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Sequential sampling problems arise in stochastic simulation and many other applications. Sampling is used
to infer the unknown performance of several alternatives before one alternative is selected as best. This

paper presents new economically motivated fully sequential sampling procedures to solve such problems, called
economics of selection procedures. The optimal procedure is derived for comparing a known standard with one
alternative whose unknown reward is inferred with sampling. That result motivates heuristics when multiple
alternatives have unknown rewards. The resulting procedures are more effective in numerical experiments than
any previously proposed procedure of which we are aware and are easily implemented. The key driver of the
improvement is the use of dynamic programming to model sequential sampling as an option to learn before
selecting an alternative. It accounts for the expected benefit of adaptive stopping policies for sampling, rather
than of one-stage policies, as is common in the literature.
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This paper focuses on the use of sampling to select
the best of a finite set of alternatives, where the
“best” alternative is the one with maximum expected
value, and the expectation is to be inferred with sta-
tistical sampling. Such problems arise in stochastic
simulation projects for process design decisions in
business, industrial, and service applications, agricul-
tural and pharmaceutical tests, and a variety of other
applications.

In simulation experiments, for example, an alter-
native might correspond to a particular choice of
design parameters for a manufacturing process (Law
2007). Simulation replications of alternatives can be
simulated sequentially until sampling stops and an
alternative is selected for implementation. We are
interested in the case where the implemented alterna-
tive has economic value, such as the net profit from
implementing a manufacturing process with design
parameters that are chosen on the basis of simulation
experiments.

An extensive statistical literature addresses this
problem (see, e.g., Gupta et al. 1979, Bechhofer et al.
1995, Kim and Nelson 2006). The majority of work
seeks to minimize the expected number of sam-
ples required to provide statistical guarantees for the

probability of correct selection. A typical guarantee is
of the form “the alternative that is selected is within
some prespecified error tolerance of the true best,
with at least some prespecified probability.” Although
there is some economic value gained in minimiz-
ing the expected number of samples subject to such
a worst-case constraint, this approach is statistically
conservative and typically results in excessive sam-
pling. Furthermore, this approach does not typically
consider and react to the cost of sampling (Chan and
Lai 2006 is a notable exception), even though this cost
varies widely across applications. For example, at a
recent Dagstuhl workshop1 entitled “Sampling-based
Optimization in the Presence of Uncertainty,” partic-
ipants noted that a single replication of a simulation
can require anywhere from a fraction of a second up
to a full day, depending on the application. In sequen-
tial sampling with interactive questionnaires, biologi-
cal tests, or medical screening, the marginal cost of a
sample is usually much larger than in simulation.

This paper describes how sampling costs and the
expected benefits from implementing an alternative,

1 See http://www.dagstuhl.de/de/programm/kalender/semhp/
?semnr=09181.
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rather than statistical criteria that ignore sampling
costs, can be used as the driver for dynamically and
sequentially deciding which alternatives to sample
and when to stop sampling. Insufficient sampling
reduces sampling costs but decreases the potential
benefit of selecting a good alternative with high prob-
ability. Excessive sampling increases this potential
benefit because it allows the mean performance of
each alternative to be better estimated, but the cost of
excessive sampling can overwhelm that benefit. This
paper studies the balance between these costs and
benefits.

We frame the problem using dynamic program-
ming (DP) techniques in §1 for the special case of
normally distributed samples with unknown means
and known variances. That section also describes the
optimal sequential sampling policy. Uncertainty about
the unknown mean performance of the alternatives is
described with a Bayesian formulation, because this
has been found to be effective in related work (Branke
et al. 2007).

