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Abstract—Target localization is a key issue in the image to increased toxicity associated with radiation therapy as
guided radiation therapy procedures for treating tumors  normal tissue inside the Planned Target Volume (PTV)
in thorax and abdomen. Breathing induced tumor motion also gets damaged. Examples of the side effects have

n_ecessit_ates larger margins during radia_1tion therapy pl_an been well documented in manv studies. for example
ning which may be harmful for healthy tissue surrounding y ' P

the tumor. Large sampling time in data acquisiton and N cases of radiation therapy applied to breast cancer
latencies involved in real time imaging systems and trackig ~ patients, the side effects can include ischemic heart
system pose a significant challenge to target localizatiod  disease, pneumonitis and pulmonary fibrosis, erythema,
framework based on pulmonary mechanics is developed 10 o |3ngiectasia and ulceration of the skin, and bone necro-
predict and precisely track the breathing induced motion of . . . .
lung tumor to direct the tracking system to an estimated sis in the ribs and ster_num [3], [4]. Most _Of these side
position instead of an observed one. A hybrid approach €ffects have been attributed to normal tissue damage
based on the correlation of real-time imagery data of resulting from uncertainty in tumor volume localization
internal markers and easy to measure external respiratory due to breathing induced motion and set up errors [3],
signals like flow readings efc., is proposed to support 51 Radiation oncologists have to carefully weigh the

dynamic radiation therapy procedures. Issues related to ~ . . . . .
reliability of proposed model predictions in the presence clinical benefits of treatment with the risks posed to

of parametric uncertainty are explored using Polynomial 1ong term quality of life of the patient while deciding
Chaos Expansion. on the quantity of radiation dosage. This tradeoff due

to uncertainty in localizing the tumor volume can also
compromise the effectiveness of radiation therapy by
Radiation therapy is a medical procedure which utilizgsreventing effective dose escalation required for good
ionizing radiations such as electron, proton and oth&eatment.

high energy particles to control the growth of canceRecent advances in radiation therapy procedures, com-
ous tumors. Beams of ionizing radiations have to hguting hardware and faster image processing algorithms
precisely targeted to the three dimensional shape lodve enabled treatment procedures for moving target
the target tumor volume while avoiding the surroundingolumes using dynamic Image Guided Radiation Ther-
healthy tissue. When dealing with tumors in thoraapy (IGRT) [6]. In this approach the tumor(or fiducial
and abdominal region this task becomes increasingtyarkers implanted in its vicinity) is imaged using 2D
difficult due to movement of the target tumor volumer 3D scans during the course of radiation therapy and
through the course of treatment [1]. Motion of tumorés location in 3D is identified [7], [8]. This scheme is
in thorax and abdominal region is mainly induced due tshown in figurel. Using this information, the radiation
quasi-periodic breathing patterns. This movement can beam can be dynamically directed to the identified tumor
significant for tumors in the thorax region e.g, lung antbcation. Although this framework seems appropriate
breast tumors [2]. This constant movement of tumofer accurate localization of tumor volumes for 4D (on-
during the radiation therapy procedure presents a kkge) radiation therapy there are some limitations of
problem for radiation therapy procedure as the positidhis approach. The first issue is that X-ray imaging
of the tumor is not exactly known. Uncertainties irperformed during the course of treatment also represents
localizing the tumor volume during the radiation therapgmall radiation dosage to a large area surrounding the
necessitates incorporating margins to compensate famor volume so imaging, X-ray, CT scans,etc., at a
movement of the tumor. Inclusion of these margins leddgh sampling rate becomes prohibitive. This means that
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tumor motion and external surrogate(external respiration
signal) [11], [12]. This is a hybrid approach in which the
low sampled information from X-ray imaging is com-
bined with high sampled information from some other
| respiration signals(also termed as external surrog&e) li
@ displacement of external chest markers, strain gauge,
pneumo-tachograph etc, [13]. The aim is to find the

‘ correlation model or correspondence map between the
external surrogate and tumor motion so treatment during

second is related to finding the relationship between the
X-Ray Cameras ~ Beam som‘ce) ’%
L%

Internal fiducial markers

Robetic arm the time when imaging information is not available can
X-Ray Detectors . . . .
be carried out on the basis of tumor location inferred
Fig. 1. Image Guided Radiation Therapy from these models.

