii) C(ξ) ∩ [x, y] is countable for all y ∈ B(x, δ), where C(ξ) denotes the points of non-differentiability
of f(·, ξ) in B(x, δ) and [x, y] denotes the line segment joining x and y; and

(iii) sup
y∈B(x,δ)\C(ξ)

‖∇f(y, ξ)‖ ≤ L(ξ) <∞.

If EL(ξ) <∞ then the uniform integrability condition (10) holds.

Proof. For ‖h‖ ≤ δ and ξ in the set of probability 1,

|f(x+ h, ξ)− f(x, ξ)| ≤ sup
y∈[x,x+h]\C(ξ)

|h>∇f(y, ξ)| (12)

≤ ‖h‖ sup
y∈[x,x+h]\C(ξ)

‖∇f(y, ξ)‖ (13)

≤ ‖h‖L(ξ),

where (12) and (13) follow from the generalized mean-value theorem and the Cauchy-Schwarz inequality
respectively. The result follows since L(ξ) is integrable.

Sometimes one can verify the Lipschitz property directly, as in the following example.

Example 4. A depot is to be located in the unit square [0, 1]d. Each night a set of N requests for pickups
the following day is made, where N has finite mean. Conditional on N ≥ 1, the N pickup locations are
independent and identically distributed with density p(·) on the unit square. The pickups are completed in
a single tour by a van that travels in a straight line from pickup to pickup (Euclidean distance), visiting all
pickups before returning to the base. The sequence of pickups is chosen so as to minimize the total travel
distance of the van, i.e., the sequence of pickups is the solution to a traveling salesperson problem, starting
and finishing at the depot. In this case, the random element ξ consists of the number and locations of
pickups, and x gives the Cartesian coordinates of the depot. The goal is to select the depot location to
minimize the expected distance traveled by the van.
Here f(x, ξ) gives a realization of the distance traveled by the van. We can write

f(x, ξ) = min
π
f(x, ξ, π), (14)

where π is a permutation specifying the order in which pickups are visited and f(x, ξ, π) is the resulting
distance traveled. (We exclude duplicate permutations that are the reverse of each other in this pointwise
minimum.) Each function f(·, ξ, π) is differentiable and in fact has partial derivatives bounded by 2. (To
see why, notice that f(x, ξ, π) gives the sum of the distance from x to the first pickup, the distance from
the last pickup to x, and the sum of the “internal” distances between the pickups of the permutation. The
internal distances do not change as x varies.) Hence, f(·, ξ, π) is Lipschitz with Lipschitz constant 2 for
all ξ, π. It then follows from (14) that f(·, ξ) is Lipschitz with Lipschitz constant 2. Furthermore, for
fixed x, the set of ξ for which f(·, ξ) fails to be differentiable at x are such that multiple permutations
attain the minimum in (14). This set has probability 0 since pickup locations have a density. It follows
from our previous discussion that f(·) is differentiable at x and ∇f(x) = E∇f(x, ξ).

4 Known Properties

In this section, we discuss some known properties for well-structured unconstrained optimization prob-
lems. Here “well-structured” means that the sample function enjoys some structural property such as
continuity or differentiability. We first investigate under which conditions the optimal solution and value
of the SAA problem approach those of the true problem as the sample size n grows. Then, we discuss
how quickly this convergence occurs via the Central Limit Theorem (CLT). We also briefly present the
convergence of local solutions for both smooth and nonsmooth problems.
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4.1 Almost Sure Convergence

As we briefly discussed in Section 2, uniform convergence of the sample average functions is the key
condition for establishing convergence of optimal objective values and solutions in SAA. Indeed, one
immediate consequence is the consistency of the SAA optimal values, that is, v∗n → v∗ a.s. as n → ∞,
where v∗n and v∗ are the optimal objective values of the SAA problem (2) and the true problem (1),
respectively. To see why, note that for a fixed sequence (ξn : n ≥ 1), (fn : n ≥ 1) can be viewed as
a sequence of deterministic functions. Suppose that fn converges to the true function f uniformly on
D. Then, for any sequence {xn} ⊂ D converging to x ∈ D, fn(xn) converges to f(x). Many problems,
including those with discontinuous sample functions in Section 2, satisfy this uniform convergence. When
the sample function f(·, ξ) is convex a.s., the pathwise LLN is equivalent to the ULLN on a compact set
[Shapiro, 2003, Corollary 3]. In a problem with non-convex functions, the following result shows that
the conditions for the continuity of the true function f(·) discussed in Section 3 are, in fact, sufficient to
ensure the uniform convergence of the approximating functions on a compact set.

Proposition 8. Let D be a nonempty compact set. For any fixed x ∈ D, suppose that f(·, ξ) is continuous
at x a.s., and that there exists δ > 0 such that the family of random variables {f(y, ξ) : y ∈ B(x, δ)} is
uniformly integrable. Then {fn(x)} converges to f(x) uniformly on D, a.s. as n→∞.

Proof. The proof can be carried out by adapting the proof of Proposition 7 in Shapiro [2003]. Choose
x̃ ∈ D. Let {δk ≤ δ(x̃) : k = 1, 2, . . .} be a sequence of positive numbers decreasing to 0, and define

αk(ξ) = sup
x∈B(x̃,δk)

|f(x, ξ)− f(x̃, ξ)|.

By the continuity of f(·, ξ) at x̃, αk(ξ) goes to zero a.s. as k increases. The uniform integrability
assumption ensures that {αk(ξ) : k = 1, 2 . . .} is uniformly integrable, and hence

lim
k→∞

E[αk(ξ)] = E

[
lim
k→∞

αk(ξ)
]

= 0.

Note that

sup
x∈B(x̃,δk)

|fn(x)− fn(x̃)| ≤ 1
n

n∑
i=1

αk(ξi). (15)

By the LLN, the right-hand side of (15) converges to E[αk(ξi)] a.s. as n → ∞. Thus, for given ε > 0,
there exists a neighborhood V of x̃ such that, w.p.1 for sufficiently large n,

sup
x∈V ∩D

|fn(x)− fn(x̃)| < ε.

Since D is compact, there exists a finite number of points x1, . . . , xm ∈ D and corresponding neighbor-
hoods V1, . . . , Vm covering D such that w.p.1 for sufficiently large n,

sup
x∈Vj∩D

|fn(x)− fn(xj)| < ε, j = 1, . . . ,m. (16)

By Proposition 1, f(·) is continuous. Thus, we can choose the neighborhoods V1, . . . , Vm in such a way
that

sup
x∈Vj∩D

|f(x)− f(xj)| < ε, j = 1, . . . ,m. (17)

By the LLN, w.p.1 for sufficiently large n,

|fn(xj)− f(xj)| < ε, j = 1, . . . ,m. (18)

Combining (16)-(18), w.p.1 for sufficiently large n, we have

sup
x∈D
|fn(x)− f(x)| < 3ε.
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When the sample function is continuous, the ULLN implies the continuity of the true function f. However,
in general, the continuity of the true function is not a necessary condition for uniform convergence of
the approximating function fn. For example, consider a cumulative distribution function (cdf) f(x) =
P (ξ ≤ x) and the empirical cdf fn(x). By the Glivenko-Cantelli Theorem [Billingsley, 1995, p. 269],
fn converges to f uniformly on R even if f is discontinuous. Optimizing a discontinuous function is in
general a difficult problem, and many practical problems naturally exhibit continuity properties. In this
article we therefore focus on problems where f is continuous, unless the domain D is a discrete set.
We introduce some notation to proceed to the convergence results below. Let Π∗n and π∗ denote the set
of optimal solutions of the SAA and the true problems, respectively. We define the Euclidean distance
from a point x to a set B to be d(x,B) = infy∈B ‖x− y‖, and the distance between two sets A,B ⊂ Rq
to be D(A,B) = sup{d(x,B) : x ∈ A}. In the next theorem, we give convergence results based on the
continuity of the true function and uniform convergence.

