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A Framework for Selecting a Selection Procedure
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For many discrete simulation optimization applications, it is often difficult to decide which Ranking and
Selection (R&S) procedure to use. To efficiently compare R&S procedures, we present a three-layer per-
formance evaluation process. We show that the two most popular performance formulations, namely the
Bayesian formulation and the indifference zone formulation, have a common representation analogous to
convex risk measures used in mathematical finance. We then specify how a decision maker can impose a
performance requirement on R&S procedures that is more adequate for her risk attitude than the indif-
ference zone or the Bayesian performance requirements. Such a performance requirement partitions the
space of R&S procedures into acceptable and nonacceptable procedures. The minimal computational budget
required for a procedure to become acceptable introduces an easy-to-interpret preference order on the set
of R&S policies. We demonstrate with a numerical example how the introduced framework can be used to
guide the choice of selection procedure in practice.
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1. INTRODUCTION

When stochastic simulation is used to identify the best option among several alterna-
tives, Ranking and Selection (R&S) procedures are often implemented to allocate the
simulation budget more efficiently. For example, different allocation schemes of voting
machines can be tested via simulation and the outcomes of these simulations used to
decide which allocation scheme has the most desirable waiting time distribution for
voters [Allen and Bernshteyn 2006]. The critical step in applying an R&S procedure to
such a discrete simulation optimization application is to decide how many samples to
draw from each candidate system. If we make this decision intelligently, we can find a
good option more quickly and more reliably.
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A large number of R&S procedures have been introduced in the literature. Initially
R&S problems were heavily studied in sequential statistical testing and experiment
design (see Santner and Tamhane [1984] and Bechhofer et al. [1995] for overviews).
In the recent simulation literature, selection procedures have become an integral com-
ponent of simulation optimization algorithms [Boesel et al. 2003; Swisher et al. 2003].
Two theoretical frameworks have been introduced for evaluating the performance of
R&S procedures. The first is the Indifference Zone (IZ) framework, initially intro-
duced in [Bechhofer 1954], which considers the worst-case performance of an R&S
policy over a set of configurations (see, for instance, Sobel and Huyett [1957], Paulson
[1964], Rinott [1978], Kim and Nelson [2001], Kim and Nelson [2006a, 2006b]). The
second is the Bayesian framework, which considers the average-case performance un-
der a prior probability distribution over a set of configurations (see, for instance, Chick
[1997] and Chick and Inoue [2001a, 2001b]). Each framework has advantages and dis-
advantages. The IZ framework provides a statistical guarantee on performance that
provides peace of mind, but is often extremely conservative in the number of samples
it requires an R&S procedure to take. The Bayesian framework, in contrast, results
in R&S procedures that perform well in many cases, but might do badly in certain
configurations. The two frameworks seem to be at odds with each other, presenting
radically different approaches to the R&S problem at hand. While most existing R&S
policies fall under one or the other of the two research directions, a class referred to as
the Optimal Computing Budget Allocation (OCBA) schemes (see Chen and Lee [2010]
and references within) encompasses aspects of both frameworks.

The nature of the aforesaid two research streams and the extensive set of available
R&S policies raise a difficult question for practitioners: which R&S procedure should
one use in an application? Branke et al. [2007] give empirically derived insights on
how to select a selection procedure for independent normal R&S problems. They test
existing policies on an extensive testbed and compare different performance measures.
The goal of the current article is to provide a systematic machinery that one can use
to select a selection procedure. We introduce a general theoretical framework that
encompasses both the IZ and the Bayesian formulations of the R&S problem, as well
as a continuum of formulations that strike a balance between the conservative worst-
case analysis of IZ and the Bayesian emphasis on average-case performance. This
framework helps us to choose among the large number of available R&S procedures in
a systematic way. Surprisingly, the framework possesses a similar structure to that of
convex risk measures studied in mathematical finance. See Föllmer and Schied [2004]
and McNeil et al. [2005] for an introduction to risk measures used in finance.

We begin by describing how the performance of selection policies can be studied
using a three-layer performance evaluation process. This extends statistical decision
theory (see DeGroot [1970] and Berger [1985]) to the R&S setting. Choosing the three
layers carefully allows the decision maker to determine what performance guarantees
an R&S policy should satisfy for a given application. We define the acceptance set as
the set of policies that meet these requirements. By allowing for flexible shapes of ac-
ceptance sets, the decision maker can express her risk-attitude towards different input
scenarios (an input scenario assigns a risk weighting to each of the possible experiment
configurations), and a trade-off between worst-case and average-case performance can
be formulated in a geometric way. We state axioms an acceptance set should satisfy
so that the induced preference order is consistent with intuition. We then introduce a
new performance measure for R&S procedures solely based on the number of simula-
tion iterations required for a policy to become acceptable. When performance can be
controlled by the total number of simulation iterations applied, this performance mea-
sure is defined as the smallest simulation budget required for a policy to lie within
the acceptance set. Total (expected) computational cost has been used to compare
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performances of different R&S policies (see, for instance, Hong and Nelson [2005]).
However, extensions to multiple input scenarios and higher-dimensional acceptance
sets that allow for a robust performance assessment are, to the best of our knowledge,
new in the R&S setting.

Through a concrete application, namely a Bernoulli R&S problem with an exit op-
tion appearing in the context of allocating voting machines, we investigate the be-
havior of different performance measures and their induced preference orders on a
set of R&S procedures. Robust preference regions are identified and the suggested
framework is used to determine optimal tuning parameters for R&S policies. This nu-
merical example shows in detail how a decision maker can choose an R&S procedure
that meets her individual performance requirements.

This article is based on ideas introduced in Waeber et al. [2010]. We provide a
rigorous follow-up discussion on the properties of performance measures and further
investigate the notion of acceptance sets. In addition, we guide the reader through a
real-world example, which demonstrates how the suggested framework can be used in
choosing among a set of R&S policies from a practitioner’s perspective. More specifi-
cally, the main contributions of this article are as follows.

— We formulate an explicit three-layer performance analysis process for R&S proce-
dures. This process extends ideas from statistical decision theory to R&S procedures
and allows one to compare and optimize different R&S procedures.

— We investigate the connection to convex risk measures and the subsequent implica-
tions for performance measures of R&S procedures. In particular, the risk associated
with the unknown underlying configuration of an experiment can be assessed in the
same way as the risk associated with the unknown payoff of a financial portfolio.

— We introduce the idea of acceptance sets for R&S policies. This provides the
decision maker with a tool to determine the performance guarantee a procedure
should satisfy given her risk tolerance. Further, an efficient frontier on the set of
R&S policies can be determined by solving an optimization problem over the set of
acceptable policies.

— We demonstrate the practical benefits of our framework via a concrete application,
namely the allocation of voting machines to precincts.

The outline of the article is as follows. Section 2 introduces the R&S problem and
outlines the three-layer performance evaluation process. Section 3 analyzes the con-
nection between existing performance measures and convex risk measures. Section
4 introduces acceptance sets and a new performance measure based on computa-
tional cost. Section 5 demonstrates how to use the suggested framework in a specific
simulation-optimization application. Section 6 concludes.

2. PERFORMANCE EVALUATION FOR RANKING AND SELECTION PROCEDURES

In this section, we introduce the R&S problem, outline the performance evaluation
process for R&S policies, and show how the IZ and the Bayesian formulation fit into
this framework.

