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ABSTRACT

Motivation: Researchers need general purpose methods for object-

ively evaluating the accuracy of single and metagenome assemblies

and for automatically detecting any errors they may contain. Current

methods do not fully meet this need because they require a reference,

only consider one of the many aspects of assembly quality or lack

statistical justification, and none are designed to evaluate metagen-

ome assemblies.

Results: In this article, we present an Assembly Likelihood Evaluation

(ALE) framework that overcomes these limitations, systematically eval-

uating the accuracy of an assembly in a reference-independent

manner using rigorous statistical methods. This framework is compre-

hensive, and integrates read quality, mate pair orientation and insert

length (for paired-end reads), sequencing coverage, read alignment

and k-mer frequency. ALE pinpoints synthetic errors in both single

and metagenomic assemblies, including single-base errors, inser-

tions/deletions, genome rearrangements and chimeric assemblies

presented in metagenomes. At the genome level with real-world

data, ALE identifies three large misassemblies from the Spirochaeta

smaragdinae finished genome, which were all independently validated

by Pacific Biosciences sequencing. At the single-base level with

Illumina data, ALE recovers 215 of 222 (97%) single nucleotide vari-

ants in a training set from a GC-rich Rhodobacter sphaeroides

genome. Using real Pacific Biosciences data, ALE identifies 12 of 12

synthetic errors in a Lambda Phage genome, surpassing even Pacific

Biosciences’ own variant caller, EviCons. In summary, the ALE frame-

work provides a comprehensive, reference-independent and statistic-

ally rigorous measure of single genome and metagenome assembly

accuracy, which can be used to identify misassemblies or to optimize

the assembly process.

Availability: ALE is released as open source software under the UoI/

NCSA license at http://www.alescore.org. It is implemented in C and

Python.
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1 INTRODUCTION

Recent advances in next-generation, high-throughput sequencing

technologies have dramatically reduced the cost of sequencing

(Metzker, 2010). With the development of genome assemblers

able to use large volumes of sequence data, reference genomes

are now rapidly produced using the whole genome shotgun strat-

egy, from small, simple microbial genomes (Wu et al., 2009) to

large, complex plant or mammalian genomes (Fujimoto et al.,

2010; Li et al., 2010; Schmutz et al., 2010; Zimin et al., 2008).

Meanwhile, genomes are also being generated directly from com-

plex communities using culture-independent approaches, includ-

ing singe-cell genome sequencing and metagenome sequencing

(Hess et al., 2011; Iverson et al., 2012; Woyke et al., 2010;

Yilmaz et al., 2011). The ability to assemble a metagenome is

particularly important because resolving the genomes of individ-

ual species, or at least the most abundant, from a complex com-

munity is crucial to exploring inter-species interactions and

understanding the community’s structure, dynamics and

function.
Assembly of individual genomes from NGS datasets poses

significant informatics challenges, including short read length,

noisy data and large data volume (Lin et al., 2011; Pop, 2009).

Owing to these challenges, errors widely exist in single genome

assemblies derived from NGS datasets, with different specific

errors commonly associated with particular datasets, genomes

and tools (Haiminen et al., 2011). Beyond the challenges faced

in assembling single genomes, metagenome assembly poses

unique additional challenges. First, although the sequence

depth of a single genome should be approximately uniform,

the sequence depth of genomes in a metagenome varies greatly.

Second, the difficulty of resolving repetitive regions within a

single genome is exacerbated in metagenome assembly because

conserved genomic regions and lateral gene transfer greatly in-

crease the portion of falsely identified repetitive genomic regions.

Despite these unique challenges, assemblers designed for single

genomes are being applied to metagenome data without being

significantly modified to systematically address errors introduced

in this way (Hess et al., 2011; Iverson et al., 2012; Qin et al.,

2010).
Several tools have been developed to detect errors in single

genome assemblies. If a reference genome for the targeted organ-

ism is available, or one is available from a closely related species,

erroneous insertions, deletions or large gaps can be detected by*To whom correspondence should be addressed.
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comparative analysis of the reference and the genome assembly

in question (Darling et al., 2011; Earl et al., 2011; Meader, 2010;

Salzberg et al., 2012). If a reference is unavailable, the alignment

of the raw reads with their assembly provides indirect measures

of assembly quality such as coverage depth and mate pair con-

sistency. This information can then be used to detect single-base

changes, repeat condensation or expansion, false segmental du-

plications and other misassemblies (Choi et al., 2008; Narzisi and

Mishra, 2011; Phillippy et al., 2008; Vezzi et al., 2012; Zimin

et al., 2008). Despite this progress, researchers still lack a

method that integrates indirect measures of read alignment qual-

ity in a quantitative, comprehensive and statistically

well-founded manner to systematically detect errors in single

genome assemblies. Moreover, metrics suitable for evaluating

metagenome assembly accuracy, and associated quantitative

methods for detecting errors in metagenome assemblies, have

yet to be developed.

