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Abstract—Target localization is a key issue in the image
guided radiation therapy procedures for treating tumors
in thorax and abdomen. Breathing induced tumor motion
necessitates larger margins during radiation therapy plan-
ning which may be harmful for healthy tissue surrounding
the tumor. Large sampling time in data acquisition and
latencies involved in real time imaging systems and tracking
system pose a significant challenge to target localization.A
framework based on pulmonary mechanics is developed to
predict and precisely track the breathing induced motion of
lung tumor to direct the tracking system to an estimated
position instead of an observed one. A hybrid approach
based on the correlation of real-time imagery data of
internal markers and easy to measure external respiratory
signals like flow readings etc., is proposed to support
dynamic radiation therapy procedures. Issues related to
reliability of proposed model predictions in the presence
of parametric uncertainty are explored using Polynomial
Chaos Expansion.

I. I NTRODUCTION

Radiation therapy is a medical procedure which utilizes
ionizing radiations such as electron, proton and other
high energy particles to control the growth of cancer-
ous tumors. Beams of ionizing radiations have to be
precisely targeted to the three dimensional shape of
the target tumor volume while avoiding the surrounding
healthy tissue. When dealing with tumors in thorax
and abdominal region this task becomes increasingly
difficult due to movement of the target tumor volume
through the course of treatment [1]. Motion of tumors
in thorax and abdominal region is mainly induced due to
quasi-periodic breathing patterns. This movement can be
significant for tumors in the thorax region e.g, lung and
breast tumors [2]. This constant movement of tumors
during the radiation therapy procedure presents a key
problem for radiation therapy procedure as the position
of the tumor is not exactly known. Uncertainties in
localizing the tumor volume during the radiation therapy
necessitates incorporating margins to compensate for
movement of the tumor. Inclusion of these margins lead

to increased toxicity associated with radiation therapy as
normal tissue inside the Planned Target Volume (PTV)
also gets damaged. Examples of the side effects have
been well documented in many studies, for example
in cases of radiation therapy applied to breast cancer
patients, the side effects can include ischemic heart
disease, pneumonitis and pulmonary fibrosis, erythema,
telangiectasia and ulceration of the skin, and bone necro-
sis in the ribs and sternum [3], [4]. Most of these side
effects have been attributed to normal tissue damage
resulting from uncertainty in tumor volume localization
due to breathing induced motion and set up errors [3],
[5]. Radiation oncologists have to carefully weigh the
clinical benefits of treatment with the risks posed to
long term quality of life of the patient while deciding
on the quantity of radiation dosage. This tradeoff due
to uncertainty in localizing the tumor volume can also
compromise the effectiveness of radiation therapy by
preventing effective dose escalation required for good
treatment.
Recent advances in radiation therapy procedures, com-
puting hardware and faster image processing algorithms
have enabled treatment procedures for moving target
volumes using dynamic Image Guided Radiation Ther-
apy (IGRT) [6]. In this approach the tumor(or fiducial
markers implanted in its vicinity) is imaged using 2D
or 3D scans during the course of radiation therapy and
its location in 3D is identified [7], [8]. This scheme is
shown in figure1. Using this information, the radiation
beam can be dynamically directed to the identified tumor
location. Although this framework seems appropriate
for accurate localization of tumor volumes for 4D (on-
line) radiation therapy there are some limitations of
this approach. The first issue is that X-ray imaging
performed during the course of treatment also represents
small radiation dosage to a large area surrounding the
tumor volume so imaging, X-ray, CT scans,etc., at a
high sampling rate becomes prohibitive. This means that
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Fig. 1. Image Guided Radiation Therapy

treatment during the time when imaging data is not
available has to be guided by some other technique.
Secondly, when image is available at particular instant
there is a finite time required for the image processing
software to analyze and extract the position of the tumor
and in the mean time the tumor is still in motion. So
the information about the 3D location of tumor volume
given by the imaging system is actually not the position
at current time. Figure2 shows the time sequence of
imaging and treatment events. Here∆t is the X-ray
image sampling time and∆t1 is the image processing
time. Due to this delay in image processing the system
has no information about the location of the tumor during
the period∆t + ∆t1. Further, the treatment has to be
started at timet + ∆t1 using the position of the tumor
at time t, when the image was captured.