2.1. R&S Setting

We consider k systems. Each system i corresponds to a simulation experiment pro-
ducing independent and identically distributed (iid) random variables Yi ∼ Fi ∈ F1,
i = 1, . . . , k, where Fi is the distribution of Yi and F1 is a family of 1-dimensional
distributions. The random vector Y := (Y1, . . . , Yk) has joint distribution F ∈ F , where
F is a family of k-dimensional distributions with marginal distributions belonging to
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the family F1. When the k systems are simulated independently, the joint distribution
is given as the product of the marginals, that is, F(x1, . . . , xk) = F1(x1) · · · Fk(xk) for
all (x1, . . . , xk) ∈ R

k. Sometimes, for example, when common random numbers are
used [Chick and Inoue 2001a; Nelson and Matejcik 1995], the outputs of the systems
are not independent and F incorporates a dependence structure. For this article we
assume that the k systems are independent.

The performance of a single system is measured by a functional θ on F1, that is,
θi := θ (Fi) ∈ R, and θ = (θ1, . . . , θk) ∈ R

k summarizes the performance of all k systems.
We are interested in identifying the system with the lowest performance parameter θi,
that is, we want to select system i∗ where θi∗ = mini∈{1,...,k} θi. The goal of identifying the
system with the highest θi can be accommodated by flipping the sign of θi. Although θi
is often taken to be the mean of the distribution in the R&S literature, our framework
allows other choices as well. For example, in finance, one is often interested in a port-
folio composition with the highest Sharpe ratio, θi = μi/σi, where μi is the expectation
and σi the standard deviation of the daily returns Yi. Because θ depends on F, we
sometimes write θ(F) to emphasize this dependence. More often, however, we simply
write θ when the context is clear.

In general an R&S policy π = (x1:τ , τ, iπ ) consists of three components: an allocation
rule x1:τ that determines which systems to simulate, a stopping rule τ that determines
when to stop simulating, and a selection rule iπ that determines which system to select
based on the simulation results. We use the notation x1:n := (x1, . . . , xn) for n ∈ N.
Formally, for n = 1, . . . , N, we define xn ∈ {1, . . . , k} to be the system simulated at
time n and Yxn,n ∈ R the corresponding outcome. To simplify we often just write Yn in
place of Yxn,n. Conditioned on the choice xn, Yn is distributed according to Fxn, and is
assumed independent of x1:n−1 and Y1:n−1. Adaptive allocation rules are allowed, which
means that the decision xn can depend upon the previously observed outcomes, that
is, xn can be a function of x1:n−1 and Y1:n−1, although we suppress this in the notation.
In this article we restrict ourselves to deterministic stopping rules, that is, τ ≡ N for
N ∈ N, which denotes the total number of measurements budgeted across all systems
and N is specified at the beginning of the experiment. The restriction to deterministic
stopping rules is not a requirement for the framework that we will introduce, but
helps to simplify notation and discussion throughout the work (see Remark 1 for how
the framework can be extended to policies where τ is random). Define iπ ∈ {1, . . . , k} to
be the selection made once all N simulations have been carried out. This decision is a
function of all the observed outcomes, that is, iπ is a function of x1:N and Y1:N. Finally,
let � denote the set of all possible policies π .

The essential question in R&S is this: which policy π ∈ � should we use?

2.2. Three-Layer Performance Evaluation

When we use an R&S procedure, we hope that it selects the best alternative. In-
evitably, however, it will sometimes fail to do so. In this section, we discuss ways to
measure the risk associated with this failure to select the best. Together, there are
three concepts that determine this risk: the loss of the decision, the configuration-
specific risk, and the overall risk.

2.2.1. Loss of the Decision (Outcome-Specific Risk). If θ is known, we can assign a loss
quantity L(iπ , θ ) ∈ R to the decision iπ that reflects the loss (cost) associated with
choosing system iπ . Examples of such loss functions L include the following.

(1) L(iπ , θ ) := 1
{
θiπ �= θi∗

}
where 1{·} denotes the indicator function that is 1 if its ar-

gument is true and 0 otherwise. This loss function is the 0-1 loss, used in much of
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the R&S literature. It penalizes all incorrect selections equally. The corresponding
expected loss is the Probability of InCorrect Selection (PICS).

(2) L(iπ , θ ) := 1
{
θiπ ≥ (θi∗ + δ)

}
, for δ > 0. This loss function only penalizes incorrect

selection when the selected alternative is more than δ worse than the best. This
reflects the idea that we may be indifferent to differences in performance of δ or
less. Such a notion is similar to the approach in Nelson and Banerjee [2001].

(3) L(iπ , θ ) := θiπ − θi∗ . This is the linear loss function used in [Chick and Inoue 2001b],
and is also referred to as regret. It is equal to the difference in performance between
the best system and the selected system.

(4) L(iπ , θ ) := f (θiπ − θi∗ ), where f is a convex and increasing function on R. This gen-
eralizes linear loss, with the function f modeling the risk aversion of the decision
maker. Possible choices for f include f (x) = 1{x ≥ 0}xp for some constant p ≥ 1
and f (x) = α exp(γ x) for some constants α, γ > 0.

(5) L(iπ , θ ) := θiπ − c, where c ∈ R is a constant. This can be used when our loss de-
pends not on the difference in performance between the selected and the best, but
between the selected and some known threshold. In some cases, for example, the
Bayesian framework using expected loss, this induces the same preference order
as the linear loss function. In other cases, it does not.

2.2.2. Configuration-Specific Risk. The loss L(iπ , θ ) quantifies the risk associated with
a single outcome of the selection decision iπ = iπ (x1:N, Y1:N). However, this decision iπ
made by an R&S policy π depends on the random simulation outcomes, and so L(iπ , θ )
is itself a random variable even when θ is known. Thus, an additional source of risk
is the randomness induced by stochastic simulation, given a single fixed configuration
F. We call this configuration-specific risk, and refer to it as R(π, F).

Every policy π and configuration F induces a probability measure P
π
F on the sam-

pling space. To quantify the configuration-specific risk, a functional of the random
variable L(iπ , θ ) with respect to P

π
F needs to be determined. The most common choice

is to use the expected loss, that is, R(π, F) := E
π
F[L(iπ , θ )]. This is a reasonable measure

when the policy is used repeatedly for R&S in a large number of similar situations,
or by a decision maker with little aversion to risk. However, when selection errors
are costly, or if a policy is to be used only once or a small number of times (for exam-
ple, in medical trials), more conservative functionals of the loss distribution, such as
quantiles or expected loss above a given quantile, might be considered [Chick 1997].
Generally, we write the configuration-specific risk as

R(π, F) := r(L(iπ , θ )), (1)

where r is a functional of the distribution of the random variable L(iπ , θ ) with respect
to P

π
F, given a fixed F. Defining both L and R allows some flexibility, for example, using

the loss function L1(iπ , θ ) = f (θiπ − θi∗ ) for some convex and increasing function f intro-
duced in the previous section and the configuration-specific risk R(π, F) = E

π
F[L1(iπ , θ )]

is equivalent to using the linear regret loss L2(iπ , θ ) = θiπ − θi∗ and the configuration-
specific risk R(π, F) = E

π
F[ f (L2(iπ , θ ))].