Section 2 analyzes the problem when a single alter-
native with unknown mean reward is being com-
pared to the expected value of a known standard.
This analysis uses a diffusion approximation, which
enables us to write the solution in terms of a single
standardized problem that is independent of parame-
ters characterizing the sampling costs and variances.
This makes the solution much easier to use. The dif-
fusion approximation is motivated by an approach
developed by Chernoff (1961), which has general
appeal in its own right for optimal stopping prob-
lems in Bayesian statistics and has led to a variety
of related work in hypothesis testing, sequential sam-
pling, and the multiarmed bandit problem (Chernoff
and Ray 1965, Lai 1987, Brezzi and Lai 2002, Chick
and Gans 2009). The analysis below provides a con-
tinuation set, within which it is optimal to continue
sampling and outside of which it is optimal to stop
and to select the better of the alternative with an
unknown mean or the known standard. The contin-
uation set identifies whether there exists a dynamic
and nonanticipative sampling plan whose expected
value of information (EVI) from sampling exceeds its
expected cost of sampling.

Section 3 demonstrates how the solution to the
problem with k = 1 unknown alternative from §2
can be used to define effective heuristics to handle
the problem with k > 1 unknown alternatives. We
call the resulting procedures economics of selection
procedures (ESPs). This approach, which determines
the shape of the optimal stopping boundary from
economic considerations, differs in spirit and struc-
ture from the frequentist literature, which uses stop-
ping boundaries of a fixed shape (e.g., triangular or
parabolic) and scales or resizes that shape to achieve

a specific frequentist probability of correct selection
guarantee (e.g., see Kim and Nelson 2006).

We recall several previously proposed sequen-
tial sampling procedures and bounds on the opti-
mal performance in §4 to assess the new sequential
sampling procedure derived in §§2 and 3. The com-
parators, given in §§4.2 and 4.3, include the proce-
dures that performed the best in a recent and very
large-scale assessment of selection procedures (Branke
et al. 2007). Numerical experiments in §5 demon-
strate that our new approach performs more effec-
tively than the best of those earlier procedures, as
measured by the expected net benefit of selecting an
alternative less the cost of sampling.

Section 6 extends the analysis for normally dis-
tributed samples with known variances to a broader
class of sampling distributions and develops that
analysis specifically for normally distributed samples
with unknown variances. The resulting procedure is
simple to implement (it does not require the calcu-
lation of statistical constants, uses only simple alge-
braic functions, and has no free parameters) and is
shown in a numerical experiment to outperform all
other procedures for this problem of which we are
aware.

In spite of the preponderance of previous work
focusing on statistical criteria, this paper is not the
first to consider the cost and EVI from sampling. Early
work on Bayesian selection procedures examined the
EVI of one-stage sampling procedures and noted that
those procedures might be repeated in sequential
fashion to obtain a dynamic procedure (Gupta and
Miescke 1996). Chick and Inoue (2001) extended that
analysis and incorporated sampling cost criteria into
such a one-stage procedure. Frazier et al. (2008) also
provided one-step lookahead allocations and used a
DP framework to provide interesting characteriza-
tions for policies that repeatedly use one-step looka-
head allocations in sequential fashion. The resulting
policies can perform highly efficiently relative to some
other procedures that have been proposed (Frazier
and Powell 2008).

This paper extends those papers by providing a
more thorough analysis of a range of nonanticipative
sampling policies, not just one-stage allocations that
stand alone or are put in sequence. The analytical
methodology for doing so is commensurately more
challenging, and our characterization of the optimal
solution to the diffusion approximation for the special
case of k = 1 unknown alternative differs from all of
that prior work. In spite of the challenging derivation,
the resulting procedure is easy to implement.

The prior work that is closest in nature to this
paper is Chick and Gans (2009), which also uses
DP techniques to assess the value of the option to
continue sampling before selecting an alternative as

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Chick and Frazier: Sequential Sampling with Economics of Selection Procedures
552 Management Science 58(3), pp. 550–569, © 2012 INFORMS

best. The key difference between our work and that
paper is that the latter considers discounted sampling
costs and discounted rewards for the alternative that
is selected, whereas this paper focuses on sampling
costs and rewards that are not discounted. We show
below that the optimal stopping regions for the two
cases of discounted versus undiscounted costs have
very different structural properties.