In this work, we develop a novel statistical model for evaluat-

ing assembly accuracy in a reference-independent manner. Using

Bayesian statistics, we give an expression for the probability that

an assembly is correct, and provide an automated software tool

Assembly Likelihood Evaluation (ALE) based on this expres-

sion. The provided tool may be used in three ways. First, it

allows examining the contribution to this probability of correct-

ness from each base in the assembly, which can be used to iden-

tify specific errors and their locations. This is particularly useful

for genome finishing. Second, it provides an overall score for

different assemblies of the same genome or metagenome, thereby

enabling comparison of these assemblies and optimization of the

assembly process. Third, when applying re-sequencing data to a

reference genome, ALE can detect structural variations.

2 METHODS

2.1 The ALE score and the likelihood of an assembly

The ALE framework is founded on a statistical model that de-

scribes two probabilities: a Bayesian prior probability distribu-

tion PðSÞ describing the likelihood of an assembly S without any

read information and a probability PðRjSÞ describing the likeli-

hood of a set of reads, R, being generated from an assembly, S.

The prior PðSÞ can be computed using the k-mer distribution of

the assembly, whereas the likelihood PðRjSÞ is calculated from

information about read quality, agreement between the mapped

reads and the proposed assembly, mate pair orientation, insert

length (paired-end reads) and sequencing depth. A detailed de-

scription of the likelihood and prior probability is given in the

following.
The ALE score, except for a proportionality constant that

depends on the reads but not on the assembly, is the logarithm

of the probability that the assembly is correct, PðSjRÞ. According

to Bayes’ rule, this probability is

PðSjRÞ ¼ PðRjSÞPðSÞ=Z: ð1Þ

where Z is a proportionality constant ensuring PðSjRÞ is a prob-

ability distribution. As is typical in large-scale applications of

Bayesian statistics, computing Z exactly is intractable. The

ALE score is computed by replacing Z with an approximation

described in the Supplementary Materials, and then taking the

logarithm of the resulting approximation to PðSjRÞ.
The ALE score can be used to compare two different assem-

blies of the same genome, S1 and S2. Call A1, the ALE score of

the first assembly, and A2, the ALE score of the second, both

generated from the same set of reads R. The difference of these

scores is then given by the equation

A1 � A2 ¼ log
P S1jRð Þ

P S2jRð Þ

� �
: ð2Þ

The assembly with the higher ALE score is also the one with

the larger probability of being correct. Moreover, the difference

between two assemblies’ ALE scores describes their relative

probabilities of correctness. Below, we refer to the ALE score

more precisely as the total ALE score, to differentiate it from the

sub-scores (described later in the text) used to construct it.
Although the ALE score can be reported as a standalone