2.2.3. Overall Risk. The configuration-specific risk R(π, F) defined in (1) still depends
on the unknown underlying configuration F ∈ F . There is also risk associated with the
fact that this configuration is unknown. Especially when an R&S procedure is used
repeatedly over varying configurations F the risk of unknown F needs to be treated
separately from the functional R(π, F). A risk-averse decision maker would prefer
a policy π that has moderately low R(π, F) across all possible configurations F. In
contrast, a decision maker indifferent to extreme risks might prefer a policy π with low
R(π, F) in most configurations, but high R(π, F) in a few problematic configurations.
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To quantify the overall risk, we use a functional ρ on the mapping F �→ R(π, F).
With a slight abuse of notation, we write ρ(π ) = ρ(R(π, ·)) ∈ R. This performance
mapping ρ depends only on the policy π , and not on the actual configuration F. It can
then be used to compare different policies and, together with the natural ordering of
R, induces the sought-after preference order on �. A decision maker prefers policy π (1)

over policy π (2), that is, π (1) 
 π (2), if and only if ρ(π (1)) < ρ(π (2)). A decision maker is
indifferent between policy π (1) and π (2), that is, π (1) ∼ π (2) if and only if ρ(π (1)) = ρ(π (2)).

Depending on the risk tolerance of the decision maker there are different ways to
define ρ. The three most popular choices are.

(1) Worst-Case (WC) performance:

ρWC(π ) := sup
F∈F

R(π, F).

This performance measure prefers policies which perform well in the worst under-
lying configuration of the experiment. This is the most conservative performance
measure.

(2) Indifference Zone (IZ):

ρIZ (π ) := sup
F∈F\IZ

R(π, F). (2)

The IZ approach was first introduced in the seminal work [Bechhofer 1954], and
since then the IZ approach has become a standard formulation in the R&S litera-
ture. This formulation is closely related to the worst case performance measure,
being the worst-case over all but a subset (the indifference-zone) IZ ⊂ F of con-
figurations. The IZ performance measure prefers policies that perform well in the
worst underlying configuration outside the indifference zone. Inside the indiffer-
ence zone, configurations are assumed to have alternatives with performances θi so
similiar that it is not worth detecting the difference. This formulation is still quite
conservative, but is not as conservative as WC.

(3) Bayes risk. The Bayesian approach assumes the existence of a σ -field H on F
and incorporates a prior probability measure P0 on the measurable space (F ,H ).
This prior reflects a risk weighting on F and need not correspond to the prior belief
regarding F or θ . In the Bayesian approach, F is considered random and R(π, ·)
is assumed measurable, that is, a random variable. Different functionals of the
distribution of R(π, F) with respect to P0 can be used to quantify the performance
of a policy. Again, the most popular choice is to use the expectation, that is,

ρBayes(π ) := EP0 [R(π, F)] =
∫

F
R(π, F)P0(dF).

In contrast to the worst-case and the indifference zone formulations, the Bayes
formulation focuses on an average-case performance rather than a conservative
worst-case performance. When the risk weighting P0 is diffuse, this average-case
analysis might be too optimistic. One can introduce more risk aversion by using
a more conservative risk weighting P0 or a different functional of R(π, F) with
respect to P0, for example, quantiles or expected shortfall.

2.2.4 Decision-Theoretic Formulation for R&S Procedures. To summarize, in comparing
different policies, three quantities must be defined:

(1) the loss of a decision L(iπ , θ );
(2) the configuration-specific risk R(π, F);
(3) the overall risk ρ(π ).
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Fig. 1. Necessary quantities to define a preference order on the set of R&S policies.

With these quantities defined, policy π (1) is preferred over policy π (2) if and only if
ρ(π (1)) < ρ(π (2)). Figure 1 provides an overview of these three concepts and how they
interact. There is no single best way to define these quantities. Rather, they should be
chosen carefully according to the decision maker’s risk preferences for the particular
problem instance addressed. In Section 5 we explain how these three levels can be
determined for a concrete application.

3. ROBUST REPRESENTATION OF PERFORMANCE MEASURES

In the previous section, we described the process that underlies the performance eval-
uation of R&S procedures. We now focus on a unifying representation of the three
popular performance measures defined in Section 2.2.3. It turns out that this repre-
sentation is analogous to the robust representation of convex risk measures studied
in mathematical finance. This robust representation then suggests other performance
measures between the popular measures given in Section 2.2.3 that may overcome
their drawbacks.

In financial applications a risk measure should properly quantify the risk of a finan-
cial portfolio. For this, the return of a portfolio over a given time horizon, usually 10
days, is modeled as a random variable X . Let L0 denote the space of random variables
which are almost surely finite. In finance, a risk measure is a mapping χ : L0 → R.
The seminal work Markowitz [1952] on portfolio selection used the variance of X as
a risk measure. The variance, however, has certain drawbacks: it lacks monotonicity
and cash invariance (see what follows). Other popular risk measures, such as Value-
at-Risk, may penalize diversification of a portfolio. These drawbacks initiated a dis-
cussion of the structural properties that a risk measure should satisfy in financial
applications [Artzner et al. 1999]. The class of convex risk measures, introduced in
Föllmer and Schied [2002], has emerged as a class of good risk measures for financial
applications.

Definition 3.1. A mapping χ : L0 → R is called a convex risk measure if it satisfies
the following conditions for all X , Y ∈ L0.

(1) Monotonicity. If X ≤ Y , then χ (X ) ≥ χ (Y ). That is, a portfolio that always has a
smaller payoff than the other portfolio should be considered riskier.
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(2) Cash Invariance. If m ∈ R, then χ (X + m) = χ (X ) − m. That is, if m dollars
are added to a portfolio, its risk should decrease by m dollars. This property is
important in determining appropriate risk capital for financial institutions. For
example, regulatory agencies may require that the cash position m is large enough
so that the risk of a portfolio is equal to 0.

(3) Convexity. χ (λX + (1 − λ)Y ) ≤ λχ (X ) + (1 − λ)χ (Y ), for 0 ≤ λ ≤ 1. That is, a
diversified portfolio should not be considered riskier than an undiversified
portfolio.

At a first glance, convex risk measures do not seem related to R&S. However, a
strong connection can be identified through the following robust representation prop-
erty of convex risk measures.

THEOREM 3.2 [FÖLLMER AND SCHIED 2002]. Denote by Q the set of all finitely ad-
ditive probability measures on a measurable space (
,S ). Let α : Q → R ∪ {∞} be a
functional with infQ∈Q α(Q) ∈ R and X ∈ L∞ (L∞ denotes the space of random vari-
ables that are almost surely bounded). Then the mapping

χ (X ) := sup
Q∈Q

(EQ[−X ] − α(Q)), (3)

defines a convex risk measure on L∞.

With further technical assumptions the reverse direction also holds, that is, ev-
ery convex risk measure has a representation of the form (3). See Föllmer and
Schied [2002, 2004] for more details on convex risk measures used in finance and a
proof of Theorem 3.2.

We now state a similar representation result for the performance measures used for
R&S procedures. (We denote with B(R) the Borel σ -field on R.)

PROPOSITION 3.3. Consider a loss function L and a configuration-specific risk map-
ping R. If the space F has a σ -field H such that for a given policy π the mapping
R(π, ·) : (F ,H ) → (R,B(R)) is measurable, then the worst-case, indifference zone, and
Bayesian risk for Ranking and Selection procedures defined in Section 2.2.3 can each
be represented as

ρ(π ) = sup
Q∈Q

(
EQ[R(π, F)] − α(Q)

)
, (4)

where Q is some appropriate set of probability measures on (F ,H ), and α : Q �→
R ∪ {∞} is some penalty function.