In this paper, the problem of modeling related to the
latter category is addressed i.e, finding a model between
treatment during the time when imaging data is na@ suitable external surrogate and motion of the tumor.
available has to be guided by some other techniqueor the proposed model we also discuss the issue of
Secondly, when image is available at particular instanhcertainty in the model parameters and develop a
there is a finite time required for the image processirfgamework to find uncertainty measures which can be
software to analyze and extract the position of the tumaosed for finding optimal image sampling times.
and in the mean time the tumor is still in motion. So
the information about the 3D location of tumor volume Il. TUMOR MOTION MODELING
given by the imaging system is actually not the positiom this section we present the details of a model for
at current time. Figure shows the time sequence oflung tumor motion which is based on the pulmonary
imaging and treatment events. Herel is the X-ray mechanics. We also present brief details of other models
image sampling time andht, is the image processingused for comparing the performance of the proposed
time. Due to this delay in image processing the systemethod.
has no information about the location of the tumor during
the periodAt + At,. Further, the treatment has to beA. Prediction Model

started at time + At, using the position of the tumor Most of the methods for finding the correspondence map

at time t, when the image was captured. between different external surrogates (input signals) and
tumor motion proposed by researchers are black box
— M C"a";gfe — M C":;gfe a_lpproaches [11], [12]. Howe_ve_r, we felt that fo_r rela-
‘ B ‘ B ’?7,‘1,";”‘;""” tively reha_blellong term prediction of tumor motion, a
Vi - s 2 model which incorporates the knowledge of mechanical
| Processing Processing properties of the lung like tissue properties etc., is lbette
S, Bl suited.
Radiation | Treatment based on | . . .
; Therapy | . information collected attimet The mechanical properties of lung tissues have been
Time, t Time, t+Ati Time, t+At Time, t+Ati+ At studied in detail by many researchers and the behavior

has been characterized as viscoelastic and nonlinear [14],
Fig. 2. Treatment delays due to imaging system and systemdas [15], |n the literature related to pulmonary mechanics,

the dynamics of lung have often been described in terms
Another problem with this method is that even wheof the pressure volume relationship [14] [16]. In these
the information from imaging system is available, therstudies the pressure volume curves for the lung are also
are delays associated with control system processing atebcribed to be hysteretic. Further, for small amplitude of
positioning of the Robotic arm which again means thateformation, major part of hysteretic behavior can be de-
the tumor location has to be predicted to compensate fgribed by a linear viscoelastic model [14]. Traditionally
these delays. the study of mechanical properties of lung using methods
Current research in dynamic tumor tracking aimed auch as pressure-volume relationships have been used
mitigating these problems is divided into two main catdor determining the physiological functions of the lung.
gories. The first approach is to come up with predictiohhese have been used to compare the properties of
algorithms based on time history of past 3D tumor posirormal lung to the properties of a lung affected by
tions [9], [10]. These algorithms predict the future tumodiseases like Lung Fibrosis, Asthma, Emphysema, etc.
position based on past history of 3D tumor positions. TH&7]. In view of the extensive research already done
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in representing the dynamical mechanical properties ®he transfer function derived from transient step re-
lung tissue using pressure-volume model, we proposponse, equatiog, is then tested by comparing response
a hierarchical model for tumor motion comprising obf this model to actual response to sinusoidal inputs of
two stages. In the first stage a fixed linear dynamicaérying frequencies. The author in [14] proposes that
pressure-volume model is used to compute the outgbithe derived model can accurately represent response
pressure from the tidal volume and then a nonlinear statiz the sinusoidal input as well as step input, then the
mapping is used to find tumor position based on thmodel adequately represents material properties. It is

output of the pressure-volume model (Figude shown in the same work that the frequency response
calculated based on modeled transfer function closely
G(w) represents the observed magnitude response to sinusoidal

