Efficient Estimation of Liquidity-Adjusted Risk Measures

Rolf Waeber, Cornell University & Deutsche Bundesbank
Stefan Weber, Leibniz Universität Hannover

27. August 2009
Deutsche Bundesbank, Frankfurt am Main

The views herein are my own and do not necessarily reflect those of Deutsche Bundesbank.
Goals:

1. Introduce a framework that incorporates market liquidity risk into portfolio models.
Goals:

- Introduce a framework that incorporates market liquidity risk into portfolio models.
- Construct an estimation procedure for liquidity-adjusted risk measures.
Goals:

- Introduce a framework that incorporates market liquidity risk into portfolio models.
- Construct an estimation procedure for liquidity-adjusted risk measures.

Outline:

- Liquidity-adjustment to portfolio models
- Liquidity-adjusted convex risk measures
- Stochastic root finding methods
Motivation: Liquidity Risk

Idea:

- Quantify risk of individual portfolio.
- Determine an minimal cash position, such that the portfolio is acceptable.
Motivation: Liquidity Risk

Idea:

- Quantify risk of individual portfolio.
- Determine an minimal cash position, such that the portfolio is acceptable.

Liquidity Risk:

- Price of an asset is determined by a supply-and-demand curve.
- Trading of large positions moves the price.
Motivation: Liquidity Risk

Idea:

- Quantify risk of individual portfolio.
- Determine a minimal cash position, such that the portfolio is acceptable.

Liquidity Risk:

- Price of an asset is determined by a supply-and-demand curve.
- Trading of large positions moves the price.
- Portfolio managers can be forced to liquidate:
 - Cashflows
 - Construction of portfolio
Example: Investment Financed with Bond

- An investor issues bond to finance an investment (risky asset) at time $t = 0$.
- Bond requires coupon payment at time $t = 1$.
- Expected return of risky asset is higher than the coupon.
- At time $t = 1$ the investor liquidates part of the asset to pay the coupon.
Example: Investment Financed with Bond

- An investor issues bond to finance an investment (risky asset) at time $t = 0$.
- Bond requires coupon payment at time $t = 1$.
- Expected return of risky asset is higher than the coupon.
- At time $t = 1$ the investor liquidates part of the asset to pay the coupon.
- **Market liquidity**: Liquidation lowers price of the asset (hence value of the portfolio).
Example: Long-Short Investment Strategy

- A fund manager invests according to a long-short strategy at time $t = 0$.
- The manager has a constraint on the overall short position.
- If price of the short position rises, he will be forced to liquidate part of the short and possibly long position to meet the portfolio constraint.
Example: Long-Short Investment Strategy

- A fund manager invests according to a long-short strategy at time $t = 0$.
- The manager has a constraint on the overall short position.
- If price of the short position rises, he will be forced to liquidate part of the short and possibly long position to meet the portfolio constraint.
- **Market liquidity**: Liquidation lowers value of the portfolio significantly.
Example: Long-Short Investment Strategy

• A fund manager invests according to a long-short strategy at time $t = 0$.

• The manager has a constraint on the overall short position.

• If price of the short position rises, he will be forced to liquidate part of the short and possibly long position to meet the portfolio constraint.

• **Market liquidity**: Liquidation lowers value of the portfolio significantly.

Question: How big does the cash position need to be, such that the portfolio is acceptable?
Acceptable Positions

Random variable $L \in L^\infty$ represents loss of a portfolio.

1. Construct a loss distribution.
2. Define and evaluate appropriate risk measure $\rho : L^\infty \to \mathbb{R}$.
3. A position with loss variable L is called acceptable, if

$$\rho(L) \leq 0.$$

ρ induces an acceptance set

$$\mathcal{A} := \{L \in L^\infty | \rho(L) \leq 0\}.$$
Liquidity-Adjustment
Portfolio Set-Up

- Consider a Portfolio of one cash-position (ξ_0) and N risky assets:

$$\xi = (\xi_0, \xi_1, \ldots, \xi_N) \in \mathbb{R}^{N+1}.$$

- An investor wants to hold portfolio ξ for one time-period (from $t = 0$ to $t = 1$).

