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ABSTRACT

Multistart stochastic gradient descent methods are widely used for gradient-based stochastic global opti-
mization. While these methods are effective relative to other approaches for these challenging problems,
they seem to waste computational resources: when several starts are run to convergence at the same local
optimum, all but one fail to produce useful information; when a start converges to a local optimum worse
than an incumbent solution, it also fails to produce useful information. For problems with a one-dimensional
input, we propose a rule for allocating computational effort across starts, Most Likely to Succeed (MLS),
which allocates more resources to the most promising starts. This allocation rule is based on a novel
Gaussian-Process-based statistical model (SGD-GP) for a start’s limiting objective value. Unlike previ-
ously proposed statistical models, ours agrees with known convergence rates for SGD. Numerical results
show our approach outperforms equal allocation of effort across starts and a machine learning method.

1 INTRODUCTION

Stochastic gradient descent (SGD) methods (Nemirovski and Yudin 1978; Kingma and Ba 2014) are
popular algorithms for training machine learning algorithms (Krizhevsky et al. 2012; Murphy 2012) and
optimization via simulation (Fu 2015). Unfortunately, when the objective function is non-convex, these
methods may converge to a saddle point or local optimum, instead of a global optimum. Furthermore, even
when the objective function is convex, SGD may converge slowly to a global optimum when started from
a disadvantageous location.

A common solution to these challenges is multi-start SGD (Schoen 1991; Mart et al. 2016), in which
several starting points are chosen uniformly at random, and an SGD algorithm is operated separately starting
from each of these points. (We use the term “start” to refer both to an individual starting point, and to
the path of SGD starting from an individual point.) If the number of starts is large enough relative to the
number of local optima in the problem, and their starting positions are sufficiently diverse, multi-start SGD
is likely to find a global optimum.

Multi-start SGD, however, often seems to waste computation. Several starts may converge to the same
local optimum, providing essentially the same information about that local optimum’s location and value
as a single start among them, but consuming several-fold more computation. Also, starts that converge to
sub-optimal local optima or stationary points contribute little to the final solution. While simply reducing the
number of starts risks failing to find the global optimum, intuition suggests that substantial computational
savings might be achieved by intelligently allocating computational effort across starts: if a start seems
unlikely to provide a new globally optimal solution, then we can spend less effort computing additional
iterations, and focus instead on allocating effort toward the most promising starts.
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In this paper, we make two contributions. The first is a rule for sequentially allocating computational
effort across starts, called “Most Likely to Succeed” (MLS). This allocation rule is built on a Bayesian
statistical model for the limiting value of the objective function along SGD’s path from a single start. It
chooses to allocate effort to the start that is most likely (according to this statistical model) to provide an
objective value at convergence that exceeds an incumbent best solution.

The second contribution is this statistical model, which we call SGD-GP. Using the iterates x1, . . . ,xn
from one start of SGD, this statistical model calculates a posterior probability distribution on the value of
the objective at the limit of the iterate sequence, f (x∞), and on the scaled distance between the current
iterate and this limit,

√
n(xn− x∞). This statistical model is derived from asymptotic theory for stochastic

gradient descent (Kushner and Yin 2003), which shows that
√

n(xn− x∞) behaves asymptotically like an
Ornstein-Uhlenbeck process under some conditions. This use of the asymptotic theory stands in contrast
to existing approaches for modeling paths from SGD, discussed in more detail below. In some cases these
existing approaches assume exponential rates of convergence, and none to our knowledge show that their
model is consistent with SGD’s known asymptotic behavior.

We demonstrate that MLS together with SGD-GP substantially outperforms an Equal Allocation (EA)
rule for allocating effort across starts, and MLS together with Swerky’s statistical model (Swersky et al.
2014). EA is a meaningful benchmark because this is typically how effort is allocated in multistart SGD
today. Swersky’s statistical model is important because it is a non-parametric statistical model used to
model learning curves in the machine learning community. Our demonstrations use three one-dimensional
objective functions: a concave function (we maximize rather than minimize), a multi-modal function, and
an objective whose gradient is nearly zero over a substantial part of the interval. This last interval is
intended to replicate problems with many stationary points, as is believed to arise when training the weights
of neural networks (Bengio et al. 1994). We also provide an implementation of our method on github
(Toscano-Palmerin and Frazier 2018).