Ve — PE) / % input, however the phase response for modeled frequency
Tidal Volume| | — Pressure Tumormetion  rasponse function was persistently lagging the observed
Linear Dynamical System Nonlinear mapping output by a third of the total phase.
Based on the model proposed in [14] we expand the
Fig. 3. Hierarchical scheme for modeling tumor motion  natyra| log term in the transfer function approximated
by a series expansion given by equation

In the model presented above, the input is the tidal 3
volume which is the volume of air a person is breathing In(s) =2 [ 2= L oLfs=h\ (4)
s+1 3\s+1

in and out during normal respiration. This quantity can
be measured at very high sampling rate (upto 1000 Hz)
using spirometry measurements through an electronir
pneumotachograph [18] [19]. In the experimental set-L
used in this study we use a spirometer which measuis
the flow rate of the air being inhaled or exhaled and u st
numerical integration of flow-rate to find tidal volume. £ .|
1) Linear Dynamic Model for Pressure-Volume Rela ‘ ‘ ‘ ‘ ‘
tionship: An approach to derive the pressure-volum ° wtadis)

relationship for thin walled organs like lung in the formr
of a transfer function was described by Hilderbranc
[14]. One of the propositions of this work was that ifg °f
the amplitude of deformation is relatively small (10

-18.5F

1term
2 terms |

oo 3 terms
== 4terms |

Actual

Phase(deg)

20% of operating volume), the hysteresis behavior £ | —_—
mainly of viscoelastic type which can be represented : : : : :
linear form. Note that during normal human respiratior " : 2 e ‘ s 6

the tidal volume is about 500-600 ml which is around

10 % of the overall lung volume of around 6 Liters. For Fig. 4. Bode diagram of Pressure-Volume transfer function
deriving the pressure-volume transfer function, a form

of stress relaxation function (equatid) was used to Figure 4 shows the bode diagram of the approximated
describe the pressure change in lyr{g) as a transient Pressure-Volume transfer function with increasing num-

response to step volume change of magnitlge ber of terms in the log expansion series. From this figure,
p(t) it can be seen that in the frequency range of interest
T C — Dlogt (1) which ranges from 12-20 breaths per minute or 1.26 rad/s

) ) ) to 2 rad/s, that the series with the first three or four terms
Taking the laplace transform of this equation, we havgeasonably approximates the transfer function. Unknown
P(s) C D 1) 1 2 parametersC' and D, of the pressure-volume transfer
Vi s 2.33( (1) — In(s)) (@) function were obtained by minimizing the square of the
LN I . _error between the response of modeled transfer function
W:teerdel;t(i);(;rzg ge”;/:;'i\r/ﬁa(t);G:murgftgugcgggzcol\lrg Va\}nd actual measurements using non linear least squares
P PP y €d N _ v, method for training data sets and with different number
for a step volume change of magnitutle, V (s) = ~Z. of terms in the log expansion series
Using this the Pressure-Volume transfer function can ; ' . .
writtgn as % Pressure-lung membrane displacement relationship:
As we are interested in the model for tumor motion,
P(s) - C D (I"(1) — In(s)) (3) Wwe now consider a model to represent the displacement

of lung tissue corresponding to the change in pressure

<

—
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1000

during respiration. We use the relationships betwee
pressure and displacement for lung tissue proposed tz
Ben-Haim et al. [20]. These are given by the equationsz

500|

i
-500f

Py — Ppl —or =0 (5) 1000 i s i s

I
20 40 60 80 100 120

Pgauge = kl Sinh(kg (AX — kQ)) (6)

1000,
In equation5 P, is the alveolar pressure (pressure
inside the lung) and’,; is the pleural pressure, (pressure§ 0
surrounding the lung). So the stress on the lung tissut
or, is the difference of these two pressures. In oul ‘ ‘ ‘ ‘ ‘ ‘ ‘
experimental setup the outside surface of lung tissue  ° oo e e
exposed to atmosphere &g is the gauge pressure inside
the lung. In equatior®, the relationship between stress
on lung tissue and the displacement is represented usﬁlﬁb
a hyperbolic relation and;, k» andks are parameters
to be identified. Unknown coefficients for all the above
relationship were identified by minimizing the square of

the error between modeled and observed data for tﬁaﬁe approach used for tumor motion modeling proposed

training data set. in the previous section is a two stage procedure with a
fixed pressure-volume model and patient and tumor posi-