value, this is made possible only to facilitate comparisons with

other assemblies of the same genome. We emphasize that the

ALE score is a comparative measure and should not be used

to judge the quality of a single assembly in isolation, as errors

in estimating Z may cause a large difference between the ALE

score and logðPðSjRÞÞ. We also emphasize that the ALE score

should only be used to compare different assemblies of the same

genome, for which the ALE scores have been calculated using the

same set of reads.
Figure 1 shows the pipeline used to compute the total ALE

score. Given a set of reads and a proposed assembly, ALE first

takes as input the alignments of the reads onto the assembly in the

form of a SAM or BAM file (Li et al., 2009), which can be

produced by a third-party alignment algorithm such as bowtie

(Langmead et al., 2009) or bwa (Li et al., 2009). ALE then deter-

mines the probabilistic placement of each read and a correspond-

ing placement sub-score for each mapped base, which describes

how well the read agrees with the assembly. In the case of paired-

end reads, ALE also calculates an insert sub-score for all mapped

bases of the assembly from the read pair, which describes how well

the distance between the mapped reads matches the distribution of

lengths that we would expect from the sequencing library. This

insert sub-score is similar to the compression-expansion (CE) stat-

istic of Zimin et al. (2008) with details given in the Supplementary

Materials. ALE also calculates a depth sub-score, which measures

the evenness of the sequencing depth accounting for the GC bias

prevalent in some NGS techniques. The placement, insert and

depth sub-scores together determine PðRjSÞ. Independently,

with only the assembly and not the reads, ALE calculates the

k-mer sub-score and the prior PðSÞ. Each sub-score is calculated

for each scaffold or contig within an assembly independently,

allowing for genome variations commonly found in metagenomes

because each contig/scaffold is likely from a different species with

a different k-mer profile. The four sub-scores are then combined

to form the total ALE score. The constituent calculations in this

pipeline are described in the Supplementary Material.
The contributions to these four sub-scores are reported by ALE

as a function of position within the assembly and can be visualized

with the included plotting package or exported to genome viewers

including the Integrative Genomics Viewer (Nicol et al., 2009) and

the UCSC genome browser (Kent et al., 2002).
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2.2 Details of the probabilistic ingredients of the ALE

score

We now describe the four sub-scores (placement, insert, depth

and k-mer) and the role they play within the ALE framework.

The first three of these sub-scores appear in the likelihood

PðRjSÞ. ALE computes PðRjSÞ using a probabilistic model for

the way in which reads are generated from an assembly during

the whole genome shotgun sequencing process. This model

makes independence assumptions that decomposes this probabil-

ity into a product of three terms,

PðRjSÞ ¼ PplacementðRjSÞPinsertðRjSÞPdepthðRjSÞ: ð3Þ

Each term is a separate sub-score and is explained later in the

text in detail.

2.2.1 Placement PplacementðRjSÞ quantifies how well the
sequence of the reads agrees with the assembly. Assuming

that every paired read ri is generated independently from

the assembly, the probability of a set of reads R given an

assembly S is PplacementðRjSÞ ¼
Q

ri2R
Pplacement rijSð Þ, where

Pplacement rijSð Þ is itself the product of two independent probabil-

ity distributions, Pplacement rijSð Þ ¼ PmatchesðrijSÞPorientationðrijSÞ.
Here, Pmatches rijSð Þ describes how well the read matches the

subsection of the assembly to which it maps, and Porientation rijSð Þ

describes whether the mate pairs have an orientation that is con-

sistent with the library. We now describe in detail how these two

probabilities are computed, beginning with Pmatches rijSð Þ.
Assuming that each base j of the read is correctly called by the

sequencer independently with a probability equal to the base’s

quality score Qj, we have Pmatches rijSð Þ ¼
Q

basej2ri
P basejjS
� �

,

where P basejjS
� �

¼ Qj when the base j correctly matches the

assembly and P basejjS
� �

¼ ð1�QjÞ=4 when it does not. This

expression follows from our modeling assumption that all four

possible errors that the sequencer could have reported (three

different substitutions and deletion) are equally likely when the

read does not match the sequence. If the assembly has an un-

known base (denoted ‘N’), we set P basejjS
� �

¼ 1=4, modeling

the lack of information about the correct base at that location.

If an ambiguity code is reported by the sequencer, then the afore-

mentioned expression is modified to account for the distribution

over the possible bases encoded by that code. Each read may

only be ‘placed’ at a single position in the assembly. If the aligner

placed a particular read at more than one position, we choose

one position at random, weighting by PplacementðrjjSÞ. This allows

for repeat regions to be properly represented with the correct

number of reads in expectation.
The orientation likelihood, Porientation rijSð Þ, is calculated by

first counting the number of times that each orientation occurs

in each library from the mapping information. The likelihood

Porientation rijSð Þ is then the empirical frequency of the observed

orientation of the read ri in the library to which ri belongs. (This

likelihood can also be overridden with user-specified values.)

We also derive per-base placement sub-scores at each position

in the assembly. The placement sub-score at a particular position

is the geometric mean
Q
ri

PplacementðrijSÞ

" #1=N

, where the product

is over all reads ri covering the given position, and N is the

number of such reads.