Fig. 2. Treatment delays due to imaging system and system latencies

Another problem with this method is that even when
the information from imaging system is available, there
are delays associated with control system processing and
positioning of the Robotic arm which again means that
the tumor location has to be predicted to compensate for
these delays.
Current research in dynamic tumor tracking aimed at
mitigating these problems is divided into two main cate-
gories. The first approach is to come up with prediction
algorithms based on time history of past 3D tumor posi-
tions [9], [10]. These algorithms predict the future tumor
position based on past history of 3D tumor positions. The

second is related to finding the relationship between the
tumor motion and external surrogate(external respiration
signal) [11], [12]. This is a hybrid approach in which the
low sampled information from X-ray imaging is com-
bined with high sampled information from some other
respiration signals(also termed as external surrogate) like
displacement of external chest markers, strain gauge,
pneumo-tachograph etc, [13]. The aim is to find the
correlation model or correspondence map between the
external surrogate and tumor motion so treatment during
the time when imaging information is not available can
be carried out on the basis of tumor location inferred
from these models.
In this paper, the problem of modeling related to the
latter category is addressed i.e, finding a model between
a suitable external surrogate and motion of the tumor.
For the proposed model we also discuss the issue of
uncertainty in the model parameters and develop a
framework to find uncertainty measures which can be
used for finding optimal image sampling times.

II. T UMOR MOTION MODELING

In this section we present the details of a model for
lung tumor motion which is based on the pulmonary
mechanics. We also present brief details of other models
used for comparing the performance of the proposed
method.

A. Prediction Model

Most of the methods for finding the correspondence map
between different external surrogates (input signals) and
tumor motion proposed by researchers are black box
approaches [11], [12]. However, we felt that for rela-
tively reliable long term prediction of tumor motion, a
model which incorporates the knowledge of mechanical
properties of the lung like tissue properties etc., is better
suited.
The mechanical properties of lung tissues have been
studied in detail by many researchers and the behavior
has been characterized as viscoelastic and nonlinear [14],
[15]. In the literature related to pulmonary mechanics,
the dynamics of lung have often been described in terms
of the pressure volume relationship [14] [16]. In these
studies the pressure volume curves for the lung are also
described to be hysteretic. Further, for small amplitude of
deformation, major part of hysteretic behavior can be de-
scribed by a linear viscoelastic model [14]. Traditionally,
the study of mechanical properties of lung using methods
such as pressure-volume relationships have been used
for determining the physiological functions of the lung.
These have been used to compare the properties of
normal lung to the properties of a lung affected by
diseases like Lung Fibrosis, Asthma, Emphysema, etc.
[17]. In view of the extensive research already done
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in representing the dynamical mechanical properties of
lung tissue using pressure-volume model, we propose
a hierarchical model for tumor motion comprising of
two stages. In the first stage a fixed linear dynamical
pressure-volume model is used to compute the output
pressure from the tidal volume and then a nonlinear static
mapping is used to find tumor position based on the
output of the pressure-volume model (Figure3).

Fig. 3. Hierarchical scheme for modeling tumor motion

In the model presented above, the input is the tidal
volume which is the volume of air a person is breathing
in and out during normal respiration. This quantity can
be measured at very high sampling rate (upto 1000 Hz)
using spirometry measurements through an electronic
pneumotachograph [18] [19]. In the experimental set-up
used in this study we use a spirometer which measures
the flow rate of the air being inhaled or exhaled and use
numerical integration of flow-rate to find tidal volume.
1) Linear Dynamic Model for Pressure-Volume Rela-
tionship: An approach to derive the pressure-volume
relationship for thin walled organs like lung in the form
of a transfer function was described by Hilderbrandt
[14]. One of the propositions of this work was that if
the amplitude of deformation is relatively small (10-
20% of operating volume), the hysteresis behavior is
mainly of viscoelastic type which can be represented in
linear form. Note that during normal human respiration,
the tidal volume is about 500-600 ml which is around
10 % of the overall lung volume of around 6 Liters. For
deriving the pressure-volume transfer function, a form
of stress relaxation function (equation1) was used to
describe the pressure change in lungp(t) as a transient
response to step volume change of magnitudeVT .

p(t)

VT

= C − D log t (1)

Taking the laplace transform of this equation, we have

P (s)

VT

=
C

s
−

D

2.3s
(Γ′(1) − ln(s)) (2)

whereΓ′(1) is the derivative of Gamma function com-
puted at 1 and is approximately equal to 0.5772. Now,
for a step volume change of magnitudeVT , V (s) = VT

s
.