Theorem 9 (Theorem 5.3, Shapiro et al. [2009]). Suppose that there exists a compact subset C ⊂ Rd
such that

(i) π∗ is non-empty and contained in C,

(ii) {fn(x)} converges to f(x) uniformly on C, a.s. as n→∞, and that

(iii) for sufficiently large n, Π∗n is non-empty and contained in C a.s.

Then v∗n → v∗. Furthermore, if the true function f(·) is continuous on C, then D(Π∗n, π
∗) → 0 a.s. as

n→∞.

Proof. Fix ε > 0. Uniform convergence of fn to f on C ensures that

fn(x) ≥ f(x)− ε

for all x ∈ C, for sufficiently large n a.s. The assumption that Π∗n ⊆ C ensures that v∗n is attained on C
for sufficiently large n a.s., so v∗n ≥ v∗−ε for sufficiently large n a.s. Since ε was arbitrary, lim infn v∗n ≥ v∗
a.s. Also, since there exists x∗ ∈ π∗ ⊆ C, v∗n ≤ fn(x∗) → v∗ as n → ∞ a.s. Thus, v∗n → v∗ as n → ∞
a.s. Turning to convergence of the solution set, suppose that D(Π∗n, π

∗) 9 0. Then, there exists Xn ∈ Π∗n
such that for some ε > 0, d(Xn, π

∗) ≥ ε for all n ≥ 1. Since C is compact, by passing to a subsequence if
necessary, Xn converges to a point x∗ ∈ C, and f(x∗) > v∗. On the other hand,

fn(X∗n)− f(x∗) = [fn(X∗n)− f(X∗n)] + [f(X∗n)− f(x∗)] (19)

Both the first term and the second term in the right hand side of (19) converge to zero by the uniform
convergence assumption and continuity of f , respectively. Thus, v∗n → f(x∗) > v∗, which contradicts the
fact that v∗n → v∗.

Theorem 9 ensures that, if X∗n solves the SAA problem exactly, then d(X∗n, π
∗) → 0 a.s. as n → ∞.

Moreover, if the true problem has a unique optimal solution x∗, then X∗n → x∗. When the sample
functions are convex, the set of regularity conditions in Theorem 9 can be relaxed by using the theory of
epi-convergence [Shapiro et al., 2009, Theorem 5.4].
Now we consider the case where D is a finite set and discuss the convergence of ε-optimal solutions in
the SAA method. We first introduce some notation. For ε ≥ 0, let

π∗(ε) := {x ∈ D : f(x) ≤ v∗ + ε}, Π∗n(ε) := {x ∈ D : fn(x) ≤ v∗n + ε} (20)

denote the ε-optimal solutions for the true and the SAA problems, respectively. Since D is finite, the
pathwise LLN implies the ULLN. Thus the almost sure convergence of v∗n to v∗ is guaranteed. Further-
more, asymptotic normality of v∗n follows under moment conditions if the optimal solution is unique.
Also, it can be shown that for any ε ≥ 0, Π∗n(ε) ⊂ π∗(ε) w.p.1 for n sufficiently large [Kleywegt et al.,
2001]. This means that any ε-optimal solution of the SAA problem is an ε-optimal solution of the true
problem for large enough n. In particular, if the true problem has a unique solution x∗, then Π∗n = {x∗}
w.p.1 for n large enough. But, how quickly does the probability of {Π∗n(ε) ⊂ π∗(ε)} approach one as n
increases? Large deviation analysis shows that under a mild regularity condition (essentially finiteness
of the moment generating function of f(x, ξ) at each fixed x), the probability Pr{Π∗n(δ) * π∗(ε)} for
0 ≤ δ < ε, converges to zero at an exponential rate. We discuss this further in Section 5.
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4.2 Convergence Rates for the SAA Method

There exists a well-developed statistical inference for estimators obtained from the SAA approach. From
this inference, we can obtain error bounds for obtained solutions and select the sample size n to obtain a
desired level of accuracy. The first result below by Mak et al. [1999] states that the estimator v∗n for v∗

is negatively biased and the expected value of v∗n monotonically increases. This monotonicity property
of E[v∗n] is desirable in the sense that we can expect a tighter lower bound as n increases.

Proposition 10. For all n ≥ 1, E[v∗n] ≤ E[v∗n+1], and E[v∗n] ≤ v∗.

Proof. Since ξ1, ξ2, . . . are i.i.d.,

E[v∗n+1] = E

[
min
x∈D

1
n+ 1

n+1∑
i=1

f(x, ξi)

]
= E

min
x∈D

1
n+ 1

n+1∑
i=1

 1
n

∑
j 6=i

f(x, ξj)


≥ 1

n+ 1

n+1∑
i=1

E

min
x∈D

 1
n

∑
j 6=i

f(x, ξj)

 = E[v∗n].

For any x̃ ∈ D, fn(x̃) ≥ minx∈D fn(x). By taking expectation on both sides, we have

v∗ = min
x∈D

E [f(x)] = min
x∈D

E [fn(x)] ≥ E
[
min
x∈D

fn(x)
]

= E[v∗n].

Next, we discuss the asymptotic behavior of the SAA optimal objective value v∗n. For a sequence of
random variables {Xn} and deterministic constants βn, we say that Xn = op(βn), if Xn/βn → 0 in
probability. We also say that Xn = Op(βn), if {Xn/βn} is bounded in probability (tight), that is, for any
ε > 0, there exists M > 0 such that Pr{|Xn/βn| > M} < ε, for all n.
First, assuming that Ef2(x, ξ) <∞, we have the CLT for any fixed x ∈ D,

√
n(fn(x)− f(x)) ⇒ Z(x)

as n→∞. Here, the notation “ ⇒ ” signifies convergence in distribution, and Z(x) is a normal random
variable with mean 0 and variance σ2(x) = Var[f(x, ξ)]. The CLT implies that the error fn(x)− f(x) is
of order Op(n−1/2). Under a set of mild regularity conditions, the same canonical convergence rate of v∗n
can be obtained by applying a multidimensional version of the CLT to f.

Theorem 11 (Theorem 5.7, Shapiro et al. [2009]). We suppose that

(i) D is compact,

(ii) E[f(x, ξ)2] <∞, for some x ∈ D,

(iii) f(·, ξ) is Lipschitz on D with Lipschitz constant L(ξ) a.s., and E
[
L(ξ)2

]
<∞.