In summary, this paper shows how to dynami-
cally decide which alternatives to sample and for
how long to sample before selecting an alternative
for implementation by using economic criteria rather
than statistical criteria. We consider a broader class
of adaptive sampling policies than has been consid-
ered previously. Doing so provides the most effective
sequential selection procedure to date. The paper also
demonstrates another application of useful DP tools
from Chernoff (1961) for optimal stopping problems
that involve Bayesian inference. This paper extends
initial work reported in Chick and Frazier (2009).

1. The Sampling Selection Problem
An analyst seeks to implement one of k alternatives
whose rewards Xi are random with unknown means
(for i = 1121 0 0 0 1 k) or to implement a known standard
(labeled i = 0) whose expected reward is the known
value E6X07 = m. For example, if the analyst has the
option to implement one of k alternatives or to reject
them all and “do nothing,” then m= 0.

Before selecting an alternative to implement (i ∈

01 11 0 0 0 1 k), the analyst can choose to sequentially
sample one or more of the k alternatives to infer
the unknown means. In simulation experiments, for
example, the sample Xi1 j is a random variable whose
realization xi1 j is the output of the jth simulation
replication for alternative i, for i = 01 11 0 0 0 1 k and
j = 1121 0 0 0 0

At each stage of this sequential process, the choice
of which alternative to sample or to select for imple-
mentation can depend upon all of the data observed
before making that choice. The analyst should max-
imize the expected net reward, which sums the cost
of sampling and the (single) reward received after
sampling ceases, and we implement the one alter-
native that appears best. This section formalizes this
“sampling selection problem” for the special case
of normally distributed samples with known sam-
pling variances and unknown sampling means. It
also presents theoretical results regarding the optimal
solution to that problem.

Let Ui be the sampling mean of alternative i, and
let �2

i be the known sampling variance. Let U =

4U01U11 0 0 0 1Uk5 be the vector of unknown means and
u = 4u01u11 0 0 0 1uk5 be the corresponding vector of

realizations. We assume that samples Xi1 j are condi-
tionally independent given the means Ui,

8Xi1 j 2 j = 1121 0 0 09 � Ui

iid
∼ Normal4Ui1�

2
i 5

for i = 0111 0 0 0 1 k0 (1)

To describe the analyst’s initial uncertainty about
the mean rewards, we assume a conjugate prior dis-
tribution for the unknown means,

Ui ∼ Normal4�i101�
2
i /ni105 for i = 1121 0 0 0 1 k, (2)

with the Ui independent for i > 0 and with U0 =m for
the known alternative. The real-valued ni10 > 0 can be
interpreted as the effective number of samples that is
embodied by the prior distribution for the unknown
mean of alternative i. It will be convenient to refer
to the vector 4�i101ni105, the so-called hyperparame-
ter for the unknown mean Ui, by a single term. We
therefore define äi10 = 4�i101ni105.

We now turn to the sampling process for inferring
the unknown means. We model sampling as occur-
ring sequentially in stages indexed by t = 011121 0 0 0 0
Suppose that t samples have been observed in total,
of which li1 t of them have been for alternative i > 0,
so that t =

∑k
i=1 li1 t . By Bayes’ rule, the posterior

distribution of Ui given the data through time t is
Normal4�i1 t1�

2
i /ni1 t5, where ni1 t = ni10 + li1 t , x̄i1 t is

the sample average of the li1 t observations for alter-
native i, and �i1 t = 4ni10�i10 + li1 t x̄i1 t5/ni1 t . We set
äi1 t = 4�i1 t1ni1 t5 to denote the hyperparameters for
the unknown Ui given data to time t, for i > 0.
The known standard is described by ä01 t = 4m1�5,
because a known mean can result from an infinite
number of samples. Let Eät = 4ä01 t1ä11 t1 0 0 0 1äk1 t5 for
t = 0111 0 0 0 0

A choice to sample alternative i4t5= i > 0 at time t
causes a Markovian state transition from a known
state äi1 t to a random state äi1 t+1. This transition is
determined by the probability distribution PXi1 t+1 �äi1 t

for the next sample given information up to time t
and Bayes’ rule, which implies �i1 t+1 = 4ni1 t�i1 t +

Xi1 t+15/4ni1 t +15 for normally distributed samples. For
j 6= i4t5, we have äj1 t+1 =äj1 t .