- **Mark-to-Market** Value of the portfolio at time t:

$$V^{(t)}(\xi) := \xi_0 + \sum_{i=1}^{N} m_i^{(t)} \cdot \xi_i,$$

 $m_i^{(t)}$ price of ith asset at time t.

- Loss at time $t = 1$

$$L(\xi)(\omega) := -(V^{(1)}(\xi)(\omega) - V^{(0)}(\xi)).$$
Portfolio Model with Liquidity-Adjustment

Model:

- **Cashflows:** \(\phi : \mathbb{R}^{N+1} \rightarrow \mathbb{R}, \xi \mapsto \phi(\xi) \) at time \(t = 1 \).
- **Liquidity constraint:** cash position needs to be non-negative.
- **Portfolio constraint:** \(\mathcal{H} \subset \mathbb{R}^N \), e.g.

\[
\mathcal{H} = [-q_i, \infty)^N, \quad i = 1, \ldots, N.
\]

- **Trading moves price:** Marginal supply-demand curves at time \(t = 1 \):

\[
\tilde{m} = (\tilde{m}_1^{(1)}, \ldots, \tilde{m}_N^{(1)}),
\]

where \(\tilde{m}_i^{(1)} : \mathbb{R} \rightarrow \mathbb{R} \) is a decreasing function. For example:

\[
\tilde{m}_i^{(1)}(x) = m_i^{(1)} - b \cdot x, \quad b \geq 0,
\]

where \(x \) is the number of liquidated shares.

In this setting mark-to-market valuation at time \(t = 1 \) is too optimistic.
Introduction

Liquidity-Adjustment

Convex Risk Measures

Stochastic Root Finding

Simulation

References

Attainable and Liquid Portfolios at Time \(t = 1 \)

Definition: For fixed portfolio \(\xi \in \mathbb{R}^{N+1} \), the portfolio \(\zeta \in \mathbb{R}^{N+1} \) is attainable \((\zeta \in \mathcal{R}(\xi, m^{(1)})) \) if there exists \(\kappa \in \mathbb{R}^N \) such that

\[
\zeta = \left(\xi_0 + \sum_{i=1}^{N} \int_{0}^{\kappa_i} m_i^{(1)}(x) \, dx, \xi - \kappa \right).
\]
Attainable and Liquid Portfolios at Time $t = 1$

Definition: For fixed portfolio $\xi \in \mathbb{R}^{N+1}$, the portfolio $\zeta \in \mathbb{R}^{N+1}$ is attainable ($\zeta \in \mathcal{R}(\xi, m^{(1)})$) if there exists $\kappa \in \mathbb{R}^N$ such that

$$
\zeta = \left(\xi_0 + \sum_{i=1}^{N} \int_0^{\kappa_i} m^{(1)}_i(x) \, dx, \xi - \kappa \right).
$$

Definition: The set of liquid portfolios at time $t = 1$ are

$$
\mathcal{L}(\xi, m^{(1)}, \phi) = \left\{ \zeta \in \mathcal{R}(\xi, m^{(1)}): \xi_0 + \phi(\xi) \geq 0 \right\}.
$$
Definition: Value of portfolio ξ at time $t = 1$

$$V(\xi, m^{(1)}, \phi, \mathcal{H}) = \sup \left\{ \sum_{i=0}^{N} \zeta_i \cdot \tilde{m}_i^{(1)} : \zeta \in \mathcal{L}(\xi, m^{(1)}, \phi) \cap \mathcal{H} \right\}.$$

The valuation process is an optimization problem under liquidity and portfolio constraints.
Value of Portfolio at Time $t=1$

Definition: Value of portfolio ξ at time $t = 1$

$$V(\xi, m^{(1)}, \phi, \mathcal{H}) = \sup \left\{ \sum_{i=0}^{N} \zeta_i \cdot \tilde{m}_i^{(1)} : \zeta \in \mathcal{L}(\xi, m^{(1)}, \phi) \cap \mathcal{H} \right\}.$$

The valuation process is an optimization problem under liquidity and portfolio constraints.