2.2.2 Insert Pinsert RjSð Þ describes how well the mate pairs’
insert lengths match those we would expect and is computed as

Pinsert RjSð Þ ¼
Q

ri2R
Pinsert rijSð Þ. The insert likelihood,

PinsertðrijSÞ, is determined by first observing all insert lengths

from all mappings of all reads and calculating the population

mean, �, and variance, �2, of these lengths (the mean and vari-

ance can also be set by the user, if they are known). This step

only needs to be done once. Once completed, we calculate the

insert likelihood for each read pair ri by assuming that the

observed insert length Li is distributed normally with this

mean and variance, PinsertðrijSÞ ¼ NormalðLi;�, �
2Þ

As with the placement sub-score, we calculate the insert

sub-score at a position as the geometric mean of the

Pinsert rijSð Þ of all reads ri covering that position. This can identify

areas of constriction or expansion within a proposed assembly.

The insert sub-score is similar to the CE statistics of Zimin

et al. (2008), as we now show. To describe the similarity, we first

write the insert sub-score as
Q
i

ð2��2Þ�1=2 exp � ðLi��Þ
2

2�2

� �� 	1=N
¼

ð2��2Þ�1=2 exp � 1
2�2N

PN
i¼1

ðLi � �Þ
2

� �
,

where the products and sums over i are over all reads covering

a given position, and N is the number of such reads. We now use

the fact that 1
N

PN
i¼1 ðLi � �Þ

2
¼ S2 þ ðM� �Þ2, where

M ¼ 1
N

P
i

Li is the sample mean of the implied insert lengths

and S2 ¼ 1
N

P
i

ðLi �MÞ2 is the sample variance. The CE statistic

from Zimin et al. (2008) is CE ¼ M��

�=
ffiffiffi
N
p , which implies

Fig. 1. The components of the total ALE score. ALE takes a proposed assembly and an alignment of reads as input. Four scores, the k-mer, placement,

depth and insert sub-scores are computed using the model described in Section 2. From the four scores, a total ALE score is calculated and reported as a

text file (.ale), and the text file can be used for input into the supplied plotter to generate a PDF file for visualization
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1
�2N

PN
i¼1

ðLi � �Þ
2
¼ S2

�2
þN� CE2. As N grows large, the CE stat-

istic is asymptotically normal, owing to the central limit theorem.
The log of the insert sub-score can then be written

� 1
2 ½logð2��

2Þ þ ðS2=�2Þ þN� CE2�. The insert sub-score is

decreasing in S2

�2
þN� CE2, and the term involving the CE stat-

istic dominates when N is large. Thus, when N is large, the pos-

itions with lowest insert sub-score are those positions whose CE

statistic is furthest from 0. This, flagging those regions with low

insert-sub score is similar to the rule recommended in Zimin et al.

(2008) of flagging those regions with jCEj larger than a fixed

cutoff value.

2.2.3 Depth PdepthðRjSÞ describes how well the depth at
each location agrees with the depth that we would expect,

given the GC content at that location. It is the product of

a depth sub-score over all positions in the assembly,

PdepthðRjSÞ ¼
Q

i PdepthðdijSÞ, where di is the depth at position i.
The depth di is ideally Poisson-distributed (Lander and

Waterman, 1988). However, most next-generation sequencers

and library preparation techniques can bias GC-rich areas of a

genome (Aird et al., 2011). This bias affects the observed depth in

specific areas. We model the depths as Poisson distributed about

a mean drawn from an independent Gamma distribution cen-

tered at the expected depth for that position, given its GC con-

tent. This models our uncertainty about the mean of the Poisson

distribution, arising from the dependence of the expected depth

on more than just the GC content at that position, including

‘hard stops’, and the GC content at nearby positions. It results

in an infinite mixture of Poissons that is equivalent to a Negative
Binomial distribution.

We first calculate for each of the following 100 ranges of

GC content, 0–1, 1–2, . . ., 99–100%, the average observed

depth over positions in the assembly whose GC content

(calculated as the GC content within an average read length)
is within this range. Let �depthðXiÞ be the average observed

depth for the GC content range in which Xi falls, where Xi

is the GC content percentage averaged across all reads that

map (in the placement step) to that position. If any �depthðXiÞ

falls below a minimum value of 10, we use this minimum

value instead. This discounts regions of exceptionally low aver-

age depth. Then, at any given position i, the depth sub-score is

Pdepth djjS,Xi

� �
¼
R1
0 Poisson dj;Yi

� �
GammaðYi;maxð10,�depthðXiÞÞ, 1Þ

dYi ¼ NegBinom ðdj;maxð10,�depth(Xi)
),1/2).