Then,
v∗n = inf

x∈π∗
fn(x) + op(n−1/2)

and
√
n(v∗n − v∗) ⇒ inf

x∈π∗
Z(x) (21)

as n→∞, where Z is a Gaussian process on D with EZ(x) = 0 and Cov(Z(x), Z(y)) = Cov(f(x, ξ), f(y, ξ)),
for all x, y ∈ D.

Proof. The essential idea of the proof is to employ a functional CLT for fn and the Delta method
[Billingsley, 1995] to V (f), where V is the real-valued functional given by V (g) = minx∈D g(x), for any
continuous function g on D.
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When the true problem has a unique optimal solution x∗, (21) implies that v∗n is asymptotically normally
distributed. It again follows from (21) that under some uniform integrability conditions, the bias E[v∗n]−v∗
is of order O(n−1/2). If the true problem has a unique solution, E[v∗n]− v∗ is of order o(n−1/2), and with
additional moments and second order conditions on f , E[v∗n]− v∗ is, in fact, O(n−1).
The SAA optimal solution X∗n requires a stronger set of conditions to achieve the same asymptotic
properties as v∗n. When f is smooth and has a unique solution, under some regularity conditions, the
solution X∗n of the the SAA problem converges to the unique solution x∗ of the true problem at the
canonical rate n−1/2. One of the essential regularity conditions is that the true function f increases
quadratically near the unique solution x∗. (It may converge at a faster rate if the function f increases
linearly near x∗, as may happen if x∗ lies on the boundary of D.) We say that the quadratic growth
condition is satisfied at x̃ if there exists α > 0 and a neighborhood V of x̃ such that for all x ∈ D ∩ V,

f(x) ≥ f(x̃) + α‖x− x̃‖2.

If D is a convex, full dimensional set and x̃ lies in the interior of D, then the quadratic growth condition
is equivalent to the second order sufficient optimality condition, that is, the Hessian matrix ∇2f(x̃)
is positive definite. In the convergence result below, we provide conditions that are relatively easy to
understand and a sketch of the proof. The readers are referred to Shapiro [1993] and Shapiro et al. [2009]
for the proof under more general regularity conditions.
We say g : Rd → R is (Fréchet) directionally differentiable at x if there exists a positively homogeneous
function Dxg : Rd → Rd such that

lim
‖u‖↓0

|g(x+ u)− g(x)−Dxg(u)|
‖u‖

= 0.

Theorem 12. Assume that the following hold:

(i) The true function f has a unique minimizer x∗ ∈ D.

(ii) f(·, ξ) is Lipschitz with Lipschitz constant L(ξ) on D a.s., and E [L(ξ)] <∞.

(iii) f(·, ξ) is continuously differentiable at any x in a neighborhood of x∗ a.s.

(iv) E[‖∇xf(x, ξ)‖2] <∞, for some x ∈ D.

(v) ∇xf(·, ξ) is Lipschitz with Lipschitz constant K(ξ) in a neighborhood of x∗ a.s., and E
[
K(ξ)2

]
<∞.

(vi) f satisfies the quadratic growth condition at x∗.

Then, ‖X∗n − x∗‖ = Op(n−1/2). Furthermore, assume that

(vii) There exists a neighborhood U of x∗ and α > 0 such that for every u in a neighborhood of zero, the
following problem

min
x∈D

f(x) + u · x (22)

has an optimal solution x∗(u) ∈ U and the quadratic growth condition holds at x∗(u).

If x∗(u) is directionally differentiable at u = 0 and D0x
∗(·) is continuous,

√
n(X∗n − x∗) ⇒ D0x

∗(Z) (23)

as n→∞, where Z is a multivariate normal vector with mean 0 and covariance matrix

Σ = E
[
(∇f(x∗, ξ)−∇f(x∗))>(∇f(x∗, ξ)−∇f(x∗))

]
.

Moreover, if D0x
∗(·) is linear, then

√
n(X∗n − x∗) is asymptotically normally distributed.
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Proof. By Assumptions (i) − (iii), X∗n → x∗ a.s. as n → ∞, and f(·) is Lipschitz continuous and
continuously differentiable at x∗. Let δn(x) = fn(x)− f(x).
By the quadratic growth condition (vi) and the generalized mean-value theorem, we have

‖X∗n − x∗‖ ≤
supx∈B(x∗,‖X∗

n−x∗‖) ‖∇δn(x)‖
α

.

With Assumptions (iv) − (v), by applying the functional CLT and the continuous mapping theorem
[Billingsley, 1995] to ∇δn(·), we have supx∈B(x∗,‖X∗

n−x∗‖) ‖∇δn(x)‖ = Op(n−1/2), and hence ‖X∗n−x∗‖ =
Op(n−1/2) follows.
By applying the quadratic growth condition (vii) to x∗(∇δn(x∗)) and using the Lipschitz continuity of
∇f(·), it can be shown that

X∗n = x∗(∇δn(x∗)) + op(n−1/2).

Since x∗(u) is directionally differentiable at u = 0,

x∗(∇δn(x∗))− x∗ = D0x
∗(∇δn(x∗)) + op(n−1/2).

Thus, it follows from the CLT on ∇δn(x∗) and the continuous mapping theorem that
√
n(X∗n − x∗) = D0x

∗(
√
n∇δn(x∗)) + op(1) ⇒ D0x

∗(Z).

A second-order condition can ensure the quadratic growth condition (vii) for the parameterized objective
function f(x) + u · x. For example, if D is convex, f is twice continuously differentiable, and ∇2f(x∗) is
positive definite, Assumption (vii) holds by setting α as the lower bound of the smallest eigenvalue of
∇2f(x) in a neighborhood of x∗. If x∗(·) is Lipschitz, the Fréchet derivative D0x

∗(·) is continuous and
linear, and thus the asymptotic normality of X∗n can be ensured.

4.3 The SAA Method in the Nonconvex Case

Thus far, the convergence theory for SAA methods that we have presented has been derived under the
assumption that we can produce a global minimum of the SAA problem in D, and hence the theory can
be applied primarily to convex problems. In the nonconvex case, the best that we can hope for from a
computational point of view is that we can generate local minimizers of the SAA problems. When the
sample function is differentiable almost surely on D, the validity of IPA ensures the convergence of the
first order points of the SAA problem to those of the true problem. This reaffirms the key principle that
we observed in Section 3: when IPA is valid, the SAA method is appropriate.
For x ∈ D, N (x) denotes the normal cone to D at x. For x in the interior of D, N (x) = {0}. For x on
the boundary of D, N (x) is the convex cone generated by the outward normals of the faces on which x
lies. When D is convex,

N (x) = {y ∈ Rd : y>(x′ − x) ≤ 0, for all x′ ∈ D}.

A first-order critical point x of a smooth function f satisfies

−∇f(x) = z for some z ∈ N (x),

i.e., the direction of most rapid descent lies in the normal cone (of directions we cannot move in without
leaving D). Let S∗n and S∗ be the set of first-order critical points of the approximating function fn and
the true function f in D, respectively. The following theorem states first-order convergence results of the
SAA method, and is an immediate result of Shapiro [2003, Proposition 19].