Using this the Pressure-Volume transfer function can be
written as

P (s)

V (s)
= C −

D

2.3
(Γ′(1) − ln(s)) (3)

The transfer function derived from transient step re-
sponse, equation3, is then tested by comparing response
of this model to actual response to sinusoidal inputs of
varying frequencies. The author in [14] proposes that
if the derived model can accurately represent response
to the sinusoidal input as well as step input, then the
model adequately represents material properties. It is
shown in the same work that the frequency response
calculated based on modeled transfer function closely
represents the observed magnitude response to sinusoidal
input, however the phase response for modeled frequency
response function was persistently lagging the observed
output by a third of the total phase.
Based on the model proposed in [14] we expand the
natural log term in the transfer function approximated
by a series expansion given by equation4.

ln(s) = 2

(

s − 1

s + 1
+

1

3

(
s − 1

s + 1

)3

+ · · ·

)

(4)
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Fig. 4. Bode diagram of Pressure-Volume transfer function

Figure 4 shows the bode diagram of the approximated
Pressure-Volume transfer function with increasing num-
ber of terms in the log expansion series. From this figure,
it can be seen that in the frequency range of interest
which ranges from 12-20 breaths per minute or 1.26 rad/s
to 2 rad/s, that the series with the first three or four terms
reasonably approximates the transfer function. Unknown
parametersC and D, of the pressure-volume transfer
function were obtained by minimizing the square of the
error between the response of modeled transfer function
and actual measurements using non linear least squares
method for training data sets and with different number
of terms in the log expansion series.
2) Pressure-lung membrane displacement relationship:
As we are interested in the model for tumor motion,
we now consider a model to represent the displacement
of lung tissue corresponding to the change in pressure
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during respiration. We use the relationships between
pressure and displacement for lung tissue proposed by
Ben-Haim et al. [20]. These are given by the equations:

Palv − Ppl − σL = 0 (5)

Pgauge = k1 sinh(k3(∆X − k2)). (6)

In equation5 Palv is the alveolar pressure (pressure
inside the lung) andPpl is the pleural pressure, (pressure
surrounding the lung). So the stress on the lung tissue
σL is the difference of these two pressures. In our
experimental setup the outside surface of lung tissue is
exposed to atmosphere soσL is the gauge pressure inside
the lung. In equation6, the relationship between stress
on lung tissue and the displacement is represented using
a hyperbolic relation andk1, k2 andk3 are parameters
to be identified. Unknown coefficients for all the above
relationship were identified by minimizing the square of
the error between modeled and observed data for the
training data set.

III. D ATA COLLECTION

In order to study how respiration effects the motion of
lung tumor an experimental setup consisting of porcine
lung explant, air pump, VICON MX 3D motion capture
system, flow and pressure sensors was constructed. To
simulate how the lung tissue and objects attached to the
tissue surface behave during respiration, an inflatable
porcine lung explant (BioQuest Inflatable Lungs) [21]
was used. The anatomical and physiological properties
of porcine lungs are similar to human lungs and they
have been used in variety of studies related to human
lung [22]. The properties of porcine lungs used in this
study were similar to that of a 65-70 Kilograms(140-160
lb.) human.
Tumors on the surface of the lung(parenchyma) are
represented by attaching infra-red reflective markers.
Motion of these markers is captured using Vicon MX
motion capture system. Flow rate of the air flowing in
and out of the lungs is measured using a differential
pressure based flow sensor. A pressure sensor is also
used to measure the pressure of air inside the lungs. For
measuring the location of infra-red markers in realtime,
the VICON MX motion capture sytem was utilized.
Marker position, pressure and flow rate data was col-
lected using the test set-up for various scenarios. Infra-
red markers were placed at multiple locations to analyze
the effect of spatial variation on tumor motion. Breathing
patterns mimicking real respiration were ensured while
inflating and deflating the lung. To see the effect of
respiration rate, scenarios for slow breathing and rapid
breathing were also simulated. FigureIII shows the tidal
volume signal for the case of slow and rapid breathing.
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Fig. 5. Tidal volume signal for(a) rapid breathing,(b) slow breathing