[1l. DATA COLLECTION tion specific pressure-membrane displacement model. It

was proposed that the fixed pressure-volume model can

In order to study how respiration effects the motion 9 . : -
. - ."be developed using experimental procedures highlighted
lung tumor an experimental setup consisting of porcine

lung explant, air pump, VICON MX 3D motion captureIn Section 2 on Iarge patlent/Iung. e*P'a.”t dataset.
wever, there can still be some variability in the model
system, flow and pressure sensors was constructed.Hf%

simulate how the lung tissue and objects attached to tH%rameters across the large data set of patients which

tissue surface behave during respiration, an inflatabig " also be characterized by experimental procedures as

: : roposed in Section 2. Therefore, a study of modelin
porcine lung explant (BT'OQUESt Inﬂatable_ Lungs) [zigssﬂmptions and their effect on the perfo¥mance of thge
was usgd. The a”atom'c‘."" and physiological propertnr-:-ﬁsodel is imperative for any reliable Image Guided Ra-
of porcine lungs are &_rmlar to h“ma“ lungs and theefiotherapy procedure based on the proposed framework.
have been used in variety of studies related to humﬁQ this section. we focus on these modeling assumo-
lung [22]. The properties of porcine lungs used in thi@ ’ 9 P

study were similar to that of a 65-70 Kilograms(140-16 ons for the parameters associated with the Pressure-
Ib.) human. olume model. We assume that these parameters are

random variables. Based on the experimental data, first

Tumors on the surfacg Of. the Iung(parerjchyma) Affie problem of characterizing the distribution of these
represented by attaching infra-red reflective marker ndom variable is discussed. Next this knowledge is

Motion of these markers is captured using Vicon M_ used to compute the uncertainty in model predictions

motion capture system. Flow rate of the ar fI(_)wmg N ing an efficient procedure based on stochastic Galerkin
and out of the lungs is measured using a differenti

. roach known as Polynomial Chaos. B antifyin
pressure based flow sensor. A pressure sensor is § W y I y quantitying

dt h £ air inside the | uncertainty in the model predictions using uncer-
used to measure the pressure of air nside the 1ungs. té)lrnty measures like standard deviation, this framework
measuring the location of infra-red markers in realtim

%an be used to make optimal decisions in real time about
the VICON MX motion capture sytem was utilized. P

- when to image the patient.
Marker position, pressure and flow rate data was col-

lected using the test set-up for various scenarios. Infrgj Distribution of Uncertain Model Parameters

red markers were placed at multiple locations to analyzé

the effect of spatial variation on tumor motion. Breathingn the original pressure-volume model the parameters
patterns mimicking real respiration were ensured whil€ and D were considered as deterministic. In our new
inflating and deflating the lung. To see the effect dramework these parameters are considered as stochastic.
respiration rate, scenarios for slow breathing and rapktbwever, the choice of probability distribution which
breathing were also simulated. Figuteshows the tidal represents these parameters is still an important consid-
volume signal for the case of slow and rapid breathingeration.

5. Tidal volume signal fofa) rapid breathing(b) slow breathing

IV. UNCERTAINTY QUANTIFICATION

4
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As the parameters learned from multiple data sets weteat exponential convergence can be reached for other
found to be distributed over a particular range, wgpes of random variables by using different orthogonal

develop a Polynomial Chaos based framework with bepmlynomials based on the distribution of uncertain pa-

distribution as the probabilty model to represent randorameters. This scheme is known as the Wiener-Askey
parametersC’ and D. The density function for beta scheme.

distribution with support in the interval (a,b) is givenrne main advantage in using this procedure is that we

as can potentially compute the uncertainty measures like
standard deviations etc, associated with the stochastic