Definition: Random value of portfolio ξ at time $t = 1$

$$\Omega \longrightarrow \mathbb{R} \cup \{-\infty\}$$

$$\omega \longmapsto V(\xi, m^{(1)}(\omega), \phi(\omega), \mathcal{H}).$$
Convention:

- $V^{(0)}(\xi) = 0$, hence $L = -V^{(1)}(\xi) = -V(\xi)$.
- $\xi + k := (\xi_0 + k, \xi_1, \ldots, \xi_N)$ for $k \in \mathbb{R}$.

Definition: For given risk measure ρ with acceptance set

$$\mathcal{A} = \{L \in L^\infty | \rho(L) \leq 0\},$$

the liquidity-adjusted risk of a portfolio ξ is defined as

$$\rho^V(\xi) := \inf \{k : -V(\xi + k) \in \mathcal{A}\}.$$

The model is based on work of Acerbi et al. (2008) and Anderson et al. (2009).
Convex Risk Measures
The Industrial Standard Value-at-Risk

For a given confidence level $\alpha \in (0, 1)$:

$$\text{VaR}_\alpha(L) = F_L^{-1}(\alpha).$$
The Industrial Standard Value-at-Risk

For a given confidence level $\alpha \in (0, 1)$:

$$\text{VaR}_\alpha(L) = F_L^{-1}(\alpha).$$

VaR has significant drawbacks:

- Does not account for the size of extremely large losses
- Does not encourage diversification
- Provides incentives to take riskier positions
For a given confidence level $\alpha \in (0, 1)$:

$$\text{VaR}_\alpha (L) = F_L^{-1}(\alpha).$$

VaR has significant drawbacks:

- Does not account for the size of extremely large losses
- Does not encourage diversification
- Provides incentives to take riskier positions

What are criteria for a good risk measure?

This question motivated an axiomatic analysis of risk measures (initiated by Artzner, Delbaen, Eber and Heath (1999)).
A risk measure $\rho : L^\infty \to \mathbb{R}$ is convex if:

- **Monotonicity**: If $L_1 \leq L_2$, then $\rho(L_1) \leq \rho(L_2)$
- **Cash invariance**: If $m \in \mathbb{R}$, then $\rho(L - m) = \rho(L) - m$
- **Convexity** (Föllmer and Schied (2002)):

 $$\rho(\alpha L_1 + (1 - \alpha)L_2) \leq \alpha \rho(L_1) + (1 - \alpha)\rho(L_2), \quad \alpha \in [0, 1].$$

A subclass called **coherent** risk measures additionally satisfy

- **Positive homogeneity**: If $\lambda \geq 0$, then $\rho(\lambda L) = \lambda \rho(L)$.

Axiomatic Approach: Convex Risk Measures
A risk measure $\rho : L^\infty \to \mathbb{R}$ is convex if:

- **Monotonicity**: If $L_1 \leq L_2$, then $\rho(L_1) \leq \rho(L_2)$
- **Cash invariance**: If $m \in \mathbb{R}$, then $\rho(L - m) = \rho(L) - m$
- **Convexity** (Föllmer and Schied (2002)):

$$\rho(\alpha L_1 + (1 - \alpha)L_2) \leq \alpha \rho(L_1) + (1 - \alpha)\rho(L_2), \quad \alpha \in [0, 1].$$

A subclass called **coherent** risk measures additionally satisfy

- **Positive homogeneity**: If $\lambda \geq 0$, then $\rho(\lambda L) = \lambda \rho(L)$.