The analyst must choose a sequence of alternatives
to sample from, and then ultimately select an alterna-
tive, so that the stream of costs and terminal reward
together maximize the expected net reward. We use
the notion of a policy to model those choices. Infor-
mally, a policy � is a dynamic method of choosing,
at each time t, whether to sample an alternative or to
select an alternative for implementation (which deliv-
ers the ultimate reward and stops the process). More
precisely, a policy � defines a mapping i4t1 Eät5 at each
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time t to one of 2k + 1 possible decisions.2 We write
i4t5 for i4t1 Eät5 to simplify notation. The 2k+ 1 possi-
ble decisions are to sample alternative i4t5 = i for i =

1121 0 0 0 1 k or to stop sampling to implement alterna-
tive i (denoted by i4t5= k+1+i for i = 01 11 0 0 0 1 k). We
define T to be the first time that an alternative is not
sampled (the smallest t such that i4t5 > k) and define
I4T 5= i4T 5−k−1 to be the alternative that is selected
for implementation. We need not define i4t5 for t > T
because only one alternative can be implemented.

By construction, � is nonanticipative. Both i4t5 and
the event 8T = t9 depend only on the prior distribu-
tion and the data observed to time t, so that T is a
stopping time. Let ç be the set of such policies. We
write E� to indicate the expectation with respect to the
measure that � induces on the sequence of observa-
tions and decisions, and E to indicate the expectation
when it does not depend on �.

We assume that the incremental cost of each sam-
ple of alternative i is ci > 0. Under this assumption,
the expected value of any policy with a strictly posi-
tive probability of sampling forever (choosing T = �)
is −�. Thus, we restrict ç to policies with T <�

almost surely. Given a generic prior distribution Eä =

4ä01ä11 0 0 0 1äk5 and a policy � ∈ ç, the expected
value of the future stream of rewards is

V �4 Eä5 = E�

[T−1
∑

t=0

4−ci4t55 + XI4T 51T+1

∣

∣

∣

Eä0 = Eä

]

0 (3)

Formally, we define the analyst’s undiscounted
sampling selection problem to be the choice of a selection
policy that maximizes this undiscounted expected
reward:

V ∗4 Eä05= sup
�∈ç

V �4 Eä050 (4)

The value function V ∗ and optimal policies can
be characterized by standard results from dynamic
programming for infinite horizon undiscounted prob-
lems. To do so, we first write the problem as one with
nonnegative costs for sampling and selecting.

Proposition 1. For policies � ∈ç,

V �4 Eä05= E
[

max
i=01110001k

Ui �
Eä0

]

− E�

[T−1
∑

t=0

ci4t5 +LI4T 5

∣

∣

∣

Eä0

]

1

where Li = 4maxj=01110001kUj5 − Ui is the loss associated
with selecting alternative i, for i = 01 11 0 0 0 1 k.

The appendix provides mathematical proofs of all
claims that are not justified in the main text.

2 It is sufficient to consider dependence only on 4t1 Eät5 because
84t1 Eät52 t = 0111 0 0 09 is a Markov process, so an additional depen-
dence on the past cannot bring additional expected reward
(Bertsekas and Shreve 1978, Proposition 9.1).

The term E6maxi=01110001kUi � Eä07 is the expected
reward of having perfect information about the
means, with no sampling cost, before selecting the
best alternative for implementation. That term does
not depend on �. A policy � therefore maximizes
V �4 Eä05 if and only if (iff) it minimizes the sum of
the expected total sampling cost E�6

∑T−1
t=0 ci4t5 � Eä07

and the expected opportunity cost (E6OC7) of poten-
tially selecting an alternative that is not best, E6OC7=

E�6LI4T 5 �
Eä07.