—a)?(b—a)® rocess in real time and use that information in makin

p() = (x —a)’(b—a) a<z<b @ P g

decisions in real-time. In the pressure-volume model
proposed in the previous section, there are maximum
two uncertain parameters so the PC expansion approach
B(l,m) - LT (m) (8) IS computationally more efficient than the Monte Carlo

’ L(l+m) approach.

andI'(.) is the Euler gamma function. The beta distri1) General ProcedureThe general procedure for apply-
bution can be used to study a variety of distributions biyig this procedure is demonstrated using the stochastic
varying the shape parametersand 3. Further the beta differential equation:

distribution becomes the uniform density when- 5 = )

0. The shape parameters for the beta distribution can x(t,p) = £(t, u(t); p) (10)

be evaluated from the observed experimental oucomgfgere,x(¢, p) is the stochastic response of the system.
using a suitable statistical model. For numerical resultg(t;w) is the input to the systenp € R™ is a vector

we consider the uncertain parameters to be uniformgt yncertain parameters,which are functions of random
distributedfr = 3 = 0) over the range between theyariable ¢ € R™ with known pdf f(¢).The stochastic

maximum and minimum value of parameters learned fefate and uncertain parameters can be represented by
multiple data sets. finite PCE

(b—a)*tFtB(a+1,6+1)
where B(p,q) is the beta function defined as

B. Polynomial Chaos

N
Polynomial Chaos(PC) is a representation of stochastic - _ _
process as an infinite sum of Hermite orthogonal poly- x(t,€) ~ ;Xl(i)\p (©) (11)
nomials of Gaussian random variables(equa$prirhis N

development was first introduced by Norbert Wiener _ U, 12
[23]in 1938. Cameron and Martin [24] proved that for P(®) ;p © (12)

stochastic processes with finite second order moment s .
) . o .__Where x;(t) are the deterministic polynomial chaos
this expansion converges ih® sense. PC expansion

for a stochastic process(t, w), wherew represents the coefficients, ¥, (¢ are the multidimensional orthogonal

: o . polynomials of random variableswith highest order p.
uncertainty, is given by equation The dimension of vector of random variablgsv), m,

B = T 9 is the same as the number of uncertain parameters in the
x(t,w) = in(t) i(€(w)) ©) system. Multidimensional orthogonal polynomials are
=0 generated using the tensor product of one dimensional

Ghanem and Spanos [25] used this method to solygthogonal polynomials, thus the total number of terms
stochastic differential equations related to problems gf equation12 (N+1) are given by:

solid mechanics by truncating the series sum to finite |
number of terms. They used the Galerkin projection N4+1= M
approach on the truncated PC expansion, to obtain a set plm!
of deterministicdifferential equations corresponding toError due to finite PCE is given as
the coefficients of polynomial chaos expansion which

N N
can be solved numerically. e(é) = in(t)q,i(g) — f(t,u(t); Zpi\pi@) (14)
=0 =0

(13)

This procedure can be used for representing any stochas-
t'(.: process W'th f"?"e second order moments. Howev row, this error is minimum if the Galerkin projection
Xiu and Karniadakis [26] showed that the convergence gt . Jhove equation on to each of the orthogonal
PC expansion using Hermite polynomials is exponentis lynomial ¥, (¢) is zero.

only for Gaussian process. They developed the gen- ’

eralized Polynomial Chaos(gPC) approach and showed (e(£),P;(€)=0

5
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where(.,.) represents the ensemble average or the inngritten in terms of one dimensional polynomial chaos
product operator. This leads to a set of deterministas

differential equations which can be solved numerically = = e 19
for the PCE coefficients. x(t) = ; xi(t)Wi(§) (19)

C. Polynomial Chaos Formulation For Proposed Modelsing these expansions in equatibwe get,

In this section the PCE is applied to the prediction mod- N N

els proposed in Section 2. As discussed in sedtibA > xi(t) = AD x(H)Ti() +BY Al (V(H)
the uncertainty measures for the model are computed=° =0 =0 (20)
assuming the parameters are random variables with befalerkin projection of equatior20 onto the space
distribution. spanned by orthogonal polynomials, (¢) leads tok!"