Theorem 13. Suppose that there exists a compact subset C ⊂ Rd such that

(i) S∗ is non-empty and contained in C,

(ii) the true function f(·) is continuously differentiable on an open set containing C,
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(iii) {∇fn(x)} converges to ∇f(x) uniformly on C, a.s. as n→∞, and that

(iv) for sufficiently large n, S∗n is non-empty and contained in C w.p.1.

Then D(S∗n, S
∗)→ 0 a.s. as n→∞.

Proof. The proof can be derived from stochastic generalized equations. We do not introduce them here;
rather, we present a relatively easier version of the proof with the added assumption that the domain D
is compact and convex. Suppose that D(S∗n, S

∗) 9 0. Since D is compact, by passing to a subsequence
if necessary, we can assume that there exists a convergent sequence of solutions {X∗n ∈ S∗n} such that for
some ε > 0, d(X∗n, S

∗) ≥ ε for all n ≥ 1. Let x∗ be a limit point of {X∗n}, and then x∗ /∈ S∗. On the other
hand, since D is convex and each X∗n satisfies the first order criticality condition, for any u ∈ D

∇fn(X∗n)>(u−X∗n) ≥ 0 w.p.1.

By (ii) and (iii),
∇fn(X∗n)>(u−X∗n)→ ∇f(x∗)>(u− x∗)

a.s. as n → ∞. Thus, ∇f(x∗)>(u − x∗) ≥ 0 for all x ∈ D. But x∗ /∈ S∗ implies that for some u ∈ X
∇f(x∗)>(u− x∗) < 0 and we have a contradiction.

The assumptions (ii) and (iii) above are satisfied under the sufficient conditions for a valid IPA gradient
estimator presented in Section 3. When the sample path function is continuously differentiable a.s.
at any x ∈ D, ∇f(·, ξ) is uniformly integrable under the assumptions in Proposition 7. By applying
Proposition 8 to each component of ∇f(·, ξ), we can show the continuity of ∇f(·) and the uniform
convergence of {∇fn(·)}.
Theorem 13 implies that the limit point of any solution sequence {X∗n ∈ S∗n} must lie in S∗. This does
not guarantee that {X∗n} converges almost surely. When there are multiple critical points, the particular
critical point chosen from S∗n depends, among other things, on the optimization algorithm that is used.
The existence of a unique first-order critical point can ensure convergence. However, this condition tends
to be difficult to verify in practice.
The second order convergence of the SAA method can be obtained by further strengthening the assump-
tions in Theorem 13. Now, we select X∗n from a set of local minimizers of the SAA problem. By passing
to a subsequence if necessary, we assume that {X∗n} converges to some random point x∗ ∈ D a.s. as
n→∞. The additional condition required is that there must exist a neighborhood of X∗n in which X∗n is
a local minimizer and this neighborhood does not shrink to a singleton when n→∞.

Theorem 14 (Theorem 4.1, Bastin et al. [2006]). Suppose that the assumptions in Theorem 13 hold.
Furthermore, we assume that for any fixed sample path ξ̄ = {ξ1, ξ2, . . .}, there exists n0 > 0 and δ > 0
such that for all n ≥ n0, and x ∈ B(X∗n, δ) ∩ D, fn(X∗n) ≤ fn(x). Then x∗ is a local minimum of f(·)
w.p.1.

Nonsmooth objective functions arise in a number of interesting stochastic optimization problems such as
stochastic programs with recourse and stochastic min-max problems [Ruszczyński, 1987]. To close this
section, we briefly discuss the local convergence of the SAA method in the nonsmooth setting. When the
true and sample functions are continuous and nonsmooth, we can derive convergence results based on the
Clarke generalized gradient [Clarke, 1983]. For a locally Lipschitz function f, the generalized gradient
∂f can be defined as the convex hull of all the limit points of ∇f(xk), where {xk} is any sequence
which converges to x while avoiding the points where ∇f(xk) does not exist. With some technical
definitions, the expectation of the generalized gradient of the sample function can be well-defined [Wets,
1989, Homem-de-Mello, 2001].
Essentially, the same principle from the smooth case can hold for the nonsmooth problem. When IPA
is valid, that is, ∂E[f(x, ξ)] = E[∂xf(x, ξ)], SAA can be appropriate and the first order convergence can
be achieved. A sufficient condition for the validity of IPA is that the sample function is locally Lipschitz
continuous with integrable Lipschitz constant. This condition is a fairly general condition in the Lipschitz
continuous setting, just as it is in the smooth case.
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5 SAA Implementation

Implementing the SAA method is conceptually straightforward since only two choices need to be made:
the sample size with which to generate the sample-path problem, and the numerical procedure with which
to solve the generated sample-path problem. Assuming a numerical procedure is (somehow) chosen using
cues laid out in Sections 2 and 3, the only remaining question then is choosing an appropriate sample
size. Towards making this decision, a reasonable question might be to ask what minimum sample size
ensures that the solution resulting from the generated sample-path problem is of a stipulated quality,
with a specified probability. In what follows, we present a “minimum sample size” result that answers this
question. This is followed by a discussion of certain refined versions of SAA that are aimed at enhancing
the implementability of the SAA method.

5.1 Sample Size Choice

Recall that for ε ≥ 0, π∗(ε) and Π∗n(ε) denote the ε-optimal solutions for the true and the sample-path
problems respectively. Theorem 15 presents an expression for the sample size n that guarantees that
Pr{Π∗n(δ) * π∗(ε)} ≤ α, for given α > 0, ε > 0, and a chosen constant δ < ε. The implication is that
when an SAA problem is generated with a sample size exceeding the expression provided, the resulting
solution is guaranteed to be ε-optimal with probability exceeding 1−α. To guide intuition, we present the
result only for the setting where D is finite. The corresponding expression for the general case follows in
a straightforward fashion after making additional assumptions that help to approximate {f(x) : x ∈ D}
with {f(x) : x ∈ D̃}, where D̃ is an appropriately chosen finite set that in a certain precise sense
“approximates” D.

Theorem 15 (Theorem 5.18, Ruszczyński and Shapiro [2003]). Suppose there exists a constant σ > 0 such
that for any x ∈ D \ π∗(ε), the moment generating function Mx(t) of the random variable f(x, ξ)− f(x)
satisfies Mx(t) ≤ exp(σ2t2/2),∀t ∈ R. Then, for ε > 0, 0 ≤ δ < ε, and α ∈ (0, 1), any n satisfying

n ≥
2σ2 ln( |D|α )

(ε− δ)2
(24)

guarantees that Pr{Π∗n(δ) * π∗(ε)} ≤ α.