PROOF. Let α ≡ 0. Then

— the set QWC =
{
all Dirac point measures for F ∈ F

}
yields ρ(π ) = ρWC(π );

— the set QIZ =
{
all Dirac point measures for F ∈ F\IZ

}
yields ρ(π ) = ρIZ (π );

— the set QBayes = {P0} yields ρ(π ) = ρBayes(π ).

A Dirac point measure for F ∈ F is a mapping δF : H → {0, 1}, such that δF(H) = 1 if
F ∈ H and δF(H) = 0 if F /∈ H.

In this proposition, Q is the probability measure on the measurable space (F ,H ).
This specifies the idea that the underlying experiment configuration F is considered
as a random realization from F . The measurability of R(π, ·) is necessary so that
EQ[R(π, F)] is defined. If, for example, F belongs to a parametric family then this
assumption is always satisfied by choosing H as the corresponding Borel σ -field on
the parameter set.
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There is a sign change inside the expectations between representation (3) and (4).
This is because, in finance X represents a return and hence −X represents the loss,
whereas in the R&S setting the quantity R(π, F) refers directly to the “loss” of policy
π under realization F.

Proposition 3.3 raises two questions about performance measures for R&S policies
that are worth investigating. First, are the properties of convex risk measures neces-
sary for the evaluation of R&S policies? Second, does the class of convex risk measures
provide other useful performance measures beyond WC, IZ, and Bayes performance?

3.1. Properties of Risk Measures for R&S Procedures

In mathematical finance the properties of convex risk measures, that is, monotonicity,
cash invariance, and convexity, are motivated by economic principles of investing. The
random variable X is the unknown payoff of a financial portfolio over a given time
period and ρ(X ) the associated risk of such a portfolio. Proposition 3.3 suggests that
the risk of an R&S procedure can be assessed in a similar way, where R(π, F) is the
unknown and undesirable “payoff” and ρ(π ) quantifies the risk of π . It is instructive
to investigate what the properties of convex risk measures imply in the R&S setting.

3.1.1. Monotonicity. Monotonicity ensures that, if for every configuration F policy π (1)

has higher configuration-specific risk than policy π (2), then the overall risk of π (1) is
also higher than the overall risk of policy π (2). This means that the induced preference
order should never favor a policy that is dominated by another policy, where dominated
is meant in the classical sense from statistical decision theory (see [Berger 1985]).
Monotonicity is a property that every good performance measure for R&S procedures
should satisfy.

An example of a nonmonotone performance measure for R&S is the variance of
R(π, ·) for risk weighting Q, that is, ρ(π ) := VarQ(R(π, F)). Comparing the performance
of R&S procedures using the variance could cause noncoherent preference orders. Con-
sider, for example, a Bernoulli R&S problem with k = 2 alternatives and the goal of
finding the system with the smallest success probability. Using the 0-1 loss function
L(iπ , θ ) = 1{θi �= θi∗ } and the expected loss as configuration-specific risk, R(π, F) is the
Probability of InCorrect Selection (PICS). For Bernoulli R&S the underlying configu-
ration F can be parameterized by the vector of success probabilities, θ = (θ1, θ2), where
θi is the success probability of system i for i = 1, 2. We compare two policies: policy
π (1) selects with equal probability system 1 or system 2; and policy π (2) simulates each
system independently once and selects the system with a failure (Yi = 0) as the better
system. In case of a tie (Y1 = Y2), π (2) selects system 1 or 2 with equal probability. The
configuration-specific risk for the two policies are:

R(π (1), F) =

{
0.5, if θ1 �= θ2,

0, if θ1 = θ2,

R(π (2), F) =

⎧⎪⎨
⎪⎩

0.5(1 + θ1 − θ2), if θ1 < θ2,

0, if θ1 = θ2,

0.5(1 + θ2 − θ1), if θ1 > θ2.

This shows that R(π (1), F) ≥ R(π (2), F) for all F ∈ F and R(π (1), F) > R(π (2), F) for F
with θ1 �= θ2. If we assume a risk weighting Q with positive density on [0, 1]2 then
VarQ(R(π (1), F)) = 0 < VarQ(R(π (2), F)), so the variance as a performance measure
would prefer policy π (1), even though π (1) is dominated by π (2).
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3.1.2. Cash Invariance. In mathematical finance cash invariance ensures that the risk
measure ρ(X ) can be used to determine appropriate capital requirements. If a portfolio
manager has set aside a risk capital of the size ρ(X ) then his portfolio is considered
“safe” and hence acceptable.

For R&S procedures a similar interpretation is useful when the goal of using an R&S
procedure is to minimize opportunity cost, as for example in Chick and Inoue [2001b],
Chick and Gans [2009], Chick and Frazier [2009]. For a decision maker using policy π ,
the configuration-specific risk R(π, F) is her monetary penalty when the corresponding
configuration is F. The performance measure ρ(π ) can then be used to calculate the
capital this decision maker needs to set aside for future payments. If ρ(π ) is negative,
the decision maker can safely withdraw cash. With this interpretation cash invariance
is a reasonable requirement on a performance measure for some R&S settings.

Acceptable portfolios and the determination of sufficient risk capital in a financial
setting have another interesting parallel in the R&S setting. The invested computa-
tional effort for an R&S procedure can be interpreted as the allocated risk capital of a
decision maker. The minimal required simulation budget for a policy π to be consid-
ered “safe” or acceptable provides the decision maker with a tool to assign the proper
amount of computational effort to the R&S procedure. This approach is further inves-
tigated in Section 4 and leads to the notion of acceptable policies for R&S procedures.

3.1.3. Convexity. Convexity is an important property in the financial setting because
it states that a diversified portfolio should not be riskier than an undiversified portfo-
lio. The interpretation of the convexity property for R&S policies, that is, for 0 ≤ λ ≤ 1,

ρ(λR(π (1), ·) + (1 − λ)R(π (2), ·)) ≤ λρ(R(π (1), ·)) + (1 − λ)ρ(R(π (2), ·)), (5)

is less obvious. The left side of (5) does not correspond to the risk of a policy that assigns
λN of the simulation budget to policy π (1) and (1−λ)N of the simulation budget to policy
π (2) nor to the risk of a randomized policy that applies policy π (1) with probability λ and
policy π (2) with probability 1 − λ.

We provide a possible interpretation of convexity for the R&S setting in the context
of parallel computing. Consider the following simplified example: Two processors must
perform R&S on the same sequence of configurations but cannot communicate with
each other. Two R&S policies (π (1), π (2)) are available. We assume that the space F can
be partitioned into two nonempty sets A1 and A2 such that R(π (i), F) = (1 −1 {F ∈ Ai})
for i = 1, 2, that is, π (1) performs better when F ∈ A1 and π (2) performs better when
F ∈ A2. If there are two experiment configurations in the sequence, then a procedure
π̃ that uses policy π (1) on one processor and policy π (2) on the other processor for each
configuration has total risk ρ(0.5R(π (1), ·) + 0.5R(π (2), ·)), that is, the left side of (5),
whereas a procedure π̄ that uses policy π (1) for the first configuration and policy π (2)

for the second configuration has total risk 0.5ρ(R(π (1), ·)) + 0.5ρ(R(π (2), ·)), that is, the
right side of (5). Here λ is set to 0.5 since we only have two processors. If we should
have infinitely many processors, any λ ∈ [0, 1] can be used. The convexity property
on ρ assures that the procedure π̄ is not preferred over the procedure π̃ . This is a
desirable property because π̃ provides a more stable penalty payment than π̄ and is
considered less risky. In other words, the diversified policy π̃ assures risk reduction in
the same sense as diversification reduces the risk of a financial portfolio.