IV. U NCERTAINTY QUANTIFICATION

The approach used for tumor motion modeling proposed
in the previous section is a two stage procedure with a
fixed pressure-volume model and patient and tumor posi-
tion specific pressure-membrane displacement model. It
was proposed that the fixed pressure-volume model can
be developed using experimental procedures highlighted
in Section 2 on large patient/lung explant data set.
However, there can still be some variability in the model
parameters across the large data set of patients which
can also be characterized by experimental procedures as
proposed in Section 2. Therefore, a study of modeling
assumptions and their effect on the performance of the
model is imperative for any reliable Image Guided Ra-
diotherapy procedure based on the proposed framework.
In this section, we focus on these modeling assump-
tions for the parameters associated with the Pressure-
Volume model. We assume that these parameters are
random variables. Based on the experimental data, first
the problem of characterizing the distribution of these
random variable is discussed. Next this knowledge is
used to compute the uncertainty in model predictions
using an efficient procedure based on stochastic Galerkin
approach known as Polynomial Chaos. By quantifying
the uncertainty in the model predictions using uncer-
tainty measures like standard deviation, this framework
can be used to make optimal decisions in real time about
when to image the patient.

A. Distribution of Uncertain Model Parameters

In the original pressure-volume model the parameters
C andD were considered as deterministic. In our new
framework these parameters are considered as stochastic.
However, the choice of probability distribution which
represents these parameters is still an important consid-
eration.
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As the parameters learned from multiple data sets were
found to be distributed over a particular range, we
develop a Polynomial Chaos based framework with beta
distribution as the probabilty model to represent random
parametersC and D. The density function for beta
distribution with support in the interval (a,b) is given
as

p(x) =
(x − a)β(b − a)α

(b − a)α+β+1B(α + 1, β + 1)
, a ≤ x ≤ b (7)

where B(p,q) is the beta function defined as

B(l, m) =
Γ(l)Γ(m)

Γ(l + m)
(8)

and Γ(.) is the Euler gamma function. The beta distri-
bution can be used to study a variety of distributions by
varying the shape parametersα andβ. Further the beta
distribution becomes the uniform density whenα = β =
0. The shape parameters for the beta distribution can
be evaluated from the observed experimental oucomes
using a suitable statistical model. For numerical results
we consider the uncertain parameters to be uniformly
distributed(α = β = 0) over the range between the
maximum and minimum value of parameters learned for
multiple data sets.

B. Polynomial Chaos

Polynomial Chaos(PC) is a representation of stochastic
process as an infinite sum of Hermite orthogonal poly-
nomials of Gaussian random variables(equation9). This
development was first introduced by Norbert Wiener
[23]in 1938. Cameron and Martin [24] proved that for
stochastic processes with finite second order moment
this expansion converges inL2 sense. PC expansion
for a stochastic processx(t, ω), whereω represents the
uncertainty, is given by equation9.

x(t, ω) =

∞∑

i=0

xi(t)Ψi(ξ(ω)) (9)

Ghanem and Spanos [25] used this method to solve
stochastic differential equations related to problems of
solid mechanics by truncating the series sum to finite
number of terms. They used the Galerkin projection
approach on the truncated PC expansion, to obtain a set
of deterministicdifferential equations corresponding to
the coefficients of polynomial chaos expansion which
can be solved numerically.
This procedure can be used for representing any stochas-
tic process with finite second order moments. However,
Xiu and Karniadakis [26] showed that the convergence of
PC expansion using Hermite polynomials is exponential
only for Gaussian process. They developed the gen-
eralized Polynomial Chaos(gPC) approach and showed

that exponential convergence can be reached for other
types of random variables by using different orthogonal
polynomials based on the distribution of uncertain pa-
rameters. This scheme is known as the Wiener-Askey
scheme.