The proof of Theorem 15 proceeds by using the crude bound

Pr{Π∗n(δ) * π∗(ε)} ≤
∑

x∈D\π∗(ε)

Pr{fn(x) ≤ v∗ + ε}

≤ |D| exp{−nη(δ, ε)}
≤ |D| exp{−n(ε− δ)2/2σ2}, (25)

where η(δ, ε) = minx∈D\π∗(ε) Ix(−δ), and Ix(·) is the large deviations rate function of f(x, ξ)− f(x). The
expression in (24) then follows upon replacing the left-hand side of (25) with α and then solving for the
sample size. Note that in choosing a sample size through (24), the tolerance δ to which the SAA problem
is solved still needs to be chosen by the user. It can also be seen from the expression in (24) that the
dependence of the minimum sample size on the error probability α is logarithmic, and hence weak.
The sample size directive given by Theorem 15, while useful in some SAA settings, can be overly conserva-
tive [Luedtke and Ahmed, 2008, Ruszczyński and Shapiro, 2003], often resulting in a loss in computational
efficiency. This is unsurprising considering the crude bound leading to (25), and the existence of unknown
constants, e.g., σ2 in the case of finite D and several others in the case of continuous D, that nevertheless
need to be chosen by the user. Such loss in efficiency resulting from the sometimes impractical sample
size directives has been one of the primary impediments to SAA’s implementability.

5.2 Refined SAA Methods

With a view towards easier implementation, various refined versions [Pasupathy, 2010, Homem-de-Mello,
2003, Royset, 2011, Deng and Ferris, 2009] of the SAA method have recently been proposed. In what
follows, we discuss one of these paradigms, Retrospective Approximation (RA), in further detail.
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Recall the efficiency issue associated with the SAA method. SAA dictates that a single sample-path
problem be generated with a large enough sample size and solved to adequate tolerance. However, the
minimum sample size required to ensure that the resulting solution is of stipulated quality may be so large
as to render the procedure not viable. To thwart this difficulty, RA proposes a slight refinement of the
SAA paradigm. Instead of solving a single sample-path problem generated with a large enough sample
size, RA proposes to generate and solve a sequence of sample-path problems. The sequence of sample-
path problems are generated using a nondecreasing sequence of sample sizes {mk}, that are then solved to
increasing stringency using a sequence of error-tolerances {εk} that converge to zero. When the paradigm
works as intended, the resulting sequence of solutions approaches the true solution asymptotically. More
importantly, the paradigm is constructed to preserve efficiency. The early iterations are efficient because
they involve sample-path problems generated with small sample sizes. The later iterations are efficient,
at least in principle, due to the use of “warm starts,” where solutions from previous iterations are used
as initial guesses to the subsequent problems.
Towards further clarification, we now list RA as a nonterminating algorithm.

RA Components:

(i) A procedure for solving a generated sample-path problem to specified tolerance vector εk.

(ii) A sequence {mk} of sample sizes tending to infinity.

(iii) A sequence {εk} of error-tolerances tending to zero.

(iv) A sequence of weights {wkj : j = 1, 2, . . . , k} for each iteration.

RA Logic:

0. Initialize the retrospective iteration number k = 1. Set m1, ε1.

1. Generate a sample-path problem with sample size mk. Use RA component (i) with a “warm start,”
i.e., with Xk−1 as the initial guess, to solve the generated problem to within error-tolerance εk .
Obtain a retrospective solution Xk.

2. Use component (iv) to calculate the solution Xk as the weighted sum of retrospective solutions
{Xi}ki=1:

Xk =
k∑
j=1

wkjXj .

3. Set k ← k + 1 and go to 1.

(Step 1 of the RA listing is deliberately left ambiguous, and is to be made precise depending on the
problem context. For example, in the context of using RA within global SO problems, “solving a sample-
path problem to within tolerance εk” can mean identifying a point Xk whose optimality gap as measured
with respect to the objective function fmk

(x) is at most εk.)
The iterates resulting from the RA paradigm, for the context of global SO, are strongly consistent under
conditions similar to those imposed within the SAA method. The proof follows in a rather straightforward
fashion from the corresponding theorem [Ruszczyński and Shapiro, 2003, Theorem 5.3] in the SAA context
in combination with some standard results on M -estimators [Serfling, 1980].

Theorem 16. Assume

A1. The feasible region D is compact, and the set of global minima π∗ ⊂ D of the function f is nonempty;

A2. The sequence of sample functions {fn(x)} is such that the set of global minima Π∗n of the function
fn is nonempty for large enough n w.p.1;

A3. The functional sequence {fn(x)} → f(x) uniformly as n→∞ w.p.1.

A4. The function f is continuous on D.
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A5. The sequence of sample sizes {mk} and the sequence of error-tolerances {εk} in the RA paradigm
are chosen to satisfy {mk} → ∞ and εk → 0 as k →∞.

A6. Given s > 0, define the ith sum of the first s weights wi(s) =
∑s
j=1 wij for each i ≥ s. The weights

{wij} are chosen so that wi(s)→ 0 as i→∞.

A7. The sample-path problems are solved to obtain a retrospective solution Xk satisfying ‖fmk
(Xk) −

v∗mk
‖ ≤ εk when Π∗mk

is nonempty, with vmk
= inf{fmk

(x) : x ∈ D}.

Then, the sequences {f(Xk)− v∗},{d(Xk, π
∗)} → 0 w.p.1. (Assume d(Xk, π

∗) =∞ if Π∗mk
= ∅.)

The RA method above was presented as a nonterminating algorithm where a sequence of sample-sizes
{mk} for problem generation, and a sequence of error-tolerances {εk} relevant during problem solution,
need to be chosen by the user. This raises the natural question of how these sequences should be chosen to
ensure efficiency. Pasupathy [2010] partially addresses this question and presents guidelines on choosing
these sequences as a function of the convergence rate of the numerical procedure in use. For example, it
is shown that for efficiency, it may be best to choose εk = O(1/

√
mk) when the numerical procedure in

use converges at a linear rate. (Convergence rates are defined rigorously in Section 6.2.) Furthermore,
when using linearly convergent numerical procedures, efficiency dictates that it is best to choose sample
sizes {mk} such that lim supmk/m

p
k−1 = 0 for all p > 1. Likewise, when using numerical procedures

that have superlinear convergence rates, efficiency dictates that it is best to choose {mk} such that
lim supmk/m

p
k−1 <∞ for all p > 1. We discuss these results in more detail in Section 6.

More recently, Royset [2011] addresses the obvious drawback that the directives provided in Pasupathy
[2010] are at best asymptotic. In other words, while the results in Pasupathy [2010] recommend the
rates at which the sample size sequence {mk} and the error-tolerance sequence {εk} should converge
to zero, these recommendations still leave a large family of sequences from which to choose. Royset
[2011] remedies this in the specific context of solving smooth stochastic programs (e.g., when derivatives
of the function f(x, ξ) are observable and f(x, ξ) is Lipschitz with the Lipschitz constant having finite
expectation) with a numerical solver that is linearly convergent (e.g., projected gradient method using
Armijo step sizes as detailed in Polak [1997]). Using a model that approximates the progress made by the
linearly convergent numerical procedure in use, Royset [2011] formulates a dynamic program to identify
generation-effort/solution-effort trade-off at the beginning of each iteration within RA. The output of
the dynamic program includes the sample size that should be used for each generated problem, and the
computational effort that should be expended toward solving each generated problem.