The preceding discussion of convex risk measures for R&S procedures suggests
that the class of convex risk measures, for example, mappings that satisfy the
representation (4), should be used to compare R&S policies in certain settings. For
other R&S settings the cash invariance and convexity property might be less relevant
and one could use a performance measure outside the class of convex risk measures,
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for example, a quantile of R(π, F). However, the monotonicity property should always
be satisfied by a performance measure that is used to compare R&S policies.

3.2. Alternative Performance Measures

Proposition 3.3 shows that the three most popular risk measures for R&S procedures
are convex risk measures. This suggests that the class of convex risk measures, that
is, the class of mappings with the representation (4), is helpful in analyzing the per-
formance of R&S policies. The following examples show how the representation (4)
can construct risk measures that provide a robust risk assessment of R&S policies and
with this overcome some of the disadvantages of existing performance measures.

— A decision maker might put emphasis on average-case performance, but also be
somewhat concerned about IZ performance. She might take Q = QIZ ∪QBayes, α(Q) =
0 for Q ∈ QBayes, and α(Q) equal to a large strictly positive constant c for Q ∈ QIZ .
With this large value of the penalty function on QIZ , the performance measure ρ(π )
would be equal to the Bayes performance unless the worst-case performance was
extremely bad, when ρ(π ) would equal the worst-case performance minus c.

— Another decision maker might be interested only in the performance of a pol-
icy under the Bayes formulation, but be unsure about robustness of the per-
formance with respect to the risk weighting P0. She could then use QC ={
P : P = (1 − ε)P0 + εC,C ∈ C

}
, for 0 < ε < 1 and a class of possible contaminations

C . Such a class of contaminated priors is studied in Bayesian robustness theory
[Berger 1985].

4. ACCEPTANCE SETS AND A NEW PERFORMANCE MEASURE

In the previous sections we described how, given a fixed simulation budget N, the
performance of a policy π can be evaluated using a performance measure ρ.

This allows us to compare two policies using the same simulation budget. In prac-
tice, one can control the total simulation budget. In this section we describe a class of
performance evaluations that take this into account. In this description we first spec-
ify what it means for a policy to be acceptable. We then quantify the performance of a
policy as the smallest simulation budget required to make it acceptable. Acceptability
is defined in terms of acceptance sets, and by allowing acceptance sets with differ-
ent shapes, we allow for a range of trade-offs between worst-case and average-case
performance.

To motivate the concept of acceptable policies, we use the representation (4) of ρ in
Proposition 3.3. While the IZ and Bayesian formulations are special cases of (4), this
representation can be used to define much more general performance measures as seen
in Section 3.2. Each probability measure Q corresponds to a scenario of the underlying
configuration F, that is, a distribution over configurations, and Q represents the set
of all scenarios considered. One interpretation is that a scenario Q can be seen as one
possible prior belief on the underlying configuration. Considering a set of scenarios
Q implies our uncertainty about this prior belief. Examples of Q include QWC,QIZ ,
QBayes, and QC as defined in Section 3. From now on we assume that |Q| = m < ∞.
The extension to infinitely many scenarios is mathematically more challenging and
left open for future research.

Given a loss function L(iπN , θ ), a risk functional R(πN, F), and a penalty function α,
the risk of a policy πN that takes N measurements can be represented as a mapping
f (πN, ·) : Q → R defined by f (πN, Q) = EQ[R(πN, F)] − α(Q). (To emphasize the
dependence on N we now write πN instead of just π .) The set of all risks generated by
arbitrary combinations of L(·, θ ), R(·, F), α, and N builds a subspace of the functional
space G = { f : Q → R}. The space G is equivalent to R

m (recall that |Q| = m < ∞, so
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each function mapping Q to R can be written as a vector with m elements). Thus, the
set of attainable risks corresponds to a subset of Rm. The risk of a particular policy πN
can then be represented as a risk vector

f (πN,Q) :=

⎛
⎜⎜⎝

f (πN, Q1)
...

f (πN, Qm)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

EQ1 [R(πN, F)] − α(Q1)
...

EQm[R(πN, F)] − α(Qm)

⎞
⎟⎟⎠ ∈ R

m.

We then suppose that the decision maker specifies an acceptance set A ⊆ R
m

such that a policy πN is acceptable if and only if f (πN,Q) ∈ A . Such an accep-
tance set represents the decision maker’s risk-attitude towards different scenarios Qi,
i = 1, . . . , m, and should be defined in a coherent way, that is, any reasonable ac-
ceptance set should satisfy certain axioms. We assume that f is normalized so that,
f (πN, Q) ∈ [0, 1] for all Q in Q, where f (πN, Q) = 0 corresponds to the minimal risk
and f (πN, Q) = 1 to the maximal risk. These minimal and maximal risks do not need
to be achieved by any given πN. Further, we assume that the policy that chooses one
of the k systems uniformly at random has risk (k − 1)/k. The normalization corre-
sponds specifically to the Probability of InCorrect Selection (PICS) formulation. If a
different loss function L or a different configuration-specific risk R is used the nor-
malization may change as well. We then require that any coherent acceptance set
A should satisfy the following axioms. (In the following we use vector notation to
define rectangular subsets of R

m, for example, for two vectors p, q ∈ R
m, we define

[p, q] := [p1, q1] × [p2, q2] × · · · × [pm, qm] ⊆ R
m.)

Axiom 1. 0 ∈ A . A policy with no risk under any scenario should always be acceptable.
Axiom 2.

(
(k − 1)/k · 1, 1

] ∩ A = ∅, where 1 represents a vector of ones in R
m. Any ac-

ceptable policy should be as good as randomly selecting a “best system.” Note
that the formulation of this axiom depends on our choice of normalization.

Axiom 3. For any point q ∈ A , [0, q] ⊆ A . This axiom ensures monotonicity on the set
of policies, that is, if a policy dominates an acceptable policy then this policy
should also be acceptable.

It follows from the third axiom that if q /∈ A , then [q, 1] ∩ A = ∅. Any policy
dominated by an unacceptable policy should also be unacceptable.

Once a decision maker has identified an acceptance set according to her risk toler-
ance, we can check whether or not a policy πN that takes N measurements is acceptable
or not. Then, instead of predetermining the simulation budget N, we can treat N as a
control for the policy π . This interpretation motivates a new performance measure

ϕA (π ) := inf
{
N ∈ N| f (πN,Q) ∈ A

}
, (6)

which is the minimum simulation budget required to make the policy π acceptable to
the decision maker.

The intuition behind this performance measure is that the cost of performing R&S
can be measured as the simulation time required to achieve a certain confidence level.
If an infinite number of simulations is allowed, then any consistent policy would be
satisfactory. Here a consistent policy is one that converges to the right answer, that is,
f (πN,Q) → 0, as N → ∞. Therefore, a performance measure for varying N needs to
depend on how quickly f (πN,Q) converges to 0.