The main advantage in using this procedure is that we
can potentially compute the uncertainty measures like
standard deviations etc, associated with the stochastic
process in real time and use that information in making
decisions in real-time. In the pressure-volume model
proposed in the previous section, there are maximum
two uncertain parameters so the PC expansion approach
is computationally more efficient than the Monte Carlo
approach.

1) General Procedure:The general procedure for apply-
ing this procedure is demonstrated using the stochastic
differential equation:

ẋ(t,p) = f(t,u(t);p) (10)

where,x(t,p) is the stochastic response of the system.
U(t; ω) is the input to the system.p ∈ R

m is a vector
of uncertain parameters,which are functions of random
variable ξ ∈ R

m with known pdf f(ξ).The stochastic
state and uncertain parameters can be represented by
finite PCE

x(t, ξ) ≈

N∑

i=0

xi(t)Ψi(ξ) (11)

p(ξ) =

N∑

i=0

piΨi(ξ) (12)

where xi(t) are the deterministic polynomial chaos
coefficients,Ψi(ξ are the multidimensional orthogonal
polynomials of random variablesξ with highest order p.
The dimension of vector of random variablesξ(ω), m,
is the same as the number of uncertain parameters in the
system. Multidimensional orthogonal polynomials are
generated using the tensor product of one dimensional
orthogonal polynomials, thus the total number of terms
in equation12 (N+1) are given by:

N + 1 =
(p + m)!

p!m!
(13)

Error due to finite PCE is given as

e(ξ) =

N∑

i=0

ẋi(t)Ψi(ξ) − f(t,u(t);

N∑

i=0

piΨi(ξ)) (14)

Now, this error is minimum if the Galerkin projection
of the above equation on to each of the orthogonal
polynomialΨk(ξ) is zero.

〈e(ξ), Ψi(ξ)〉 = 0
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where〈., .〉 represents the ensemble average or the inner
product operator. This leads to a set of deterministic
differential equations which can be solved numerically
for the PCE coefficients.

C. Polynomial Chaos Formulation For Proposed Model

In this section the PCE is applied to the prediction mod-
els proposed in Section 2. As discussed in sectionIV-A ,
the uncertainty measures for the model are computed
assuming the parameters are random variables with beta
distribution.
The pressure volume transfer function model of lung in
Section 3 with three terms in log expansion series can
be written as

P

V
(s) = c −

d

2.3
(Γ′(1) − ln(s)) (15)

≈
(c + 1.4d)s3 + (3c + .8d)s2 + (3c + .8d)s + (c − .9d)

s3 + 3s2 + 3s + 1

where c and d are independent random variables with
beta distribution given by

d = Beta(αd, βd); dl ≤ d ≤ du; c = Beta(αc, βc); cl ≤ c ≤ cu.

Writing the above transfer function in state space
observable canonical form we have,

ẋ(t) =





−3 1 0
−3 0 1
−1 0 0





︸ ︷︷ ︸

A

x(t) +





−3.48
−3.48
−2.32





︸ ︷︷ ︸

B

d × V (t) (16)

and the output equation is

P (t) =
[
1 0 0

]

︸ ︷︷ ︸

C

x(t) + (c + 1.41d)
︸ ︷︷ ︸

D

V (t) (17)

According to the Wiener-Askey polynomial chaos
scheme, for exponential convergence of polynomial
chaos for Beta distribution the expansion should be
written in terms of Jacobi orthogonal polynomials. As
only parameterd appears in the state space equation16,
we will represent the stochastic state variablex in terms
of 1-D polynomial chaos. The expansion for random
variable,d, using Jacobi polynomialsΨk(ξ) is:

d = d0Ψ0(ξ) + d1Ψ1(ξ) + 0 + · · · + 0 (18)

whereξ is a beta distributed random variable given by
the equation

ξ = Beta(αd, βd);−1 ≤ ξ ≤ 1

d0 is E[d] i.e. expected value of parameterd andd1 can
be calculated using the equation

d1 =
〈d, Ψ1(ξ)〉

〈Ψ1(ξ), Ψ1(ξ)〉

As the stochastic state variablex(t) depends only on the
random variabled, the PC expansion of the state can be

written in terms of one dimensional polynomial chaos
as

x(t) =

i=N∑

i=0

xi(t)Ψi(ξ) (19)