6 Asymptotic Efficiency Calculation

As noted earlier, refined SAA methods like RA, are constructed with a view towards implementation.
Does this construction result in any real computational savings? In other words, does RA enjoy provable
efficiency gains over the SAA paradigm? In this section, we answer this question in some detail. Towards
first providing a benchmark for an asymptotic rate calculation, we present a very concise overview and
analysis of stochastic approximation (SA) which, alongside the SAA method, is a standard technique
for solving SO problems. This is followed by Section 6.2 where we discuss the maximum achievable
convergence rate by the SAA method. Section 6.3 presents the analogous calculation for the RA method.
Towards setting up the problem of identifying asymptotic efficiency, suppose that the optimal solution
to the true problem, x∗, is unique, and suppose that we want to obtain a solution that is within a
prescribed distance ε from x∗. (All distances are Euclidean unless otherwise noted.) Suppose also that
we measure computational effort in terms of the number of simulation replications required, i.e., the
number of times f(x, ξ) is computed, for various x and ξ. Here we take the function f(·, ·) as fixed,
rather than allowing it to come from a class of functions as in many varieties of complexity theory; see,
e.g., Nesterov [2004]. Also, this measure ignores the effort required to compute, e.g., gradients. However,
our results will be restricted to rates of convergence that ignore proportionality constants, so as long as
gradients are obtained through schemes that only proportionally increase the work, e.g., finite differences
and infinitesimal perturbation analysis, then our results will be unaffected. Finally, we also ignore the
internal computations of an optimization algorithm beyond the simulation effort. Such computations
often heavily depend on the dimension of the problem, but since we are fixing f , the dimension is also
fixed.
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6.1 Asymptotic Rates for Stochastic Approximation

A well-understood, general-purpose method for solving stochastic optimization problems, alternative to
using the SAA principle, is stochastic approximation [Kiefer and Wolfowitz, 1952, Robbins and Monro,
1951, Kushner and Yin, 2003]. For unconstrained problems in Rd, the classic stochastic approximation
algorithm is a simple recursion that produces a sequence of points {X̃n : n ≥ 0}, each of which lies in Rd.
The recursion requires an initial point X̃0, a positive gain sequence (an : n ≥ 0), and a sequence of vectors
(Zn : n ≥ 0) in Rd, where Zn is an estimate of ∇f(Xn). A simple version of a stochastic-approximation
recursion for a minimization problem is then

X̃n+1 = X̃n − anZn. (26)

For the problems we consider here, the gradient estimator can usually be taken to be ∇f(X̃n, ξn), i.e.,
the gradient of f(·, ξn) evaluated at X̃n, where (ξn : n ≥ 0) are i.i.d., since under fairly general conditions
(Section 3), this gradient estimator is unbiased and has other desirable qualities like bounded variance.
In that case, it is known that if f(·) is smooth, has a unique global minimizer x∗, and an = a/n with
a > 0 sufficiently large, then under additional nonrestrictive conditions,

√
n(X̃n − x∗) ⇒ N(0,Λ), (27)

as n→∞, for a certain d×d matrix Λ. See Asmussen and Glynn [2007, Chapter VIII] for an overview of
this result and a sketch of how it can be established using the “Ordinary Differential Equation” approach.
The central limit theorem in (27) is striking in that the recursion (26) is trivial to implement, involves
almost no computation beyond the calculation of a sample gradient at each iteration, and is very generally
applicable. If the number of iterations of (26) is completed in c units of computer time, n(c) grows
roughly linearly in c (as would be the case if, e.g., sample gradients are computed in constant time),
then a time-changed version of the CLT (27) establishes that the resulting SA estimator has an error
X̃n(c) − x∗ = Op(c−1/2). Equivalently, the computational effort required to obtain an error of order ε
with SA is Op(ε−2).
It is generally known that the performance of the recursion in (26) is highly dependent on the gain sequence
{an}. (In fact, even when the gradient estimator ∇f(X̃n, ξn) is directly observable and an = a/n,
convergence to the root fails if the constant a falls below a certain threshold, akin to the parallel-
chord method for nonlinear root-finding [Ortega and Rheinboldt, 1970, p. 181].) Accordingly, the last
three decades have seen enormous attention given to the question of choosing the gain sequence {an}.
Numerous milestones in this quest are documented in [Kushner and Yin, 2003, Andradóttir, 1996, Polyak
and Juditsky, 1992], with the latest attempt appearing in Broadie et al. [2010]. While we do not go into
any further detail on this question, two key facts stand out. First, within the context of the iteration (26),
the fastest achievable convergence rate is Op(c−1/2) [Polyak and Juditsky, 1992]. Second, a remarkably
simple scheme independently developed by [Polyak, 1990, Ruppert, 1991], and surveyed under the moniker
“Polyak-Ruppert averaging” in Asmussen and Glynn [2007, Chapter VIII], achieves this maximum rate.
The scheme involves using the step-size sequence an = a/nγ for some γ ∈ (0, 1), and then estimating the
root x∗ via the direct average

X̄n =
1
n

n∑
i=1

X̃i.

Under mild conditions, the Polyak-Ruppert averaging scheme enjoys a CLT of the same form as (27),
although with a different covariance matrix Λ. Furthermore, this happens irrespective of the value of
the constant a > 0. (The small-sample performance is, however, seriously affected by the choice of the
constant a.) The Polyak-Ruppert averaging scheme also has other optimality properties related to the
matrix Λ that appears in the limit; see Asmussen and Glynn [2007, Chapter VIII].

6.2 Asymptotic Rates for the SAA Method

As noted in Section 6.1, the Polyak-Ruppert averaging scheme achieves the maximum possible convergence
rate of Op(c−1/2) within the context of stochastic approximation. Loosely speaking, this amounts to
requiring Op(ε−2) computational effort if one wants to obtain ε accuracy. How does the SAA method
perform in comparison? Towards setting up this question rigorously, recall the SAA method again — a
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single sample-path problem is generated with sample-size n and solved using a chosen numerical solver.
Furthermore, since solving the generated problem to infinite precision is usually impossible in practice,
suppose we execute k iterations of the numerical procedure on the generated problem to obtain a solution
Xn(k). The total budget expended in the process is then simply c = n × k. It seems clear that, under
certain conditions (e.g., numerical procedure cannot solve to infinite precision in a finite number of steps),
as the available budget c → ∞, the sample size n and the number of steps k should satisfy n, k → ∞
to ensure that the optimality gap of Xn(k) converges to zero in any reasonable sense. However, what
relationship between n and k (for given c) ensures that such convergence happens at the fastest possible
rate? Moreover, what is the corresponding maximal rate?
In a recent paper, Royset and Szechtman [2011] provide an answer to these questions. Before we sum-
marize their results, let us introduce definitions relating to the convergence rates of the numerical solver
in use. These definitions appear in more restrictive form in Royset and Szechtman [2011].
Denote the numerical procedure acting on the sample function fn(x) by the map A(x) : D → D. Let
Ak(x) denote the iterate obtained after k successive applications of the map A(·) on the initial iterate x. In
all three definitions that follow, we assume that the function fn(x) attains its infimum v∗n := inf{fn(x) :
x ∈ D} and that fn(Ak(x)) → v∗n as k → ∞ for all x ∈ D. Also, to avoid trivialities, assume that
fn(Ak+1(x)) is different from v∗n for all k. Denote Qt = lim supk→∞ |fn(Ak+1(x))−v∗n|/|fn(Ak(x))−v∗n|t.