The conceptual plot in Figure 2 shows how the risk measure ϕA can be visualized
for two policies π (1) and π (2), where the grey area is a possible acceptance set A . In
order to visualize the trajectories we consider only two scenarios, Q1 and Q2. As N
varies between 0 and ∞, each policy traces out a trajectory in R

2 indicated by the
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Fig. 2. Possible acceptance set A and trajectories of two policies π (1) and π (2). The trajectories trace
f (πN,Q) as N → ∞. The trajectories are not continuous curves, as N ∈ N, but we draw them continu-
ously here for simplicity.

dashed arrows. When a trajectory crosses the boundary of the acceptance set A for
the first time, the corresponding number of iterations N is precisely the performance
of the corresponding policy.

The IZ and Bayesian formulations can be combined effectively in this framework.
Consider scenarios Q1 as a point mass at the Least Favorable Configuration (LFC)
(choose an arbitrary LFC if there exist a family of LFCs) and Q2 = P0, some prior
distribution on (F ,H ). The LFC is a configuration F of the experiment where the
supremum in (2) is (assumed to be) attained. Figure 3 shows the acceptance set A1 of a
decision maker using the IZ formulation, as well as the acceptance set A2 of a decision
maker using the Bayesian formulation. A decision maker who wants to apply both the
IZ and the Bayesian formulation would then use the intersection of A1 and A2 as her
acceptance set. The dashed arrows again indicate trajectories of two R&S policies.

It is instructive to analyze the connection between the fixed-N performance measure
ρ(π ) = supQ∈Q(EQ[R(π, θ )]−α(Q)) as defined in Proposition 3.3 and the variable-N per-
formance measure ϕA (π ) = inf

{
N ∈ N| f (πN,Q) ∈ A

}
associated with an acceptance

set A as introduced in (6). The concept of acceptance sets in fact extends the repre-
sentation (4), which implicitly, through the supremum operator, assumes rectangular
acceptance sets [0 ·1, d·1] for some constant d ∈ R+. That is, for a constant d ∈ R defin-
ing the largest acceptable value of ρ(π ), ρ(πN) ≤ d if and only if EQ[R(πN, F)] − α(Q)
≤ d for each Q ∈ Q, which holds if and only if f (πN,Q) is in the set A = [0 · 1, d · 1].

While ρ(π ) in (4) focuses on the worst-case performance over different scenarios Q ∈
Q, choosing nonrectangular acceptance sets allows the decision maker to move away
from a conservative worst-case analysis across scenarios, as in the numerical example
in Section 5. The new performance measure ϕA (π ) then serves two purposes. First, it
relaxes the conservative supremum operator of (4) but still induces a preference order
on � via the natural ordering of N. Second, in many cases it is helpful to consider the
performance of a policy under different acceptance sets. For example, when a decision
maker uses an R&S procedure that is acceptable in terms of average-case performance,
it is informative to determine the additional simulation budget required so that, in
addition, an IZ performance guarantee is met. To this end, the performance measure
ϕA (π ) as the number of “necessary” iterations gives an easy-to-interpret comparison
between different acceptance sets for a policy π .
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Fig. 3. Acceptance sets corresponding to the IZ formulation (A1) and to the Bayesian formulation (A2). The
acceptance sets are chosen such that the performance requirement on the Bayesian scenario is stricter than
the requirement on the IZ scenario. This reflects the typical case where the IZ (worst-case) performance
is much worse than the Bayesian (average-case) performance. The intersection A1 ∩ A2 defines then a
performance measure ϕA1∩A2 that has a strong requirement on the Bayesian performance and guarantees
that the IZ performance is not extremely bad.

Remark 1. So far we have assumed that the total number of simulation iterations
N is deterministic. Simulation analysts, however, often use R&S procedures that have
random run lengths. Indeed, it has been empirically shown [Branke et al. 2007] that,
in many concrete examples, policies with adaptive simulation budgets outperform poli-
cies with fixed simulation budgets. Furthermore, the computational cost of an R&S
procedure may depend on more than just the total number of iterations N, because
simulation time may vary across alternative systems, and computations performed by
the policy in choosing which systems to simulate may also contribute some cost. Hence
the number of simulation iterations N may not appropriately reflect the actual cost of
the R&S policy. In this case, the wall-clock time T can be used as the cost measure of
an R&S procedure. Policies with random run lengths cause T to be random.

In Sections 2 and 3, the actual run length does not play an important role and the
introduced concepts can also be used to evaluate policies with random stopping rules
τ . Section 4 can be extended to cover policies with random run lengths by considering
the expected run length E

π
F[T] (or another functional of the random variable T). In

this case it is possible to determine whether or not a policy is acceptable to a decision
maker, but a different control than N, such as a confidence parameter, needs to be
used to control the policy. For example, in order to implement the popular indifference
zone policy KN [Kim and Nelson 2001], a confidence parameter η, an indifference
zone parameter δ, and a first-stage sample size n0 must be determined. We denote
this policy as πKN

η,δ,n0
. Running the KN procedure on a given problem will take T units

of wall-clock time, where T is a random variable. Hence the expected run length of
the KN procedure depends on η, δ, n0 as well as the problem input F. For a given
scenario Q ∈ Q, the risk is then defined as f (πKN

η,δ,n0
, Q) = EQ[R(πKN

η,δ,n0
, F)] − α(Q), and

for a given acceptance set A it is possible to determine wether πKN
η,δ,n0

is acceptable
( f (πKN

η,δ,n0
,Q) ∈ A ) or not ( f (πKN

η,δ,n0
,Q) /∈ A ). One can further define the best acceptable

policy in the class of KN policies by optimizing over η, δ and n0:

ϕA (πKN ) = inf
η,δ,n0

{
E

πKN
η,δ,n0

F [T]
∣∣ f (πKN

η,δ,n0
,Q) ∈ A

}
.
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5. APPLICATION EXAMPLE

In Waeber et al. [2010] the introduced framework is used to compare three popular
policies, namely equal allocation, OCBA [Chen 1996; Chen et al. 2000], and (0 − 1)(S)
[Chick and Inoue 2001b], for the normal R&S problem with k = 10 systems. In this
section, we apply the framework to analyze a Bernoulli R&S problem motivated by
a concrete simulation optimization application. In particular, we investigate how the
preference order on the set of policies � can change given different assumptions in the
performance analysis. Further, we show how the performance measures can be used
to identify optimal parameters for an R&S policy.

5.1 Allocation of Voting Machines

The simulation optimization problem considered is approximately stated as follows:
given a fixed number of touch-screen voting machines, we would like to allocate them
to different precincts so that the probability of long waiting times at the polls is small.
Often a rough forecast of the turnout is given by the registration of voters. However,
factors such as broken voting machines or variation of voters’ arrival rates cannot be
accurately forecasted. Since the search space grows combinatorially as the number
of machines and precincts increases, simulation optimization techniques are helpful
in identifying good allocation schemes efficiently. An initial simulation optimization
search often yields a set of promising solutions. R&S methods can then be used in
a clean-up stage to determine the best system out of the set of promising solutions.
This problem, without the clean-up stage, was studied in Allen and Bernshteyn [2006;
2008]. We use this example solely to demonstrate how the performance measures for
R&S policies introduced in Sections 2, 3, and 4 can help determine which R&S proce-
dure should be used in the clean-up stage.

Suppose k promising voting machine allocation schemes Si, i = 1, . . . , k, are consid-
ered after the simulation search. An allocation scheme is considered good if the prob-
ability of long waiting times is small. The performance measure is θi = PFi(Z i > C)
where Z i denotes the longest waiting time under Si throughout an election day and
C is some quantity, for example, 2 hours. Each allocation scheme produces outputs
Yi := 1 {Z i > C}, so that Yi ∼ Bernoulli(θi).