Limitation: Our method has one primary limitation, which we plan to address in future work: that
we assume f has a one-dimensional input. We believe that our approach can be extended to vector-valued
input through the use of similar asymptotic theory.

Related Work: Previously Boender and Kan (1987) developed Bayesian procedures for choosing
the number of starts, assuming equal allocation of effort across starts. This procedure is based on a posterior
distribution on the number of local optima, and uses a stopping rule that trades the computational cost of
adding more starts against the increased risk of failing to include a start that converges to the globally
optimal local optimum. More recently, Frazier et al. (2009b) developed a statistical model for the path
generated by an SGD-based approximate dynamic programming algorithm, and Chen et al. (2016) presents
a method to estimate confidence intervals for the limit of an SGD iterate sequence.

Related work also appears in work from the machine learning community on modeling learning curves
(Swersky et al. 2014; Domhan et al. 2015; Klein et al. 2016; Kandasamy et al. 2017; Li et al. 2016). Some
of this work studies how loss on a validation dataset changes with respect to the number of iterations in an
SGD algorithm (Swersky et al. 2014; Domhan et al. 2015) and with respect to the amount of training data
used (Klein et al. 2016). Some of this work (Domhan et al. 2015) focuses primarily on statistical modeling
of the path of a single start from SGD without considering effort allocation. In other work (Swersky et al.
2014; Klein et al. 2016), a statistical model is used by a search procedure to find a set of hyperparameters
in a low-dimensional vector space for which the test loss provided by SGD after some fixed finite number
of iterations is minimal.

Of the work on statistical models for the paths of SGD, ours is unique in that it is derived from SGD’s
asymptotic convergence theory, and matches known convergence rates. For example, Swersky et al. (2014)
assumes exponential convergence rates. In addition, Swersky et al. (2014), Domhan et al. (2015) both
model f (xn) while our approach is built on modeling

√
n(xn− x∞). In addition, Domhan et al. (2015)

proposes a parametric model, while our approach is non-parametric.
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Existing work on search procedures from this line of literature differs from our own in that it focuses
on choosing an optimal set of hyperpamaters, where the value of a set of hyperparameters is the value
after some fixed amount T of effort used to find an approximate local optimum corresponding to a single
start. In other words, it focuses on solving maxz g(x1

T ;z), where z ∈Rd indexes sets of hyperparameter, and
g(x1

T ;z) is the test loss for a set of model parameters x1
T obtained using T iterations of SGD (or a training

dataset of size T ) to minimize the training loss f (x;z) over x with z held fixed. In contrast, we focus on
solving mini=1,...,I f (xi

∞) where x∞ is the limiting point of a sequence of SGD iterates.
In addition, Domhan et al. (2015) differs in that the statistical model is used to terminate paths early,

and once a path is terminated it cannot be restarted. Klein et al. (2016) differs in that the amount of
training data (analogous to the number of iterations of SGD) is chosen up-front, and cannot be augmented
once evaluation begins. Li et al. (2016) differs in that it is not based on a statistical model, but instead
on a simple tournament framework. The most closely related of these search papers is Swersky et al.
(2014), which uses the statistical model to “freeze” and “thaw” paths from SGD associated with different
hyperparameters. This freeze-thaw framework bears similarity to our notion of effort allocation. Our
allocation rule, however, is substantially different, as it is computed from the probability of outperforming
some incumbent best solution, while Swersky et al. (2014) uses an entropy search criterion (Hennig and
Schuler 2012). Our allocation rule is substantially simpler to compute than the entropy search criterion.