Because both ci and Li are nonnegative, this equiv-
alent problem satisfies the (P) assumption of Chap. 9
of Bertsekas and Shreve (1978). Proposition 9.8 of
Bertsekas and Shreve (1978) then shows that the value
function satisfies Bellman’s recursion,

V ∗4 Eät5 = max
(

max
i=11210001k

E6−ci +V ∗4 Eät+15 � Eät1 i4t5= i71

max
i=01110001k

E
[

Ui �
Eät

]

)

0 (5)

Here, E6−ci + V ∗4 Eät+15 � Eät1 i4t5 = i7 is the expected
reward of sampling from alternative i4t5= i at time t

and acting optimally afterward, and E6Ui � Eät7 is the
expected reward of stopping at time T = t and select-
ing alternative I4T 5 = i. The presence of the term
XI4T 51T+1 in (3) as compared with the term E6Ui � Eät7
in (5) is explained by noting that selecting alternative
I4T 5= arg maxi∈01110001k E6Ui �

Eät7 at time T = t results in
a reward E6XI4T 51T+1 � EäT 7 = E6E6XI4T 51T+1 � UI4T 51 EäT 7 �

EäT 7= E6UI4T 5 �
EäT 7.

Proposition 2. Any policy � whose decisions attain
the maximum in Bellman’s recursion in (5) is optimal, i.e.,
V �4 Eä05= V ∗4 Eä05.

Proof. The proof follows directly from Proposi-
tion 9.12 of Bertsekas and Shreve (1978).

The proofs of Propositions 1 and 2 hold in some
interesting cases beyond normal distributions with
known sampling variances. For example, see §6 below
for normal distributions with unknown sampling
variances.

The following proposition shows that there is a
deterministic upper bound on the number of sam-
ples taken by the optimal policy, even though there is
no a priori constraint to stop in a finite time. This is
in contrast to other sequential information collection
problems in which there is no deterministic upper
bound on the number of samples taken by the optimal
policy. For example, consider sequential hypothesis
testing and the discussion of the truncated sequential
probability ratio test in Siegmund (1985).

Proposition 3. Assume (1) and (2). Under any opti-
mal policy, the stopping time T is bounded above by a
deterministic quantity, T ≤ k+

∑k
i=16�

2
i /42�c2

i 5−ni107.
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The proof of Proposition 3 relies on specific prop-
erties of the normal distribution and the assumption
that the sampling variances are known.

2. Comparing One Alternative with
an Unknown Mean to a
Known Standard

This section examines the special case of sequential
sampling to compare k = 1 alternative whose mean is
unknown with a known mean reward, m. In this sec-
tion we assume that samples are normally distributed
with an unknown mean whose prior distribution is in
accordance with (1) and (2) above. The results of the
analysis here for k = 1 will also be used in §3 where
we study k > 1.

We drop i, i4t5, and I4T 5 in subscripts for notational
convenience in this section because k = 1. Terms like
U , ät , and Xt refer to alternative 1 in this section, and
we rewrite ät as 4�t1nt5 here to describe the distribu-
tion for the unknown mean U of the lone alternative.
Thus, (4) becomes the optimal stopping problem

V ∗4m1�01n05

=sup
�

E�6−cT +max8m1E6U �äT 79 �ä0 = 4�01n0571 (6)

and Bellman’s recursion in (5) becomes

V ∗4m1�t1nt5

= max
{

m1−c+ E6V ∗4m1

4nt�t +Xi1t+15/4nt + 151nt + 15 ��t1nt71�t

}

0 (7)

We could solve the discrete-time optimal stop-
ping problem (6) directly using Bellman’s recursion
(7), beginning from the implicit horizon given by
Proposition 3, but this recursion depends on c, � ,
and m, so the whole solution would need to be
recomputed numerically each time these values were
changed. Instead, we solve a single standardized
problem whose solution can be easily transformed to
give a nearly optimal stopping boundary for any c, � ,
and m. With this approach, the practitioner does not
need to maintain a working implementation of the
DP with which he can recompute the optimal stop-
ping boundary for his given values of c, � , and m.
He can just store the optimal stopping boundary or
use a convenient analytic approximation to it that we
provide below.