Definition 1. The numerical procedure A(x) : D → D is said to exhibit pth-order sublinear convergence
if Q1 ≥ 1, and there exist constants p, s > 0 such that p = sup{r : fn(Ak(x))− v∗n ≤ s/kr for all x ∈ D}.

(When fn(x) is convex and D is a closed convex set, the subgradient method [Nesterov, 2004, Section 3.2]
for nonsmooth convex optmization exhibits sublinear convergence with p = 1/2. Similarly, when fn(x)
is strongly convex with D := Rd, the optimal gradient method [Nesterov, 2004, Section 2.2] is sublinear
with p = 2.)

Definition 2. The numerical procedure A(x) : D → D is said to exhibit linear convergence if Q1 ∈ (0, 1)
for all x ∈ D.

(The definition of linear convergence implies that there exists a constant θ satisfying fn(A(x)) − v∗n ≤
θ(fn(x) − v∗n) for all x ∈ D. The projected gradient method with Armijo steps [Polak, 1997] when
executed on certain smooth problems exhibits a linear convergence rate.)

Definition 3. The numerical procedure A(x) : D → D is said to exhibit superlinear convergence if Q1 = 0
for all x ∈ D. The convergence is said to to be p-th order superlinear if Q1 = 0 and sup{t : Qt = 0} =
p <∞ for all x ∈ D.

(When fn(x) is strongly convex and twice Lipschitz continuously differentiable with observable deriva-
tives, Newton’s method is 2nd-order superlinear. For settings where the derivative is unobservable, there
is a slight degradation in the convergence rate but Newton’s method remains superlinear [Bazaara et al.,
2006, p. 338].)
We are now ready to summarize, through Theorem 17, the main results of Royset and Szechtman [2011].
Theorem 17 is in essence a characterization of the maximum achievable convergence rate when using a
sublinearly convergent algorithm within the SAA method, and should be juxtaposed with the Op(c−1/2)
rate achievable using stochastic approximation as discussed in Section 6.1.

Theorem 17 (Convergence rate for the SAA method). Let the following postulates hold.

A1. The expectation E[f(x, ξ)2] <∞ for all x ∈ D.

A2. The function f(x, ξ) is Lipschitz w.p.1, and has Lipschitz constant K(ξ) having finite expectation.

A3. The function fn(x) attains its infimum on D for each n w.p.1.

Also, let c = n × k and n/c1/(2p+1) → a as c → ∞, with a ∈ (0,∞). Then, if the numerical procedure
exhibits p-th order sublinear convergence,

cp/(2p+1)(fn(Ak(x))− v∗) = Op(1) as t→∞.
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The crucial message given by Theorem 17 is that in the context of the SAA method, the maximum
achievable convergence rate is Op(c−p/(2p+1)) when the numerical procedure in use exhibits p-th order
sublinear convergence. (While Theorem 17 does not directly assert that Op(c−p/(2p+1)) is the maximum
achievable rate, Royset and Szechtman [2011] show this rigorously.) Royset and Szechtman [2011] also
demonstrate that the corresponding rates when using linearly convergent and p-th order superlinearly
convergent procedures are Op((c/ log c)−1/2) and Op((c/ log log c)−1/2) respectively.
Two observations relating to the assertions in Royset and Szechtman [2011] are noteworthy. First, the
fastest achievable convergence rate within the SAA method depends on the numerical procedure in use,
with faster numerical procedures affording a faster rate. This is not so surprising when one sees that the
SAA method splits the available budget (c = n×k) between sampling and solving. Since faster numerical
procedures incur a smaller cost to solving, they facilitate attainment of a faster convergence rate. Second,
none of the families of numerical procedures considered are capable of attaining the canonical convergence
rate Op(c−1/2) that is seen in stochastic approximation. Such degradation from the canonical convergence
rate can be explained as the “price” of using a numerical procedure. In other words, unless the numerical
procedure used within SAA is capable of infinite precision with only a finite amount of computing effort,
there is always a degradation in the convergence rate due to the fact that a non-negligible portion of the
budget is expended towards solving the generated problem.

6.3 Asymptotic Rates for the RA Method

In this section, we present an analogous analysis for the maximum achievable convergence rates within
the RA method. Recall that in the RA method, instead of generating and solving a single sample-path
problem as in the SAA method, a sequence of sample-path problems are generated with sample sizes
{mk} and solved to corresponding error-tolerances {εk}. In analyzing the achievable convergence rates
within the RA method, we then seek an asymptotic relationship between the error ‖Xk − x∗‖ incurred
at the end of k iterations, and the corresponding total work done Ck. The following result, adapted
from Pasupathy [2010], captures this relationship as a function of the convergence rate of the numerical
procedure in use, but with strict stipulations on the sample-path structure and the ability to observe
their derivatives.

Theorem 18. Assume that the postulates (i)-(vi) of Theorem 12 hold. In addition, let the following
postulates hold.

A1. The sample function fn(x) has a unique minimum X∗n w.p.1.

A2. When fn(x) attains a unique minimum X∗n, fn(x) is twice differentiable at X∗n. Furthermore, the
matrix of second-order partial derivatives (Hessian) of fn(x) at X∗n is positive definite with smallest
eigen value uniformly bounded away from 0 w.p.1.

A3. The solution Xk obtained from the kth iteration of RA satisfies ‖∇fmk
(Xk)‖ ≤ εk.

A4. The numerical procedure used to solve the sample-path problems in RA exhibits p-th order sublinear
convergence or p-th order linear convergence with respect to the observed derivatives.

A5. The sample sizes are increased linearly, i.e., mk/mk−1 = c > 1 for all k.

A6. The error-tolerances are chosen so that εk = O(1/
√
mk).

Then the sequence of solutions obtained using the RA procedure satisfies Ck‖Xk − x∗‖2 = Op(1) as
k → ∞, where Ck is the total amount of computational work done until the kth iteration and is given
by Ck =

∑k
i=1Nimi. Here Ni is the number of points visited by the numerical procedure during the ith

iteration.

Proof. The proof proceeds along lines very similar to the proof of Theorem 5 in Pasupathy [2010]. In
what follows, we provide only a proof sketch, and only for the case where the numerical procedure in use
exhibits linear convergence. The corresponding proof for the sublinear convergence case follows almost
directly after appropriately changing the expression in (28).
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We first see, since the numerical procedure is assumed to exhibit linear convergence, that

Ni = Op

(
1 +

1
log r

(
log

εi
‖∇fmi

(Xi−1)‖

))
, (28)

for some r ∈ (0, 1). Using the Delta method, and Assumptions A1, A2, A3, we write

‖∇fmi
(Xi−1)‖ = Op(‖X∗i −X∗i−1‖) + εi−1. (29)

We also know, since postulates (i)-(vi) of Theorem 12 hold, that ‖X∗i − x∗‖ = Op(1/
√
mi) and hence

‖X∗i −X∗i−1‖ = Op(1/
√
mi + 1/√mi−1). Combining this with (28) and (29) yields

Ni = Op

(
1 +

1
log r

(
log

εi
1/
√
mi + 1/√mi−1 + εi−1

))
. (30)

Now use Assumption A6 to obtain

Ck‖Xk − x∗‖2 = Op

(
(
k∑
i=1

mi)(1/
√
mk + εk)2

)
. (31)

Finally, use (31) and Assumption A5 to conclude that the assertion holds.