The pressure volume transfer function model of lung ioonstraint equation
Section 3 with three terms in log expansion series can

be written as (1) = Axi(t) (Pr(8), Pr(8)) + Bdi (Vi (£), Vi (£)) V(¢)
P d ., (Tr(€), Tr(€))
V(S) =c— ﬁ(F (1) — In(s)) (15) (21)

p ) This leads to a set of 3(N+1) deterministic differential
~ (c+ 1.4d)s” + (3¢ + .8d)s” + (3¢ + .8d)s + (¢ — .9d) equations given by
s3+3s2+3s+1

where ¢ and d are independent random variables with X = AX + BV (t) (22)

beta distribution given by These deterministic equations can be solved for the

d = Betdag, fa);di < d < du; c = Betdae, Be);a < ¢ < cu. coefficients of the stochastic state variable for time
C\éarying inputV (). Then using the output equatidry

Writing the above transfer function in state spa We can find the mean of predicted pressure as

observable canonical form we have,

N
x(t) = i§ (1) (1) x(t) + :gg dxV(t) (16) we = EPBI=E Zzgl)(ﬂ\pi“(C“'ud)v(t)
10 0 ~2.32 o =
5;_/ —_—— T (t)+(Mc+1.41ud)V(t) (23)
B

L and variancer2(t) = Var[P(t)] can be computed as
and the output equation is p(t) [P() P

N 2
Pit)=[1 0 0 X(t)+(0+;-41d)V(t) A7) o2 =E {(Zﬂ xgl)(t)\Ilif—l—(c—O—1.41d)V(t)) — 2
C
According to the Wiener-Askey polynomial chaos :i (x(.l)(t))QE[\I/?(g)]Jr (142 + 0% + 1417 (42 + 02)) V(1)?
scheme, for exponential convergence of polynomial rard

chaos for Beta distribution the expansion should be N ) ,
written in terms of Jacobi orthogonal polynomials. As ~ +2 x 1.41 (Z oV d;E[W (f)]) V(t) — pp(t)
only parametet! appears in the state space equafién =0 (24)

we will represent the stochastic state variabli® terms _ _ _
of 1-D polynomial chaos. The expansion for randomT he inner product for Jacobi polynomials can be calcu-

variable,d, using Jacobi polynomiald(¢) is: lated using the following relation [26]
1
d=doWo(¢) +dy ¥y (€) +0+---+0  (18) E[W? ()] = [, Y (§)p(&)dE (25)
. — . . _ I(itat+1)I(i+5+1)
where¢ is a beta distributed random variable given by = @itotB+1)Bla+1,B+ )T (itatpr)d
the equation where B(a + 1,3 + 1) is the beta function.
& =Betdag, Bq); -1 << 1 1) Numerical ResultsThe procedure described in the

previous section was used to generate numerical results
for the pressure-volume model. In this section results for
the case when both parameters of the model are consid-
(d, ¥1(£)) ered as random with uniform distribution are presented.

(W1(8), ¥1(8)) Shape and location parameters of the beta distribution

As the stochastic state variabi¢t) depends only on the for the two random variables are given in table
random variablel, the PC expansion of the state can bEigure 6 shows the evolution of mean(red-dashed) and

dp is E[d] i.e. expected value of parametéandd; can
be calculated using the equation

1=

6
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TABLE |

SHAPE AND LOCATION PARAMETERS FOR BETA DISTRIBUTION 09
o
c d 07
! 0 0 ; 0s
g0 0 os
a .0175 .0027 os

b 024 0113 :

+/ — 30 bounds of predicted pressure time upto 2
seconds. The actual measured pressure(blue-dotted
also shown in the figure. We can see that the variance

is highest at the peaks an thus new information froffig. 8. Evolution of pdf of predicted detrended pressure
the imaging system can be collected at these times #"9 Polynomial chaos

accurate tracking of tumor location. We also see from

Detrended Pressure(Pa) a5 o Time(s)

the figure that the measured pressure lies within the VI. ACKNOWLEDGEMENT
predicted+/ — 30 bounds for most of the time. This work was supported by NSF Award No. CMMI-
0928630
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