Our work is also related to the larger literature on Bayesian optimization (Jones, Schonlau, and Welch
1998; Forrester, Sobester, and Keane 2008; Brochu, Cora, and De Freitas 2010; Frazier, Powell, and
Dayanik 2009a) literature, where a Gaussian process model is used to select points to sample. Indeed,
our MLS allocation rule is similar in spirit to the probability of improvement acquisition function (Brochu
et al. 2010) that arises in that literature.

Our use of a Bayesian statistical model to allocate computational effort across starts resembles allocation
rules in ranking and selection (Bechhofer, Santner, and Goldsman 1995; Kim and Nelson 2007; Kim and
Nelson 2006), especially Bayesian ranking and selection (Frazier et al. 2009a), which allocate effort across
a finite set of alternatives to find the best one. These problems differ in that samples in ranking and selection
are typically independent and identically distributed, while in our setting samples are correlated and not
identically distributed.

The rest of this paper is organized as follows: §2 describes our SGD-GP model. §3 describes our Most
Likely to Succeed allocation rule. §4 presents numerical experiments. §5 concludes.

2 THE SGD-GP STATISTICAL MODEL ON THE PATH OF SGD

Stochastic gradient descent (SGD) algorithms are used to minimize an objective function f (x) using
stochastic gradients, i.e., unbiased estimates of ∇ f (x). SGD iterations are usually of the form

Xn+1 = ΠA [Xn +λnYn] , (1)

where ΠA is the projection onto some feasible set A (for unconstrained optimization, A can be taken to be
the domain of f , and the projection effectively dropped), λn is the learning rate at iteration n, and Yn is
a stochastic gradient of − f at Xn. A common choice of the learning rate is given by λn := λ0/n, where
λ0 is a chosen parameter, although other more sophisticated rules are also often considered (Powell 2007).
In this paper, we assume that λn := 1/n. (We believe our approach can be generalized to other stepsize
sequences, and discuss one such extension below.) In addition, we use the term SGD to refer generically to
the use of (1) to minimize or maximize a function f , rather than using the separate terminology stochastic
gradient ascent (SGA) when we maximize (in which case Yn is a stochastic gradient of f , rather than − f ).
Whether we are maximizing or minimizing will be clear from context.

In this section, we develop a Bayesian statistical model for the value of the objective function f at the
limiting value of a sequence of SGD iterates, f (X∞). Within our MLS allocation rule, we will apply this
model separately to the sequence of iterates from each start.
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We create our statistical model in two steps. In the first step (§2.1), we construct a Bayesian statistical
model over the distance between the current iterate Xn and the limit point X∞. This statistical model
uses the asymptotic theory of SGD (see the appendix), which shows that M(n) :=

√
n(Xn−X∞) behaves

like an Ornstein-Uhlenbeck process when n is large. By taking rescaled differences between iterates, and
noting that an O-U process is a Gaussian process, we are able to construct a Gaussian process over these
observed differences and M(n). We then calculate the conditional distribution of M(n) by conditioning on
the observed differences.

In the second step (§2.3), we use the posterior on M(n) to infer the posterior distribution on f (X∞).
To accomplish this, we use the mean value theorem, an estimate for the slope in this theorem, and the
observed value of f (Xn).

Before proceeding with this development, we briefly discuss generalization to other stepsize sequences.
If the step size sequence λn is not 1/n but instead satisfies o(λn) = (λn/λn+1)

1/2−1, then our definition
M(n) :=

√
n(Xn−X∞) can be changed to M(n) := (Xn−X∞)/

√
λn. By Theorem 2.1 of section 10.2.1 of

Kushner and Yin (2003), this new M(n) behaves like an an Ornstein-Uhlenbeck process when n is large
under mild assumptions. Thus, similar arguments to the ones given below can be used to build a statistical
model of f (X∞). More generally, when the limiting behavior of some rescaled version of Xn−X∞ is
understood, we can apply techniques similar to the ones below.