2.2.4 k-mer PkmerðSÞ / PðSÞ describes the likelihood of the

assembly S, in the absence of any read information. Within

this prior probability distribution, we encode the belief that
within a single genome, each k-mer (a permutation of k base

pairs, where k is a fixed user defined number initially set to 4)

has a unique k-mer frequency. The 4k dimensional vector giving

this frequency for each k-mer is conserved across a genome and

can help determine if two different genomes have been mis-

takenly combined (Teeling et al., 2004; Woyke et al., 2006).

Let K be the set of all possible unique k-mers, so jKj ¼ 4k, and

for each i in K let ni be the number of times this k-mer appears in

a contig in the assembly. Then, the frequency fi of a particular

k-mer i within a contig is fi ¼ ni=
P

j2K nj. The k-mer score is the

product of this frequency over each k-mer appearing in each

contig of the assembly S, which can be written as

PkmerðSÞ ¼
Q

i2K f ni
i . This is equivalent to assuming each k-mer

in the assembly is drawn independently from a common multi-

nomial distribution with probabilities empirically estimated from

the assembly.
This prior distribution does not account for horizontal gene

transfer, e.g. from phages, and thus may inappropriately flag

such regions as being misassembled.
The k-mer sub-score of a base at any given position in the

assembly is the geometric average of Pkmer ðSÞ of all k-mers

that cover that position. In calculating this average, the very

first base in the genome only has one contributing k-mer, the

second has two, up to k contributing k-mers after k� 1 bases.

3 RESULTS

3.1 Performance on major types of misassemblies in a

genome assembly with synthetic data

Common assembly errors include single-base substitutions, inser-

tion/deletions, chimeric assemblies derived from translocations

or misjoins and copy number errors derived from repeat conden-

sation/expansions. To test ALE’s ability to detect such errors, we

generated synthetic reads from a reference genome and then

seeded the reference with each type of error. First, 400 000

pair-end synthetic reads were generated from the first 350 Kb

at random positions of Escherichia coli K12 Substrain DH10B

(Durfee et al., 2008), with insert length normally distributed with

mean 200b and standard deviation 7 b. Next, synthetic misas-

semblies were introduced at six locations within this reference.

The misassemblies introduced were a substitution, insertion, de-

letion, inversion, translocation and a copy number error, respect-

ively. We treated this mutated genome as the proposed assembly.
We tested ALE by aligning the aforementioned synthetic reads

to the proposed assembly using bowtie (Langmead et al., 2009)

and ran the results through the ALE software package. The ALE

plotter automatically thresholds each error and produces plots of

the sub-scores near each error (see the SupplementaryMaterials).

We found that ALE is able to locate each type of error in the

proposed assembly. At the genome level, as shown in Figure 2, at

least one of the four sub-scores drops dramatically in each region

containing a synthetic error and reports no false discoveries.

These results suggest that ALE systematically reports all major

types of errors with simulated data.

Furthermore, the total ALE score decreases, as more errors are

added to the assembly. As shown in Figure 3A, as the number of

substitution, insertion and deletion errors increases, the total ALE

score decreases monotonically, at a rate determined by the quality

scores of the data (see Section 2). This suggests that the total ALE

score indicates overall assembly accuracy.

3.2 Detecting chimeric assemblies in a synthetic

metagenome

One common assembly error in metagenome assemblies is a

chimeric assembly consisting of two or more genomes. To test

ALE’s ability to distinguish this type of metagenome-specific

error, we simulated a misassembled contig by joining sev-

eral pieces of two genomes in random order. This use of a

4
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known, synthetic reference is required for testing ALE’s sensitiv-
ity to chimeric metagenomes in an unbiased way, as there are

no true metagenome references available. In these tests, the

k-mer score drops markedly at the interface of the two genomes
in the synthetic metagenome, as shown in the Supplementary

Fig. S1.

ALE relies on the k-mer sub-score (the default is k¼ 4) to
distinguish contigs coming from different microbial species, as

tetra-nucleotide frequencies are a reliable species-specific signa-

ture (Teeling et al., 2004; Woyke et al., 2006). If a genome, or
contig, contains two or more distinct regions characterized by

different k-mer vectors, then the k-mer sub-score will be lower

Fig. 2. The performance of ALE on synthetic errors in E. coli. At the genome level, at least one of the four sub-scores drops dramatically in each region

containing a synthetic error (A). A higher resolution view for each type is illustrated in (B–E). (B) Single-base substitution, deletion and insertion errors;

(C) an inversion error of length 200b; (D) a transposition error of length 200b; and (E) a copy number error of length 77b. Diagrams above each plot

illustrate how each error was generated. Implementation details are within the image_maker.py script in the ALE code base

ALE
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for the positions characterized by the less prevalent k-mer vector

(see Section 2). Because the other sub-scores are unaffected by

the mixture, the drop in total ALE score is owing to the lower

k-mer sub-score. This unique capability of ALE allows easy de-

tection of chimeric contig/scaffolds within a metagenome

assembly.