Industrial standard Value at Risk is **NOT** convex!
A Class of Convex Risk Measures

$I : \mathbb{R} \rightarrow \mathbb{R}$ convex, increasing, non-constant function (loss function), x_0 interior point of the range of I.

Utility-Based Shortfall Risk (UBSR) (Föllmer and Schied (2002)):

$$\rho_{UBSR}(L) = \inf \{ m \in \mathbb{R} : E [I(L - m)] \leq x_0 \}.$$
UBSR: $\rho_{UBSR}(L)$ corresponds to the unique root s^* of the function

$$\tilde{g}(s) := \mathbb{E}[l(L - s)] - x_0,$$

\tilde{g} is decreasing and convex.

Dunkel and Weber (2009) use stochastic root finding to estimate ρ_{UBSR}.

Rolf Waeber Efficient Estimation of Liquidity-Adjusted Risk Measures 17/37
Liquidity-Adjusted Risk Measures revisited

Convention: \(V^{(0)}(\xi) = 0 \), i.e. \(L = -V^{(1)}(\xi) = -V(\xi) \).

\(\rho : L^\infty \to \mathbb{R} \) a risk measure with acceptance set

\[\mathcal{A} = \{ -V(\xi) \in L^\infty : \rho(-V(\xi)) \leq 0 \} . \]

Liquidity-Adjusted risk of portfolio \(\xi \):

\[\rho^V(\xi) := \inf \{ k : -V(\xi + k) \in \mathcal{A} \} . \]

Proposition: \(\rho \) is a convex risk measure and \(\rho \) and \(V \) are continuous, then

\[\rho^V(\xi) = k^* \iff \rho(-V(\xi + k^*)) = 0. \]
Liquidity-Adjusted UBSR

Need to find \(k^* \) such that

\[
\rho_{UBSR}(\ -V(\xi + k^*)) = 0.
\]

By continuity,

\[
\rho_{UBSR}(\ -V(\xi + k)) = y \iff \tilde{g}(y) = \mathbb{E}[l(-V(\xi + k) - y)] - x_0 = 0,
\]

it follows that \(k^* \) is the unique root of

\[
g(k) := \mathbb{E}[l(-V(\xi + k)) - x_0].
\]

Stochastic root finding methods can be used to estimate the liquidity-adjusted UBSR risk measure.
Stochastic Root Finding
Stochastic Root Finding Methods

- Robbins-Monro
- Polyak-Ruppert
- Stochastic Averaging
Let \((\omega_n)_n\) be an i.i.d. sequence of scenarios.

Choose constants \(\gamma \in \left(\frac{1}{2}, 1\right], c > 0\), and a starting value \(k_1 \in [a, b]\) \((k^* \in [a, b])\).

For \(n \in \mathbb{N}\) define recursively:

\[
k_{n+1} = \Pi_{[a,b]} \left[k_n + \frac{c}{n^\gamma} \cdot (l(\xi + k_n)(\omega_n) - x_0) \right].
\]

(1)
Robbins-Monro: Theoretical Justification

Theorem: $V \in L^\infty, g \in C^1, c > (-2g'(k^*))^{-1}$.

If $\gamma = 1$, then

$$\sqrt{n} \cdot (k_n - k^*) \rightarrow N \left(0, \frac{-c^2 \sigma^2(k^*)}{2cg'(k^*) + 1} \right). \quad (2)$$

If $\gamma \in \left(\frac{1}{2}, 1 \right)$, then

$$\sqrt{m^\gamma} \cdot (k_n - k^*) \rightarrow N \left(0, \frac{-c\sigma^2(k^*)}{2g'(k^*)} \right). \quad (3)$$
Variations