2.1 Inference Over M(n) Given Hyperparameter θ

As discussed above, M(n) =
√

n(Xn−X∞) behaves like an Ornstein-Uhlenbeck process when n is large
under mild assumptions. We assume that these mild assumptions hold in the problem studied, and so

M(·) | θ ∼ GP(0,Σ0 (·, ·;θ)) ,

where Σ0 is the parametric positive kernel of the Ornstein-Uhlenbeck process, which is Σ0(n,n′;θ) :=
σ2e−θ |n−m| (the kernel). We additionally place a Bayesian prior distribution π on θ (Neal 1997). If we
lack a strong prior belief on θ , we may use a flat prior.

We now describe how to compute the posterior distribution on M(n) given θ and the historical data
X1:n = x1:n. By the conditioning formula for normal random vectors (Glasserman 2013), this posterior
distribution at time n is given by

M (n) | X1:n = x1:n,θ ∼ N (µn (n;θ) ,Σn (n,n;θ))

µn (n;θ) = γnA−1
n cᵀn

Σn (n,n;θ) = Σ0 (n,n;θ)− γnA−1
n γ

ᵀ
n ,

where γn :=
(

Σ0 (n,1;θ)−
√

1
2 Σ0 (n,2;θ) , . . . ,Σ0 (n,n−1;θ)−

√
n−1

n Σ0 (n,n;θ)

)
, the vector cn is defined

by cn :=
(
x1− x2, . . . ,

√
n−1(xn−1− xn)

)
, and the matrix An := (Σ0 (i, j;θ))n

i, j=1.

2.2 Inference Over M(n), Marginalizing over Hyperparameter θ

We now present the inference methodology given the historical data x1:n, which uses the result in the
previous section but marginalizes over θ .

We first show to compute p(θ | X1:n = x1:n) where X1 is the first point of the SGD algorithm, which
allows us to sample θ from its posterior distribution given X1:n = x1:n via slice sampling (Neal 2003).
Assuming that X1 = x1 is given, the density of the posterior distribution of θ given X1:n = x1:n is

p(θ | X1:n = x1:n) ∝ P(X1:n = x1:n | θ ,X1 = x1) p(θ)
= P(X1 = x1, . . . ,Xn = xn | θ ,X1 = x1) p(θ)

= P
(

R(n−1) =
√

n−1(xn−1− xn) , . . . ,R(1) = (x1− x2) | θ ,X1 = x1

)
p(θ)
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under the assumption that the prior on θ is independent of X1, Xm is the random point at time m of the
SGD algorithm, and R(n) :=

√
n(Xn−Xn+1). In order to compute the previous density, we only need to

compute the distribution of the vector (R(1), . . . ,R(n−1)) given θ .
To compute the distribution of (R(1), . . . ,R(n−1)), we first observe that

R(n) =
√

n(Xn−Xn+1) = M (n)−
√

n
n+1

M (n+1) .

Since M(n) follows a Gaussian process given θ , we then have that

R(·) | θ ∼ GP(0,Γ0 (·, ·;θ))

where

Γ0 (n,m;θ) := Σ0 (n,m;θ)+

√
n

n+1

√
m

m+1
Σ0 (n+1,m+1;θ)

−
√

m
m+1

Σ0 (n,m+1;θ)−
√

n
n+1

Σ0 (n+1,m;θ) .

Since we can compute p(θ | X1:n = x1:n), we can sample θ from its posterior distribution using slice
sampling.

2.3 Inference Over f (X∞)

We now complete our description of the SGD-GP method for statistical inference by describing how it
infers an approximate posterior distribution for f (X∞) given X1:n = x1:n and f (Xn) = f (xn). It uses the
mean-value theorem together with the posterior on M(n) described in the previous section.

The posterior distribution on f (X∞) we compute requires access to f (Xn). However, f (Xn) can only be
observed with noise in many applications of SGD. When noise-free observations of f (Xn) are not available,
the value of f (Xn) we use in SGD-GP may be replaced by an average of many noisy observations. Below
in Section 3 we describe a batch allocation strategy that uses this approach. This batching strategy obtains
multiple replications of f (Xn) for only a small fraction of the overall iterates Xn, and thus represents a
small increase in effort compared to applying SGD-GP and MLS where f (Xn) could be observed without
noise.