Using these expansions in equation16 we get,

N∑

i=0

ẋi(t) = A

N∑

i=0

xi(t)Ψi(ξ) + B

N∑

i=0

diΨi(ξ)V (t)

(20)
Galerkin projection of equation20 onto the space
spanned by orthogonal polynomialsΨk(ξ) leads tokth

constraint equation

ẋk(t) =
Axk(t) 〈Ψk(ξ), Ψk(ξ)〉 + Bdk 〈Ψk(ξ), Ψk(ξ)〉V (t)

〈Ψk(ξ), Ψk(ξ)〉
(21)

This leads to a set of 3(N+1) deterministic differential
equations given by

Ẋ = AX + BV (t) (22)

These deterministic equations can be solved for the
coefficients of the stochastic state variable for time
varying inputV (t). Then using the output equation17
we can find the mean of predicted pressure as

µP = E[P (t)] = E

[
N∑

i=0

x
(1)
i (t)Ψiξ + (c + 1.41d)V (t)

]

= x
(1)
0 (t) + (µc + 1.41µd)V (t) (23)

and varianceσ2
P (t) = Var[P (t)] can be computed as

σ
2
P (t) = E





(
N∑

i=0

x
(1)
i (t)Ψiξ + (c + 1.41d)V (t)

)2


 − µ
2
p

=
N∑

i=0

(

x
(1)
i (t)

)2

E[Ψ2
i (ξ)] +

(
µ

2
c + σ

2
c + 1.412 (

µ
2
d + σ

2
d

))
V (t)2

+ 2 × 1.41

(
N∑

i=0

x
(1)
i diE[Ψ2

i (ξ)]

)

V (t) − µ
2
P (t)

(24)

The inner product for Jacobi polynomials can be calcu-
lated using the following relation [26]

E[Ψ2
i (ξ)] =

∫ 1

−1 Ψ2
i (ξ)p(ξ)dξ (25)

= Γ(i+α+1)Γ(i+β+1)
(2i+α+β+1)B(α+1,β+1)Γ(i+α+β+1)i!

whereB(α + 1, β + 1) is the beta function.

1) Numerical Results:The procedure described in the
previous section was used to generate numerical results
for the pressure-volume model. In this section results for
the case when both parameters of the model are consid-
ered as random with uniform distribution are presented.

Shape and location parameters of the beta distribution
for the two random variables are given in tableI

Figure 6 shows the evolution of mean(red-dashed) and

6

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2010 American Control Conference.
Received September 16, 2009.



TABLE I
SHAPE AND LOCATION PARAMETERS FOR BETA DISTRIBUTION

c d

α 0 0
β 0 0
a .0175 .0027
b .024 .0113

+/ − 3σ bounds of predicted pressure time upto 20
seconds. The actual measured pressure(blue-dotted) is
also shown in the figure. We can see that the variance
is highest at the peaks an thus new information from
the imaging system can be collected at these times for
accurate tracking of tumor location. We also see from
the figure that the measured pressure lies within the
predicted+/ − 3σ bounds for most of the time.
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Fig. 6. Mean and3σ bounds for detrended pressure

Comparison of pdfs and histograms for the polynomial
chaos expansion of fourth order and Monte Carlo simu-
lation with 10,000 samples is shown in figure7. As can
be seen from these figures PC expansion approximates
the pdfs well at all time steps. Evolution of pdfs using
PC expansion for predicted pressure is shown in figure
8. Relatively higher variance at peaks in pressure value
is also apparent from this figure.

V. CONCLUSIONS

This paper addresses the issue of estimation of uncertain-
ties associated with estimated states of tumors motion.
A classic pressure-volume dynamic model in conjunction
with a previously presented pressure-displacement alge-
braic model is proposed to be used. Probability density
functions of the model parameters are used to express
the stochastic states using a polynomial chaos series
expansion. Numerical simulations are used to illustrate
the accurate reproduction of the distribution of the model
states as a function of time. Monte Carlo simulations are
used to create the reference distribution for comparison.
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