3.3 Discovery of real errors in a genome assembly using

real data

The aforementioned experiments used simulated reads or assem-

blies with simulated errors. Noise in real reads, and real errors in

genome/metagenome assemblies, often has a complex structure,

presenting an additional challenge to ALE. To test ALE using

real world assemblies with real reads, we chose a finished

genome, Spirochaeta smargdinae DSM 11293, originally con-

structed from 454 and Illumina reads (Mavromatis et al., 2010)

and applied ALE to it using one lane of 2� 76 paired-end

Illumina reads. The results are shown in the Supplementary

Fig. S2. At the genome level, ALE found five errors, including

a large 560 Kb region (3.91–4.48 Mb) in the proposed assembly

where the depth sub-score dropped below the threshold. We

found three areas producing errors that are likely due to repeat

condensation. For example, further examination of two regions

(408–415 Kb and 4.241–4.247 Mb) by overlaying the Illumina

short read data indicates these regions have much higher se-

quence depth (2�) than neighboring regions and contain many

SNPs (two alleles of roughly equal ratio) (Supplementary Fig.

S2B and C), supporting the hypothesis that there are two copies

of these regions in this genome. The boundaries of these regions

also have abnormal placement and insert sub-scores, further sup-

porting the hypothesis that there are misassemblies at the afore-

mentioned locations.
To determine whether these errors identified by ALE are true

assembly errors or Illumina sequencing artifacts, we independ-

ently validated the results using Pacific Biosciences (PacBio)

sequencing data. A total of 53 SMRT cells comprising 221Mb

of mapped reads or 34 folds of coverage were aligned to the

assembly. Manual inspection of the resulting PacBio alignment

confirms 5/5 assembly errors (Supplementary Fig. S2B and C),

suggesting the errors identified by ALE are true errors in the

assembly. The locations of these errors, and sub-score that

caused the violation, are given in the Supplementary Table S1.

3.4 Total ALE scores and genome assembly accuracy

Assemblies generated by eight different assembly protocols from

three datasets (Staphylococcus aureus, Rhodobacter sphaeroides

and Human chromosome 14) were selected from the GAGE

study (Salzberg et al., 2012) to evaluate how well ALE scores

reflect assembly accuracy. As a positive control, the reference

genome was evaluated in parallel with the other assemblies.

For all three genomes, Illumina sequencing data from both a

short fragment and a short jumping library were used to generate

ALE scores. Total ALE scores were generated for each assembly

and each library as described previously. Results are shown in

Figure 3B.
Although that there is no quantitative measurement of assem-

bly accuracy (other than ALE itself) for use in validation, the

GAGE study did indicate the AllPaths-LG and SOAPdenovo

usually give more accurate assemblies. In addition, the reference

genome should represent an assembly with best quality. As

shown in Figure 3B, ALE scores are consistent with these no-

tions. Among all the assemblies, ALE scores consistently indicate

the reference genomes are the best assemblies, and assemblies

from AllPaths-LG and SOAPdenovo consistently have better

ALE scores than those from other assemblers.

3.5 Sensitivity to single nucleotide variations in real data

We tested ALE’s ability to detect single base errors in real data

from a resequencing project. In this project, one lane of Illumina

36� 2 paired reads was generated from a new strain ofR. sphaer-

oides 2.4.1 (Choudhary et al., 2006) with an insert length of 200 b

covering the genome with an average coverage depth of 557. This

genome has a high GC content (68%) and contains 336 hard

stops and many more low depth regions. A hard stop is a region

A B

Fig. 3. ALE scores indicate overall assembly accuracy. (A) ALE scores monotonically decrease as the number of synthetic errors increase in an E. coli

genome assembly. (B) ALE scores correlate with the accuracy of assemblies of three genomes with two independent sequencing libraries. Frag: Short

fragment library. Jump: short jumping library. For each library, ALE scores from each assembly were scaled to ½0, 1� to get relative ALE scores
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where a bias in the sequencer causes it to report 0 depth (no