To infer f (X∞), we first note that the mean-value theorem implies

f (X∞) = f (Xn)+Ln |X∞−Xn| (2)

and
f (X∞) = f (Xn−1)+Ln−1 |X∞−Xn−1| ,

for non-negative numbers Ln,Ln−1. When n is large, Ln is close to Ln−1 because Xn is close to Xn+1, and
they are both close to X∞. Thus we assume that Ln ≈ Ln−1, and so

f (Xn)− f (Xn−1) = Ln |X∞−Xn−1|−Ln |X∞−Xn|

= Ln

(
|M (n−1) |√

n−1
− |M (n) |√

n

)
.

To approximate Ln, we use plug-in estimators for |M(n−1)| and |M(n)| equal to their expectation under
the posterior, leverage our assumption that f (xn) and f (xn−1) are observed without noise, where Xn = xn
and Xn−1 = xn−1, and then solve the previous equation for Ln to obtain the estimator given θ ,

L̂n (θ) =
| f (xn)− f (xn−1)|∣∣∣E [ |M(n−1)|√

n−1
− |M(n)|√

n | X1:n = x1:n,θ
]∣∣∣ .
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We can then use this estimator L̂n along with (2) and a noise-free observation of f (xn) to describe the
posterior distribution of f (x∞) as,

f (X∞) | x1:n ∼ f (xn)+
1√
n

Zn

where the density of Zn is given by

g(z) =
∫

θ

p(θ | x1:n)γθ (z)dθ ,

where γθ is the density of the absolute value of the conditionally (given θ ) normal random variable
L̂n(θ)M(n). (Here, L̂n(θ) is treated as conditionally constant given θ , and M(n) is random.)

3 THE MOST LIKELY TO SUCCEED ALLOCATION RULE

As discussed above, multi-start stochastic gradient ascent can waste computation: typically only the limiting
value of the best start is used as the final solution, but a substantial amount of computation is spent computing
iterates for other starts. In this section, we use the statistical model from the previous section for choosing
how to allocate computational effort across starts. The goal is to allocate more effort to starts that are
likely to produce good limiting values, so that a final solution of equal quality can be produced with less
computational effort. We call this rule for allocating effort Most Likely to Succeed (MLS).

To support our definition, we first augment our existing notation, using X i
n to indicate the nth iterate

of SGD using start i. We let I denote the number of starts. The starting values of X i
1 may be generated

arbitrarily, but we recommend choosing them by sampling uniformly at random from the input space. Then,
X i

n is given recursively from X i
n−1 by (1).

We consider a situation in which starts are advanced one at a time, with an allocation rule deciding
which start to advance to its next iteration in each timestep. We will let t ∈ Z+ count the number of
iterations that have been performed across all of the starts, and we let n(t, i) count the number of iterations
performed for start i by time t. Thus, X i

n(t,i) is the value of start i at time t.
Formally, an allocation rule is a sequence of mappings, one for each t, from the observable state

Ht := (X i
m : m ≤ n(t, i), i ∈ [I]) to [I] = {1, . . . , I}. Let πt be the mapping for time t, so that πt(Ht) is

the start that the allocation rule chooses to advance next at time t. As a result of operating a particular
policy, the number of iterations assigned to each start over time, (n(t, i) : t ≥ 0, i ∈ [I]) is defined by
n(t +1, i) = n(t, i)+1{πt(Ht) = i}.