• Polyak-Ruppert, for arbitrary $\rho \in (0, 1)$, $(k_i)_i$ sequence of Robbins-Monro

$$\bar{k}_n = \frac{1}{\rho \cdot n} \sum_{i=(1-\rho)n}^{n} k_i.$$

• Use Stochastic Averaging with Stochastic Approximation, define

$$T_n = \frac{1}{N} \sum_{i=1}^{N} (l(-V(\xi + k_n(\omega_i)) - x_0),$$

use T_n for the update-step

$$k_{n+1} = \Pi(k_n + \frac{c}{n^\gamma} \cdot T_n).$$

• Importance sampling
Optimized Certainty Equivalents (OCE) (Ben-Tal and Teboulle (2007)):

\[\rho_{OCE}(L) := \inf_{\eta \in \mathbb{E}} (\eta + \mathbb{E}[l(L - \eta)]) \]

is a \textit{convex} risk measure.
Optimized Certainty Equivalents (OCE) (Ben-Tal and Teboulle (2007)):

\[
\rho_{OCE}(L) := \inf_{\eta \in E} (\eta + \mathbb{E}[l(L - \eta)])
\]

is a convex risk measure.

Remark: For \(l(y) = \frac{1}{\alpha} y \mathbb{1}_{\{y \geq 0\}}(y) \):

\[
\rho_{OCE}(L) = CVAR_\alpha(L).
\]
Extension to Other Classes of Risk Measures

Optimized Certainty Equivalents (OCE) (Ben-Tal and Teboulle (2007)):

$$\rho_{OCE}(L) := \inf_{\eta \in \mathbb{E}} (\eta + \mathbb{E}[l(L - \eta)])$$

is a convex risk measure.

Remark: For $$l(y) = \frac{1}{\alpha} y \mathbb{I}_{\{y \geq 0\}}(y)$$:

$$\rho_{OCE}(L) = CVAR_\alpha(L).$$

Representation: The following are equivalent

1. $$\rho_{OCE}(L) = \eta^* + \mathbb{E}[l(L - \eta^*)];$$
2. $$\mathbb{E}[l'(L - \eta^*)] = 1.$$

Need to find the root $$\eta^*$$ of

$$g(\eta) = \mathbb{E}[l'(L - \eta)] - 1.$$
Liquidity-Adjusted OCE Risk Measures

Representations:

\[k^* = \rho_{OCE}(\xi) \iff \rho_{OCE}(-V(\xi + k^*)) = 0 \]

\[\rho_{OCE}(-V(\xi + k^*)) = \mathbb{E}[l(-V(\xi + k^*) - \eta^*)] + \eta^* = 0 \]

\[\mathbb{E}[l'(-V(\xi + k^*) - \eta^*) - 1] = 0 \]
Liquidity-Adjusted OCE Risk Measures

Representations:

\[k^* = \rho_{OCE}(\xi) \iff \rho_{OCE}(-V(\xi + k^*)) = 0 \]

\[\rho_{OCE}(-V(\xi + k^*)) = \mathbb{E}[l(-V(\xi + k^*) - \eta^*)] + \eta^* = 0 \]

\[\mathbb{E}[l'(-V(\xi + k^*) - \eta^*) - 1] = 0 \]

Need to find \(\theta^* = (k^*, \eta^*) \) such that \(g(\theta^*) = 0 \), for \(g : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \),

\[g(\theta) := \left(\begin{array}{c} \mathbb{E}[l(-V(\xi + k) - \eta) + \eta] \\ \mathbb{E}[l'(-V(\xi + k) - \eta) - 1] \end{array} \right). \]
Define random vector

\[Y_{k,\eta} = \begin{pmatrix} l(-V(\xi + k) - \eta) + \eta \\ l'(-V(\xi + k) - \eta) - 1 \end{pmatrix}, \]

2-dimensional Robbins-Monro iteration:

\[\theta_{n+1} = \Pi_H \left[\theta_n + \frac{c}{n^\gamma} \cdot Y_{k_n,\eta_n} \right]. \]
Define random vector

\[
Y_{k,\eta} = \begin{pmatrix}
 l(-V(\xi + k) - \eta) + \eta \\
 l'(V(\xi + k) - \eta) - 1
\end{pmatrix},
\]

2-dimensional Robbins-Monro iteration:

\[
\theta_{n+1} = \Pi_H \left[\theta_n + \frac{c}{n^{\gamma}} \cdot Y_{k_n,\eta_n} \right].
\]

Theorem: Assume \(g \) is Lipschitz-continuous and \(\sup_{\theta \in H} \mathbb{E}[|Y_\theta|^2] < \infty \), then

\[
\theta_n \longrightarrow \theta^* \text{ a.s.}
\]
Simulation Example
Example: Investment Financed with Bond rev.