reads) without any read pairs spanning the region. Because

low-coverage regions make single nucleotide variation (SNV) de-

tection less reliable for many SNP detectors (Wang et al., 2011),

we excluded such regions and manually compiled a reference set

of 222 possible SNVs for this strain (176 from Chromosome1,

length 3.2 Mb; 46 from Chromosome2, length 0.94 Mb). The

placement sub-score was then computed using the aligned reads.
To enumerate the positions that ALE found to detract the

most from the assembly’s probability of correctness, we sorted

the placement sub-scores for each chromosome. The 0.0001%

worst scoring positions (219 regions) on Chromosome1 are

within a read length of 154 of the 176 variants (88%), and the

top 0.0005% worst positions (977 regions) are within a read

length of 497% of the variants. The same experiment for

Chromosome2 recovers 87% (40 of 46 variants from 63 regions)

and 96% (from 309 regions), respectively. This shows that the

positions at which the proposed assembly differs from the gen-

ome generating the reads are among the positions with the worst

sub-scores. The regions with poor sub-scores that do not corres-

pond to the variant list are other regions of the assembly unsup-

ported by the read evidence, such as hard stops regions of low

coverage that stem from the bias of the sequencer. This shows

that ALE can locate regions unsupported by the read evidence,

including SNVs, and that ALE accurately gauges assembly ac-

curacy at single base resolution.

3.6 ALE’s sensitivity and specificity

Six assemblies of S. aureus were selected (Salzberg et al., 2012) to

evaluate ALE’s ability to detect assembly errors Figure 4, leaving

out an assembly from SGA because it was too fragmented. To

compile a reference set of assembly errors, each assembly is

aligned to the reference genome using nucmer as described in

Salzberg et al. (2012). Misassemblies were approximated by the

alignment breaks, as most misassemblies will generate one or

more breaks in the alignment (referred as NUCMER-Break).

Gaps in the assemblies were excluded from consideration, as

they do not necessarily represent assembly errors. Scaffolds

that are smaller than 1 Kb were also excluded. Single-base dif-

ferences were obtained by the show-snps command of the

MUMmer package (referred to as NUCMER-SNV).
To obtain a list of regions identified by ALE as potentially

containing errors, ALE per-base insert and placement scores

were computed using a short fragment library against each of

the six assemblies. Depth scores were not used, as Illumina

sequencing data tends to be noisy. At each ALE score cutoff,

the top-ranked bases were selected, and adjacent bases were

merged into regions. If a region/base contained a

NUCMER-SNV, or was within þ/�50 bases centered at a

NUCMER-Break, it was classified as a true positive for

NUCMER-SNV or a NUCMER-Break, respectively.

Otherwise, it was classified as ‘Novel’. ALE can capture 15–

70% of the break points at a stringent threshold (top 1000,

Fig. 4A) among the six assemblies. At the same threshold,

40–78% of the ALE calls are classified as novel. These ‘novel’

sites are not necessarily false positives. As shown in Figure 4B,

many of the ‘novel’ sites are actually SNPs, supported by the

underlying short read data (colored vertical bars in the coverage

track). Currently, ALE does not distinguish real SNPs from false

positives.

3.7 ALE’s performance with PacBio RS data

The aforementioned experiments were all performed with next

generation short read data. Currently, the PacBio sequencing

platform, also referred to as third-generation sequencing, is

becoming increasingly popular owing to its long read length

(up to several Kb) (Eid et al., 2009). These long reads are ex-

pected to greatly reduce the complexity associated with genome

assembly validation. In contrast with second-generation sequen-

cing, single-molecule-based PacBio RS sequencing has a much

higher base error rate (�15%), making it an ideal candidate for

testing the robustness of ALE against very noisy data. With this

purpose, we examined the reference genome of Lambda Phage

and corresponding PacBio reads of average depth 548� and a

randomly sampled set at 50�. To determine ALE’s performance

on this dataset, the reference genome was synthetically mutated

by adding 12 substitution, insertion and deletion errors at vari-

ous locations (Supplementary Table S2). At 548� depth, within

the top 12 worst placement sub-scores, ALE recovered all 12

errors at the mutated positions, while reporting no false positives.