The transformation to a standardized problem is
accomplished in §2.1, which approximates (6) using a
diffusion that rescales both time and the values of X.
Such a diffusion approximation is common in the
sequential sampling and simulation literatures, and
the resulting continuous-time problem is of interest in
its own right. Then, §2.2 uses a standard technique,

that of finite differences, to approximate the solution
of the resulting continuous state-space optimization
problem with the solution to a related discretized
problem on a lattice. An easy-to-use analytic approxi-
mation to the resulting optimal stopping boundary is
also provided.

At first glance, it may seem odd to convert
a discrete-time optimal stopping problem to a
continuous-time problem and to solve the result-
ing continuous-time problem with numerical methods
that require a discrete-time grid. However, conversion
to continuous time is required for the rescaling that
supports standardization, and the resulting problem
is then most easily solved numerically with a lattice.
Although the lattice does rediscretize the problem, the
discretization scheme of the lattice and of the original
problem differ substantially.

2.1. Diffusion Approximation for Sampling
Selection When k = 1

We first give a continuous-time diffusion approxima-
tion to the discrete-time problem (6) that depends
upon the parameters c, � , and m. We then transform
this continuous-time problem ((8), below) to a second
equivalent continuous-time problem ((11), below) that
does not depend on these parameters.

The process 84�0n0 +
∑t

j=1 Xj1n0 + t52 t = 0111 0 0 09,
given U , is a random walk with independent
Gaussian increments. This discrete-time process has
the same distribution as the continuous-time process
84Yt1n0 + t52 t ≥ 09 restricted to integral times t, where,
given U , 8Yt2 t ≥ 09 is a Brownian motion with Y0 =

y0
4

= �0n0, drift U , and volatility � . We may further
couple these discrete-time and continuous-time pro-
cesses by letting Yt = y0 +

∑t
j=1 Xj , so that the value

of the discrete-time process after t = 0111 0 0 0 observa-
tions is equal to value of the continuous-time process
at time t. From this construction, we have

Yt �U ∼ Normal4�0n0 +Ut1�2t5

for real-valued t ≥ 0 and U ∼ Normal4�01�
2/n05, so

that the posterior distribution of U given continuous
observations of Ys is

U � 84Ys1 s5 for s ∈ 601 t79∼ Normal4Yt/nt1�
2/nt50

Thus, the posterior distribution of U , conditional on
continuous observations of the continuous-time pro-
cess for integral t, matches that of the discrete-time
process in §1 because �t = yt/nt and nt = n0 + t.

We now approximate the discrete-time sam-
pling selection problem (6) with a continuous-time
problem. Let T̃ be a stopping time for the diffusion
8Yt2 t ≥ 09. If T̃ were restricted to integer times, then
T̃ would be equal to some stopping time T for the
discrete-time process. We would also have equality
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Figure 1 A Sample Path of the Rescaled Posterior Mean Ws in Two Time Scales: Forward Time in the Effective Number of Samples nt
(Increasing from n0 in the Left-Hand Plot) and Reverse Time s= 1/4�nt 5 (Decreasing from s0 = 1/4�n05 to 0 in the Right-Hand Plot)
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between YT̃ /nT̃ and E6XT+1 � äT 7 when stopping. By
allowing T̃ to be real valued rather than an integer,
we obtain the first continuous-time diffusion approx-
imation to (6),

V ∗4m1�01n05

= sup
�

E�6−cT + max8m1E6XT+1 �äT 79 �ä0 = 4�01n057

≈ sup
T̃≥0

E6−cT̃ + max8m1YT̃ /nT̃ 9 � ä0 = 4�01n0570 (8)

The solution to (8) depends upon the values of m, c,
and �2. We now rescale the diffusion to obtain a sin-
gle standardized stopping problem, from which we
can obtain the solution to (8) with a simple trans-
formation of variables. Let � and � be constants.
They are arbitrary now, but we will fix their values
below to achieve the desired rescaling. Then, let s =