In many applications there exist options that are not directly associated with a
system Si, but their performances still depend on the quantities θi, i = 1, . . . , k. One
such option could be “no satisfying system exists and other solutions to the problem
need to be identified.” In the voting machine problem, this corresponds to the situation
where the probability of long waiting times is so high for all considered allocation
schemes that the decision maker needs to consider other undesirable options, such
as providing provisional ballots, requesting more voting machines, or petitioning for
longer opening hours of the polling stations. We denote this exit option as i = 0, where
the performance of i = 0 is a function of the performance of the other k systems. It is
convenient to scale the performance of i = 0 also in [0, 1], so we set θ0 := 1−mini∈{1,...k} θi.
Our overriding goal is to identify the option with the lowest performance measure,
that is, argmini∈{0,...,k}θi, where only options 1, . . . , k can be simulated. Figure 4 shows
the minimal θi as a function of θ = (θ1, θ2) ∈ [0, 1]2 when k = 2. The figure can be
interpreted as the performance of an oracle, that is, a procedure that always chooses
the best option for a given underlying configuration. A good selection procedure should
have a performance surface that is close to the oracle performance surface.

5.2. Three-Layer Performance Analysis

We can now determine the three layers of the performance analysis for R&S procedures
as specified in Section 2.
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Fig. 4. Performance of an oracle (a procedure that always chooses the best option) for k = 2 systems.

(1) Use the linear regret function as our loss function:

L(iπ , θ ) := θiπ − min
i∈{0,...,k}

θi.

This loss function reflects the idea that a good R&S procedure minimizes the loss
above the performance of an oracle procedure. L(iπ , F) corresponds to the addi-
tional probability of long waiting times attributed to a wrong selection. If this
additional probability is small then the selection should still be considered a good
selection, even if this not the best available option.

(2) Use expected loss as our configuration-specific risk:

R(π, F) := E
π
F[L(iπ , θ )].

If the selection procedure π is used for all counties of a state then the expected
loss reflects the average loss per county. If the selection procedure is used for a
single county then a more risk-averse functional of the distribution of L, such as a
q-quantile, should be used.

(3) For the third layer, we consider individually worst-case performance, Bayesian per-
formance, and the new performance measure based on acceptance sets. Different
preference orders will be induced by these performance measures. Since we are
using linear regret as the loss function, differences between worst-case and in-
difference zone performances are negligible (as long as the set IZ is reasonably
small).

We compare the following two R&S allocation rules.

— Equal Allocation. The fixed simulation budget N is equally distributed among the
k systems. If k does not divide N evenly, the remainder of the simulation budget
is allocated to the k systems according to draws from the k systems uniformly at
random without replacement.

— 2-Stage Allocation. First, for γ ∈ [0, 1], �γ N� of the fixed simulation budget N is
equally allocated among the k systems. Second, the �k/2� systems that performed
worst are eliminated and the remaining simulation budget is equally allocated to
the rest of the systems. If the allocation in either stage leaves a remainder in the
simulation budget, it is assigned according to draws from the set of applicable sys-
tems uniformly at random without replacement. In the first stage all k systems are

ACM Transactions on Modeling and Computer Simulation, Vol. 22, No. 3, Article 16, Publication date: August 2012.



A Framework for Selecting a Selection Procedure 16:17

applicable, in the second stage only systems that have not been eliminated in the
first stage are applicable.

The decision rule is to choose the system with the smallest estimated θ̂i (according
to the sample means) as the best system. In case of a tie, one of the systems with
the smallest estimated θ̂i is chosen uniformly at random. For the 2-stage procedure,
systems eliminated after the first stage cannot be selected as best.

We study two alternatives (k = 2) and two policies, which is sufficient to visualize
the induced preference orders on �. The introduced framework can be used to carry
out more extensive comparisons (larger k and more policies), as, for example, is done
in Waeber et al. [2010]. In the current article we chose to use a simplified setting
and to focus on the structure of the framework and how preference orders on the set
of policies can change. Figure 5 shows the estimated expected regret R(π, F) for the
equal allocation rule and the 2-stage allocation rule with γ = 0.7 as a function of θ1
and θ2 for different runlengths N. Note that the expected regret converges pointwise
to 0 as N → ∞.

The overall risk, that is, the third layer in the performance analysis process, sum-
marizes each surface displayed in Figure 5 by a single number. Table I reports,
for different runlengths N, estimates of the worst-case performance and two Bayes
performances. The first Bayes performance uses a uniform weighting on the plane
(0, 1]2, while the second uses an independent bivariate weighting with beta-marginals
β(a, b ) for a = 2 and b = 5. The density of the β(a, b ) distribution is proportional to
xa−1(1 − x)b−11{x ∈ [0, 1]}, with a, b > 0. The choice of a and b should be set accord-
ing the decision maker’s risk weighting. We chose a = 2 and b = 5 as an example,
and in Section 5.4 we investigate the behavior of the preference order under varying
parameters a and b .

Explicit calculation of the performance measures is very challenging but estimation
results and their corresponding standard deviations appear accurate enough to induce
preference orders. The estimation is performed using Monte-Carlo sampling from the
(0, 1]2 plane and stratification with a small stepsize (0.02) is used to reduce variance in
the estimation process. 100 uniform samples are drawn from each stratum and a mean
performance per stratum is estimated. The worst-case scenario is then estimated as
the worst estimated mean performance among all strata. The Bayes performance is
estimated by the appropriate weighting of each stratum’s estimated mean performance
according the prior risk weighting.

Table I shows that for all estimated runlengths N, π 2-stage 
 π equal for the worst-
case analysis, but π equal 
 π 2-stage for the β(2, 5) Bayes weighting. For the uniform
risk weighting the preference order is less obvious. There is some evidence that equal
allocation performs better for smaller simulation budgets (N = 10, 30), while 2-stage
allocation performs better for larger simulation budgets (N > 30). This demonstrates
that whether a decision maker should use the equal allocation or the 2-stage allo-
cation scheme depends on her risk tolerance and also on the available simulation
budget.

5.3. Performance Analysis with Acceptance Sets

Similar behavior can be observed while studying different acceptance sets. Figure
6 shows the trajectories of the equal and the 2-stage procedure (γ = 0.7) under the
β(2, 5) Bayes scenario and the worst-case scenario together with three acceptance sets.
Table II summarizes the estimated values of ϕA for the two R&S policies under five
different acceptance sets. More specifically, A1 corresponds to a decision maker who
focuses on the Bayes β(2, 5) risk weighting; A2 corresponds to a decision maker who is
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Fig. 5. Estimated expected regret for the equal allocation rule and 2-stage allocation rule with γ = 0.7. As
N → ∞ the expected regret converges pointwise to 0. The expected regret is given in terms of percentages;
to recover absolute values the z-axis should be divided by a factor of 100. The pointwise estimated standard
deviation of the expected regret is on average 0.05 and at most 0.16 based on 20,000 iterations for each
possible stratum (a square of side 0.02).

concerned about worst-case performance; A3 corresponds to a decision maker who
wants to control both the worst-case and the β(2, 5) risk weighting, but is willing
to give up performance in one scenario if the performance in the other is improved;
A1 ∩ A2 describes the most conservative decision maker who requires good perfor-
mance under both the average-case and the worst-case configuration; A1 ∪ A2 on the
other hand corresponds to a less conservative decision maker who is willing to accept
a procedure once its average-case performance or its worst-case performance satisfies
some confidence bound.