- Investor issues bond \((m_1 = 10)\) to invest in profitable asset \((m_2^{(0)} = 10)\).
- At time \(t = 1\): liquidates part of assets to cover required coupon payment \(c = 1.5\).
- Trading in asset moves the price

\[
\tilde{m}_2^{(1)}(x) = m_2^{(1)} - b \cdot x, \quad m_2^{(1)} \sim LN(13, 0.3).
\]

- Investor needs to meet liquidity and portfolio constraints.
- Portfolio needs to be acceptable according risk measure \(\rho\).
Example: Investment Financed with Bond rev.

- Investor issues bond \(m_1 = 10 \) to invest in profitable asset \(m_2^{(0)} = 10 \).
- At time \(t = 1 \): liquidates part of assets to cover required coupon payment \(c = 1.5 \).
- Trading in asset moves the price

\[
\tilde{m}_2^{(1)}(x) = m_2^{(1)} - b \cdot x, \quad m_2^{(1)} \sim LN(13, 0.3).
\]

- Investor needs to meet liquidity and portfolio constraints.
- Portfolio needs to be acceptable according risk measure \(\rho \).

Question: How big does the cash position need to be, such that the portfolio becomes acceptable?
Answer:

Liquidity-adjusted risk measure $ES_{1\%}^V$ and $VaR_{1\%}^V$
Example: Long-Short Strategy rev.

- Portfolio manager short sells risky asset \(m_1\) and buys another risky asset \(m_2\).
- Short positions are constrained.
- At time \(t = 1\), the manager needs to liquidate part of the short and possibly long position to meet portfolio constraints.
- Trading at \(t = 1\) moves prices

\[
m_1(x) = m_1^{(1)} - b_1 \cdot x, \quad b_1 \geq 0,
\]
\[
m_2(x) = m_2^{(2)} - b_2 \cdot x, \quad b_2 \geq 0,
\]

where

\[
\begin{pmatrix}
 m_1^{(1)} \\
 m_2^{(2)}
\end{pmatrix}
\sim N\left(\begin{pmatrix}
 10 \\
 10.2
\end{pmatrix}, \begin{pmatrix}
 0.2 & 0.18 \\
 0.18 & 0.2
\end{pmatrix}\right).
\]
Example: Long-Short Strategy cont.

Question: How big does the cash position need to be, such that the portfolio becomes acceptable?

Assume OCE risk measure with loss function $l(y) = 20 \cdot y^2 \cdot \mathbb{1}_{\{y \geq 0\}}(y)$.
Liquidity effect: OCE with quadratic loss

- OCE
- short position b_1
- long position b_2
Convergence of 2-Dimensional Robbins-Monro

- 50 paths of Robbins-Monro algorithm
- Mean of 50 paths of Robbins-Monro algorithm

Rolf Waeber
Efficient Estimation of Liquidity-Adjusted Risk Measures
Conclusions:

- Liquidity-adjusted risk measures can be used to determine the smallest necessary cash position of a portfolio under liquidation effects.
Conclusions:

- Liquidity-adjusted risk measures can be used to determine the smallest necessary cash position of a portfolio under liquidation effects.
- Stochastic root finding methods provide a helpful tool to estimate risk measures.
Further Research:

- Application in practice
- Dynamic set-up
- Thorough comparison of suggested root finding methods
- ...
THANK YOU!