Our MLS allocation rule uses the previously described SGD-GP statistical model on the value of the
limiting objective obtained from each start, f (X i

∞). We first describe this allocation rule in the setting
where f (x) can be observed without noise, and only the gradient ∇ f (x) is noisy. In this setting, the MLS
allocation rule allocates the next unit of computational effort to the start whose limiting objective value
is most likely to be at least ε > 0 better than the best objective value seen so far. Formally, this rule is
defined as,

πt(Ht) := argmaxiP
(

f
(
X i

∞

)
> Yt + ε | Ht

)
,

where Yt is the best value of the objective function f seen by time t, and ε is a positive number.
This allocation rule naturally balances exploration and exploitation. First, it favors allocating effort to

those starts that are predicted to have a high value for f (X i
∞), thus providing exploitation. Second, starts

with few iterations will naturally have a great deal of uncertainty about its limiting value. If we imagine that
the posterior distribution on f (X i

∞) as approximately normally distributed, and we think of the uncertainty
as quantified by the variance under this posterior, then P

(
f
(
X i

∞

)
> Yt + ε | Ht

)
will approach 1/2 as this

uncertainty grows large. Conversely, another start that has enough iterations to be close to convergence
will have only a very small amount of uncertainty, and P

(
f
(
X i

∞

)
> Yt + ε | Ht

)
will approach 0 for any
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positive ε as this uncertainty shrinks to 0. This suggests that all starts, even though with a value for f (X i
∞)

predicted to be poor, do get advanced forward eventually, and that we explore as well as exploit.
Although we do not offer a proof here, we conjecture that these ideas can be used to show that all

starts are advanced infinitely often with probability 1 under MLS, and that this in turn employs that MLS
allocation rule provides an asymptotically consistent estimator of maxi f (X i

∞). We also conjecture that the
parameter ε can be used to trade off exploration vs. exploitation, with larger values of ε leading to more
effort allocated to starts with substantial uncertainty, and smaller values to more exploitation. However, in
our numerical experiments we simply set ε = 0.1.

When observations of f (x) are obscured by noise, we estimate it by repeated sampling. If we did
this after each sample, then the savings generated using MLS would be overwhelmed by the extra effort
required to estimate f (x) after each sample. Thus, we do this within a batch framework where MLS is used
to allocate a batch of B SGD iterations to a start, and then we perform repeated simulation on the start’s
iterate at the end of this batch. This cuts the number of replications used to estimate f (x) by a factor of B.
It does reduce the responsiveness of MLS: when it would be clear from, say, B/2 iterations that a start is
performing poorly and effort should be allocated elsewhere, the batching strategy continues to allocate the
rest of the batch to this start. One additional benefit of evaluating f (X i

n(t,i)) using repeated simulation after
each batch is that progress can be tracked in a simple and easy-to-communicate way. Indeed, a similar
approach is often used when training neural networks, where progress is evaluated after each epoch.

We describe this batching strategy in detail here:

1. Choose a batch size B and a number of replications L.
2. Run B iterations of SGD for each start i ∈ I.
3. For each i ∈ I, let f̂ i

t be an estimate of f at X i
n(t,i) obtained by averaging L independent replications.

4. While budget remains:
(a) Choose a starting point i using the MLS allocation rule, where f (X i

t ) is replaced by f̂ i
t .

(b) Run B iterations of SGD for start i.
(c) Let n(t +B, i) = n(t, i)+B, n(t +B, j) = n(t, j) for j 6= i.
(d) Let t = t +B.
(e) Let f̂ i

t be an estimate of f at X i
n(t,i) obtained by averaging L independent replications.

4 NUMERICAL EXPERIMENTS

In this section we present numerical experiments exploring the accuracy and coverage of our statistical
approach, and the efficiency of our allocation rule in maximizing functions using multi-start stochastic
gradient ascent.

We compare our MLS allocation rule (§3) against two allocations rules. We consider an equal allocation
(EA) rule in which each starting point is chosen the same number of times in round-robin fashion. Formally,
this rule is πt(Ht) = n mod I. In addition, we consider the statistical model defined in Swersky et al. (2014)
used with the MLS allocation rule. This rule differs from MLS in its statistical model alone. Experiments
demonstrate MLS significantly outperforms these benchmarks on one-dimensional problems in which we
can observe function values (but not gradients) without noise.