At 50� depth, excluding the low coverage edges, the 12 errors

were detected in the top 14 worst placement sub-scores, with 2

false positives. In comparison, the standard Pacific Biosciences

variant caller, EviCons, correctly identified only 10 of these

errors with low confidence at default settings and the full 548�

depth. This shows that ALE is a robust measure of assembly

accuracy with noisy sequencing data and is a generic framework

that can be used with both short and long sequence read

technologies.

4 DISCUSSION

ALE facilitates the rapid discovery of many types of errors in

genome assemblies including metagenomes. It does this by apply-

ing a rigorous statistical model, calculating the likelihood of

observing a specific assembly, given the reads that were used to

generate it, and calculating the contribution to this likelihood

from each position in the assembly. This allows ALE to deter-

mine specific regions within a proposed assembly that are poorly

supported by the reads. By integrating several aspects of the as-

sembly and the reads, including k-mer composition, sequence

depth, insert length and how well individual bases map, ALE

is able to find errors as small as a single substitution error or

indel, as well as large copy number errors and chimeric metagen-

ome assemblies.

This framework can serve as a guide in optimizing genome

assemblies in the following two ways. First, total ALE scores

can be used to identify the best assembly from those generated

by different assembly protocols. Second, by modifying the re-

gions in which ALE reports low sub-scores, more accurate gen-

omes can be constructed. The space of possible corrections to an

input genome is too large to allow the current implementation of

ALE to be used as an independent assembler, but it could be

used to compare and combine the results from different assem-

blers and produce an assembly that is most likely to be correct.

ALE could also be used to present an alternative method for

ALE
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calculating assembly accuracy in local assembly algorithms such

as Genovo (Laserson et al., 2011).

When used with a reference genome and resequencing data,

ALE can discover structural variations. As shown in the cases of

Spirochaeta smaragdinae and R. sphaeroides, ALE readily detects

structural variations whose sizes vary from a single base to sev-

eral hundred kilobases.

ALE currently does not classify the type of assembly errors.

Future work is needed to determine the profile of each type of

assembly errors in a dataset-specific manner. Once ALE has this

capability, it could guide an auto-correction algorithm to auto-

matically fix problematic regions.
The effectiveness of ALE is influenced by the quality of its

input: the read data and the alignments of those reads onto the

A

B

Fig. 4. ALE identifies regions with potential assembly errors. (A) Cumulative plots showing the percentage of assembly errors detected by ALE at

different sensitivity thresholds. Detected assembly break points (break sensitivity), and novel calls (novel) at different ALE insert or placement thresholds

(ALE Top Scores) for six assemblies of Staphylococcus using six different assemblers are shown. (B) A snapshot from Integrative Genomics Viewer for a

scaffold from the velvet assembly of Staphlococcus. In the track Coverage, the height represents sequencing depth, and vertical colored bars represent

potential SNPs. In the track Raw Reads, each gray horizontal bar represents a high quality aligned read, whereas horizontal color bars represent reads

that may indicate problems (e.g. insert size is too big or too small). Vertical color bars are bases different from the reference sequence. More detailed

description can be found at: http://www.broadinstitute.org/igv/AlignmentData
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proposed assembly. Data with biased content or alignments,
while accepted by ALE, tend to produce noisy sub-scores. The
robustness of ALE, however, allows for the recovery of an ac-
curate assembly accuracy measure as long as the random noise is

consistent with the statistical model used by ALE (see Section 2).
The effectiveness of ALE is also influenced, like any Bayesian

method, by the modeling assumptions implicit in its prior and

likelihood. ALE’s prior relies on the species-specific signature
provided by tera-nucleotide frequencies (Teeling et al., 2004;
Woyke et al., 2006), which enhances ALE’s ability to detect con-

taminants from single genome assemblies and cross-assembly of
genomes from related species, but may also lead to false positives
in regions of horizontal gene transfer. Additionally, the insert

score assumes that insert lengths are normally distributed,
whereas other distributions may work better for some libraries.
Future work could use an insert length distribution estimated
non-parametrically from the data.

ALE could also be extended in future work to account for other
factors that may currently lead to false positives, like origin of
replication bias prevalent in circular genomes, horizontal gene

transfer, automatic detection of sequencer bias and other distribu-
tions for insert length and coverage depth. Biases such as hard
stops in Illumina could potentially be found by examining unlikely

distributions of read orientation at specific locations coupled with
low depth. Specific signatures within the different ALE metrics
could be used to classify and correct for specific biases, much as
ALE currently corrects for GC content (see Section 2).
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