Theorem 18 asserts that, as long as the sample size and error tolerance sequences are chosen strategically,
the error in the obtained solution converges to zero at the canonical rate. This assertion is interesting
since we will recall from Section 6.2 that the canonical convergence rate is unachievable in the context of
the SAA method, barring unlikely contexts where the numerical procedure exhibited exceptionally fast
convergence rates. It is also noteworthy that Theorem 18 assumes that the derivatives of the sample
path are observable. This is to help with terminating the individual iterations of the RA algorithm, and
could probably be relaxed further by assuming instead that the derivative is estimated using a consistent
estimator appropriately constructed from function observations. The assumption about the numerical
procedure exhibiting at least linear convergence is easily satisfied, e.g., projected gradient method [Polak,
1997] for certain smooth problems; and Newton’s method [Ortega and Rheinboldt, 1970, Chapter 9] when
used on smooth convex programs with observable derivatives.

7 Conclusions

We have attempted to provide a guide to the principle of SAA for simulation optimization, with a dis-
cussion on when SAA might be an appropriate solution method, how the potential for such applicability
can be detected, and an appraisal of SAA’s implementation and efficiency characteristics. An interesting
observation on SAA’s applicability is that it can be applied whenever infinitesimal perturbation analy-
sis [Glasserman, 1991] for gradient estimation can be applied. Loosely speaking, both of these methods
become applicable when the sample problems and true problem share characteristics that are important
for numerical optimization software, chief among which are continuity, differentiability and the approxi-
mate location of optimal solutions. SAA has a well-developed large-sample theory, both within the global
and the local optimality contexts. The latter context seems especially useful within application settings.
On the question of asymptotic efficiency, recent results have established that a straightforward imple-
mentation of SAA is inferior to stochastic approximation. This difference in efficiency stems entirely
from the fact that SAA, by construction, stipulates that the optimization software being employed uses
a fixed sample size irrespective of how close the current solution is to an optimal solution. Towards
remedying this, a refinement of SAA called retrospective approximation has been developed. The re-
finement increases sample sizes at a carefully controlled rate as the numerical optimization proceeds,
and in the process recovers the same rate of convergence (up to a multiplicative constant) as stochastic
approximation.
Throughout this chapter we have made the assumption that samples are iid, but that is not essential
to the established theory. Indeed, one can apply any of several variance reduction methodologies that
induce dependence, and for the most part the theory remains relatively unchanged; see Shapiro et al.
[2009]. One can also generate the samples using techniques such as quasi-Monte Carlo and randomized
versions thereof [Koivu, 2005].
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G. Gürkan, A. Y. Özge, and S. M. Robinson. Sample-path solution of stochastic variational inequalities.
Mathematical Programming, 84:313–333, 1999.

J. M. Harrison and J. A. Van Mieghem. Multi-resource investment stragies: Operational hedging under
demand uncertainty. European Journal of Operational Research, 113:17–29, 1999.

K. Healy and L. W. Schruben. Retrospective simulation response optimization. In B. L. Nelson, D. W.
Kelton, and G. M. Clark, editors, Proceedings of the 1991 Winter Simulation Conference, pages 954–
957. Institute of Electrical and Electronics Engineers: Piscataway, New Jersey, 1991.

T. Homem-de-Mello. Estimation of derivatives of nonsmooth performance measures in regenerative sys-
tems. Mathematics of Operations Research, 26:741–768, 2001.

T. Homem-de-Mello. Variable-sample methods for stochastic optimization. ACM Transactions on Mod-
eling and Computer Simulation, 13:108–133, 2003.

24



L. J. Hong, Y. Yang, and L. Zhang. Sequential convex approximations to joint chance constrained
programs: A monte carlo approach. Operations Research, 59(3):617–630, 2011.

H. Hu, T. Homem-de-Mello, and S. Mehrotra. Sample average approximation of stochastic dominance
constrained programs. Mathematical Programming, 26:1–31, 2010. Published online.

A. I. Kibzun and Y. S. Kan. Stochastic Programming Problems with Probability and Quantile Functions.
Wiley, New York, 1996.

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function. Annals of
Mathematical Statistics, 23:462–466, 1952.

S. Kim and S. G. Henderson. The mathematics of continuous-variable simulation optimization. In
S. J. Mason, R. R. Hill, L. Moench, and O. Rose, editors, Proceedings of the 2008 Winter Simulation
Conference, pages 122–132, Piscataway NJ, 2008. IEEE.

A. J. Kleywegt, A. Shapiro, and T. Homem-de-Mello. The sample average approximation method for
stochastic discrete optimization. SIAM Journal on Optimization, 12:479–502, 2001.

M. Koivu. Variance reduction in sample approximations of stochastic programs. Mathematical Program-
ming, 103(3):463–485, 2005.

H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and Applications.
Springer-Verlag, New York, 2nd edition, 2003.

J. Luedtke and S. Ahmed. A sample approximation approach for optimization with probabilistic con-
straints. SIAM Journal on Optimization, 19:674–699, 2008.

W. K. Mak, D. P. Morton, and R. K. Wood. Monte carlo bounding techniques for determining solution
quality in stochastic programs. Operations Research Letters, 24:47–56, 1999.

Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, Norwell, MA,
2004.

J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables.
Academic Press, New York, NY., 1970.

R. Pasupathy. On choosing parameters in retrospective-approximation algorithms for stochastic root
finding and simulation optimization. Operations Research, 58:889–901, 2010.

E. L. Plambeck, B.-R. Fu, S. M. Robinson, and R. Suri. Sample-path optimization of convex stochastic
performance functions. Mathematical Programming, 75:137–176, 1996.

E. Polak. Optimization: Algorithms and Consistent Approximations. Springer, New York, NY, 1997.

B. T. Polyak. New stochastic approximation type procedures. Automat. i Telemekh., 7:98–107, 1990.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal
on Control and Optimization, 30:838–855, 1992.

A. Ravindran, D. T. Phillips, and J. J. Solberg. Operations Research: Principles and Practice. Wiley,
New York, NY, 2nd ed. edition, 1987.

H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, 22:
400–407, 1951.

S. M. Robinson. Analysis of sample-path optimization. Mathematics of Operations Research, 21:513–528,
1996.

S. M. Ross. Stochastic Processes. Wiley, New York, 2nd edition, 1996.

J. Royset. On sample size control in sample average approximations for solving smooth stochastic pro-
grams. Under Review, 2011.

25



J. Royset and R. Szechtman. Optimal budget allocation for sample average approximation. Operations
Research, 2011. Under review.

R. Y. Rubinstein and A. Shapiro. Optimization of static simulation models by the score function method.
Mathematics and Computers in Simulation, 32:373–392, 1990.

R. Y. Rubinstein and A. Shapiro. Discrete Event Systems: Sensitivity Analysis and Stochastic Optimiza-
tion by the Score Function Method. Wiley, Chichester, 1993.

D. Ruppert. Stochastic approximation. In B. K. Ghosh and P. K. Sen, editors, Handbook of Sequential
Analysis, pages 503–529. Marcel Dekker, New York, 1991.
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