We compare on maximization problems: a concave maximization problem (§4.1), a maximization
problem with many local maxima (§4.2), and a maximization problem where the gradient is almost zero in
some complete intervals of the domain (§4.3). We assume that we observe the objective functions without
noise, and that gradients are observable with independent normally distributed noise.

4.1 A Concave Objective Function

Here we compare MLS and EA on a concave maximization problem maxx f (x) := maxx−0.5x2 where the
stochastic gradient is equal to the true gradient plus standard normal noise. All starting points converge
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to the same point in this problem. Figure 1 pictures the results using 9 starting points. MLS identifies the
optimal solution faster.

x

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

(a) Objective function
f (x) :=−0.5x2
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dence intervals for the limiting value
of SGD (0) from a single start.

MLS
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(c) Performance comparison between
the MLS and equal allocation rules
using 9 starting points.

Figure 1: The SGD-GP statistical model (b) and MLS allocation rule (c) on the problem (a) from §4.1.

4.2 An Objective Function with Many Local Maxima

Here we consider an objective function with many local maxima, f (x) := (1.4−3x)sin18x, with a domain
of [0,1.2]. The stochastic gradient is equal to the true gradient plus standard normal noise. Figure 2
compares the performance of the MLS and EA with 20 starting points, plotting the number of iterations
beyond the first stage on the x axis, and the average maximum solution. We average over 1200 independent
runs of MLS equal allocation, and Swersky’s statistical model with the MLS allocation rule. Our allocation
rule identifies the optimal solution much faster than these other rules.
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(a) Objective function
f (x) := (1.4−3x)sin18x
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(b) SGD-GP’s predictions and confi-
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of SGD (1.49) from a single start.
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(c) Performance comparison between
MLS equal allocation, and Swersky’s
statistical model with the MLS rule
using 20 starting points.

Figure 2: The SGD-GP statistical model (b) and MLS allocation rule (c) on the problem (a) from §4.2.
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4.3 Objective Function with a Vanishing Gradient

Here we consider an objective function whose gradient is almost zero in a portion of the domain, f (x) :=
(x+ sinx)e−x2

, with a domain of [−10,10]. The stochastic gradient is equal to the true gradient plus
normally distributed noise with mean 0 and variance 100. Figure 3 compares the performance of MLS
and equal allocation with 20 starting points, plotting the number of iterations beyond the first stage on
the x axis, and the average maximum solution. We average over 1100 independent runs of MLS , equal
allocation, and Swersky’s statistical model with the MLS allocation rule. Our allocation rule identifies the
optimal solution much faster than these other rules.
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f (x) := (x+ sinx)e−x2
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(b) SGD-GP’s predictions and confi-
dence intervals for the limiting value
of SGD (0.0) from a single start.
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(c) Performance comparison between
MLS equal allocation, and Swersky’s
statistical model with the MLS rule
using 20 starting points.

Figure 3: The SGD-GP statistical model (b) and MLS allocation rule (c) on the problem (a) from §4.3.

4.4 Comparison of SGD-GP to a Statistical Model with Exact Gradients

We also compare the accuracy of the approximations SGD-GP to an alternate statistical model that can be
constructed using exact gradients, and that avoids the approximations SGD-GP makes in section 2.3.

Recall that Section 2.3 performed inference over f (x∞) using the mean value theorem, the relationship
f (x∞)= f (xn)+Ln |x∞− xn|, and an estimate of Ln based on approximations. Another method we considered
was to use Taylor’s theorem to write,

f (x∞)≈ f (xn)−∇ f (xn)
Mn√

n
.

Then, if we had access to exact observations of f (x∞) or could estimate it with high precision based on
repeated simulation after each batch, then we could use this relationship together with our posterior on
M(n) to construct a posterior on f (x∞).

Figure 4 compares the posterior distributions created by the two methods on the problem from Sec-
tions 4.1, where SGD-GP has access only to stochastic gradients, and this alternate method sees exact
gradients. We see that the inference performed by the two methods is similar.