ACM Transactions on Modeling and Computer Simulation, Vol. 22, No. 3, Article 16, Publication date: August 2012.



A Framework for Selecting a Selection Procedure 16:19

Table I. Estimated Performance Measures for Different Simulation Budgets N.

N 10 20 30 40 50 100 Largest
std deviation

Worst-Case Equal 12.34 9.77 7.46 6.69 5.72 4.13 (0.07)
2-Stage 11.26 7.36 6.11 5.19 4.68 3.27 (0.06)

Uniform Equal 4.71 2.91 1.93 1.54 1.21 0.64 (0.0016)
risk weighting 2-stage 5.53 2.80 2.00 1.51 1.20 0.61 (0.0018)

β(2, 5) Equal 4.28 2.64 1.88 1.49 1.22 0.65 (0.0022)
risk weighting 2-Stage 6.36 3.39 2.55 1.94 1.63 0.86 (0.0030)

The results are given in terms of percentages; to recover absolute values they should be
divided by a factor of 100. The standard deviations are based on a sample of 20,000 iter-
ations. We set γ = 0.7 for the 2-stage procedure. These performance measures have been
estimated using standard Monte-Carlo methods and stratification to reduce variance.

Fig. 6. Trajectories of equal and 2-stage procedures (γ = 0.7) entering three different acceptance sets.
The performance requirement on the Bayesian scenario (ρBayes(π ) ≤ 1.5%) is stricter than the performance
requirement on the worst-case scenario (ρWC(π ) ≤ 5%). Again, this reflects the idea that a policy with per-
formance in A1 ∩ A2, or in A3, guarantees good average-case performance and its worst-case performance
is not extremely bad. See also Figure 3.

Figure 6 and Table II show that a decision maker concerned with the average-case
behavior under a β(2, 5) risk weighting would prefer the equal allocation procedure,
while a decision maker who focuses on the worst-case performance would choose the
2-stage procedure. This behavior can be explained: the worst-case performance of the
equal allocation rule occurs when θ1 = θ2 and a little bit above 0.5 and hence the exit
option would be optimal; see Figure 5. For the 2-stage procedure, on the other hand,
the expected regret at these points is much smaller. This makes sense intuitively
because the 2-stage procedure focuses in the second stage only on one alternative and
the exit option. However, the improvement in worst-case performance comes at a cost:
in the region where the exit option is not the best option, the expected regret for the 2-
stage procedure is larger than for the equal allocation. This is reflected by the average-
case performance for a risk weighting focusing on the region where the exit option is
not the best option, such as the β(2, 5) risk weighting.
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Table II. Estimated Performance Measures ϕA (along with
standard deviations) for Equal and 2-Stage Allocation Rules

given Five Different Acceptance Sets

A1 A2 A3 A1 ∪ A2 A1 ∩ A2

Equal 40 69 49 40 69
(0.04) (0.79) (0.26) (0.04) (0.79)

2-stage 55 44 51 44 55
(0.05) (0.79) (0.33) (0.79) (0.06)

We used bootstrapping techniques to estimate ϕA and its
standard deviations based on a sample of 200 batches, where
each batch consists of an average of 100 simulation runs. The
standard deviations are significantly smaller when the entry
point into the acceptance set is given by the β(2, 5) scenario.
This is due to the fact that the estimation of the worst-case
scenario has a much higher variability than the expectation
under the β(2, 5) risk weighting.

Fig. 7. Optimal selection of the tuning parameter γ ∈ [0, 1] as a function of the mean μ of the β(a, b ) risk
weighting for a fixed simulation budget N = 50. The parameters a and b are chosen such that the variance
is constant and equal to 0.0255, which is possible for parameters μ ∈ [0.03, 0.97]. The optimal parameter γ

is estimated by discretization, that is, γ is chosen from the set {i/10, i = 1, . . . , 10} and bootstrapping over a
sample of size 20,000. The dashed lines indicate the normal approximation of the 95% confidence interval
using the estimated standard deviation from the bootstrap procedure.

5.4 Robustness of Preference Order

We now turn our attention to the robustness of the previous preference orders with
respect to the input parameters a and b of the beta risk weighting β(a, b ). The mean
of the β(a, b ) distribution is μ = a/(a + b ), and we are interested in how the preference
order changes with respect to μ. Moreover, for every μ an optimal parameter γ of the
2-stage procedure can be found. Figure 7 shows the optimal parameter γ as μ varies.
The parameters a and b of β(a, b ) are chosen so that the variance is the same for all
choices of μ. This constant variance is chosen to be the same variance given by a = 2,
b = 5, that is, Var = ab/((a + b )2(a + b + 1)) = 0.0255. As a consequence μ can only take
values in approximately [0.03, 0.97].

The 2-stage procedure with γ = 1 corresponds to the equal allocation procedure, and
when γ < 1 we refer to the resulting 2-stage procedure as a strict 2-stage procedure.
So for μ < 0.5, that is, when μ is in the region where the exit option is not the best
option, the equal allocation procedure is preferred over a strict 2-stage procedure, but
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as soon as μ becomes bigger than 0.5, that is, when μ is in the region where the exit
option is the best option, a strict 2-stage procedure is preferred to the equal alloca-
tion procedure. The optimal amount of effort spent in the first stage depends on μ.
Indeed, the optimal effort γ decreases with μ, because a risk weighting with larger
μ prefers policies that make a correct decision in the region where the exit option is
best. Furthermore, γ does not converge to 0 even when μ is close to 1. This is because
the variance of β(a, b ) is kept constant and some risk weighting is still assigned to
the region where θi < 0.5, for i = 1, 2, that is, where the performance of the policy
strongly depends on the outcome of the first stage. Finally, this robustness analysis
also depends on the preassigned simulation budget N. In Figure 7 this is chosen to be
N = 50. For other values of N the robustness of the optimal parameter γ differs.

6. CONCLUSIONS

We presented a performance analysis framework for R&S procedures, which states all
assumptions needed to introduce a preference order on a set of R&S policies. The three
most popular approaches in the literature have a common representation analogous to
convex risk measures used in mathematical finance. Based on this performance eval-
uation process, we introduced a new performance measure using computational cost
and the definition of “acceptable policies.” This easy-to-interpret performance measure
can be used to compare selection procedures given different acceptance sets specified
by the decision maker. By judicious choice of the acceptance set, a decision maker can
identify a performance guarantee that lies between the worst-case and the average-
case analysis. Although the framework is presented in the R&S setting where the
decision maker wants to select a single best system, the three-layer performance anal-
ysis and the concept of acceptance sets could be extended to other simulation optimiza-
tion settings such as subset selection, constrained and multiobjective optimization, as
well as global (continuous) optimization. The key in applying the framework to these
settings is to formulate appropriate loss functions L, configuration-specific risk func-
tionals R, and performance measures ρ, but the main structure would likely remain
very similar to that presented in this article.

Motivated by a real-world application, we demonstrated how the suggested frame-
work can introduce different preference orders on a set of R&S policies. We further
studied the robustness of preference regions under different prior assumptions, which
provides us with valuable insight regarding how tuning parameters for an existing
R&S policy can be chosen. Such analysis will almost invariably involve heavy compu-
tation, as in our example, but can be very helpful in deciding which R&S procedure to
use for a given application or class of applications.
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