5 CONCLUSION

We presented Most Likely to Succeed (MLS), which is a new allocation rule across starts that decreases
computational effort when using multi-start stochastic gradient ascent to globally optimize a function of one
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Iteration

(a) SGD-GP

Iteration

(b) Alternative statistical method with
exact gradients

Figure 4: Comparison between SGD-GP and an alternate statistical model that assumes exact gradient
observations and avoids the approximations SGD-GP uses in Sections 2.3. Data is generated from the
quadratic problem from §4.1. The predictions and confidence intervals from the two methods are similar.

variable. MLS depends on a new non-parametric statistical model, which is derived from the asymptotic
theory of stochastic gradient ascent. It outperforms two benchmarks in numerical experiments.

ACKNOWLEDGMENTS

The authors were partially supported by NSF CAREER CMMI-1254298, NSF CMMI-1536895, and AFOSR
FA9550-15-1-0038.

A APPENDICES

In this section we state two theorems from Kushner and Yin (2003) about limit theory of SGD algorithms.
The first theorem shows the existence of limit points of SGD algorithms. The second theorem shows that
if convergence occurs, the normalized sequence of points of SGD Mn :=

√
n(xn− x∞) converges weakly

to a known stochastic process, which is a Ornstein-Uhlenbeck process under some assumptions.
Theorem 1 (Theorem 2.1 of Section 5.2 of Kushner and Yin 2003) Suppose that the learning rates {λn}
of the stochastic gradient descent satisfy that ∑

∞
n=1 λn = ∞, λn ≥ 0, λn→ 0 and ∑

∞
n=1 λ 2

n < ∞. In addition,
suppose the following

1. supnE
[
|Yn|2

]
< ∞.

2. There is a measurable and continuous function g and random variables βn such that EnYn =
E [Yn | x1,Yi, i < n] = g(xn)+βn, and ∑i λi |βi|< ∞ a.s.

Then {xn} converges to some limit set of the ODE
·
x = g(x) in A (see section 5.2 of Kushner and Yin

2003). If the objective function f is continuously differentiable, g = −∇ f , and f is constant on each of
the disjoint compact and connected subsets S j of the stationary points, then xn converges almost surely to
a unique Si.
Theorem 2 (Theorem 2.1 of section 10.2.1 of Kushner and Yin 2003) Let x∞ be a limit point in the interior of
A. Suppose that there is a measurable and continuous function g such that EnYn =E [Yn | x1,Yi, i < n] = g(xn).
In addition, assume that
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1. λn := 1/n.
2.

{
Yn1{|xn−x∞|}≤ρ

}
is uniformly integrable for small ρ .

3. Mn :=
(

xn−x∞√
εn

)
is tight.

4. EnYn = gn (xn), where gn is continuously differentiable for each n, and gn (x)= gn (x∞)+g′n,x (x∞)(x− x∞)+
o(|x− x∞|).

5. limn,m
1√
m ∑

n+mt−1
i=n gi (x∞) = 0, where the limit is uniform in some bounded t-interval.

6. There is a Hurwitz matrix Q (i.e., the real parts of the eigenvalues of Q are negative) such that
limn,m

1
m ∑

n+m−1
i=n

[
g′i,x (x∞)−Q

]
= 0, and Q+ I/2 is also a Hurwitz matrix.

7. For some p> 0 and small ρ > 0, supn E |δRn|2+p 1{|xn−x∞|≤ρ}<∞, where δRn =Yn−E [Yn | x1,Yi, i < n].

We then have that the process Mn (t) := (xn+i−x∞)√
εn+i

if t ∈ [i, i+1], converges weakly to

M (t) :=
∫ t

−∞

e(Q+I/2)(t−s)dW (s)

where W is a Wiener process with some covariance matrix Σ1.
In the previous theorem, the limit of the process Mn (t) is defined by the SDE dM(t) = (Q+I/2)M(t)dt+

dW (t), and so M is an Ornstein-Uhlenbeck process when the domain is an interval in R, because Q+ I/2
is negative in this case.
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