1/4�nt5 index the progression of the inference. This
s coordinate is inversely proportional to the poste-
rior variance for the unknown mean and is therefore
proportional to the information about the unknown
mean. The behavior of the posterior mean is simpli-
fied if we index by s rather than by t. We let Ws =

�Yt/nt be the rescaled posterior mean, let m̃ = �m be
the rescaled value of the standard, and label the initial
conditions s0 = 1/4�n05 and ws0

= ��0 = �y0/n0.
Consider the process 84Ws1 s52 s0 ≥ s ≥ 09 in the

−s scale (beginning at s = s0 and decreasing to s = 0).
It is a Gaussian process, and calculation of its mean
and covariance at arbitrary values of s shows that it is
a Brownian motion with some volatility that depends
on � and �. It has no drift because Ws is propor-
tional to the posterior mean of U , and the poste-
rior mean is a martingale in Bayesian inference. We
now set � and � to achieve a volatility of 1, i.e., to
achieve Var6Ws � 4ws0

1 s057= s0 −s = 1/4�n05−1/4�nt5=

41/�54t/4n04n0 + t5550 By standard results for the pre-
dictive distribution of the posterior mean (de Groot
1970), Var6�Yt/nt � y01n07 = �2�2t/4n04n0 + t550 Thus,
setting �2�2� = 1 assures that the volatility is 1 and
84Ws1 s52 s0 ≥ s ≥ 09 is a standard Brownian motion in
the −s scale.

Figure 1 illustrates the behavior of the two equiv-
alent processes 84Ws1 s52 s0 ≥ s ≥ 09 and 84�Yt/nt1nt52
t ≥ 09. Recall that Ws0

= �Y0/n0 is the prior mean
at time t = 0. As we collect more samples, t
and nt increase, the corresponding s = 1/4�nt5 shrinks
toward 0, and the posterior mean Ws = �Yt/nt moves
toward the true sampling mean. A similar rescaling
has been used for other optimal sequential sampling
problems (Chernoff 1961, Brezzi and Lai 2002, Chick
and Gans 2009).

To complete this transformation, we let S = 1/4�nT̃ 5,
which is a stopping time in the −s scale. This stan-
dardizes (8) as follows:

B4m1�01n05
4

=sup
T̃≥0

E6−cT̃ +max8m1YT̃ /nT̃ 9 �Y0 =�0n07

=m+ sup
S∈601s07

E
[

−
c

�

(

1
S

−
1
s0

)

+max801�−1WS −m9
∣

∣

∣

Ws0
=ws0

]

=m+�−1 sup
S∈601s07

E
[

−
c�

�

(

1
S

−
1
s0

)

+max801WS9
∣

∣

∣

Ws0
=ws0

−m̃

]

0 (9)

If in addition to setting �2�2�=1 to set the under-
lying volatility to one we also set c�=�, then (9) sim-
plifies even further. To accomplish this, we set

�=c−1/3�−2/3 and �=c2/3�−2/30 (10)
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This value of � is the cube root of the sampling effi-
ciency (which is itself inversely proportional to the
product of the sampling variance and the cost per
sample; Hammersley and Hanscomb 1964, p. 22).

With these parameter values, the optimal stopping
problem in (9) is

B̃4ws0
−m̃1s05

4

= sup
S∈601s07

E
[

−

(

1
S

−
1
s0

)

+max801WS9
∣

∣

∣

Ws0
=ws0

−m̃

]

0

(11)

This development proves the following key result
for our analysis, summarized below in Proposition 4:
only the standardized problem (c=1, �=1, m=0)
in (11), which provides B̃4·1·5, need be solved to obtain
B4·1·1·5 for any c>0, �>0, and m. This is impor-
tant because the function B is a diffusion approxima-
tion to the solution V ∗ to the original discrete-time
problem (6).

Proposition 4. B4m1�01n05=m+�−1B̃4�4�0 −m51n05,
where � is as in (10).

The key to the optimal solution when k=1, then,
is to solve the optimal stopping problem (11). Stan-
dard techniques (Chernoff 1961, Bather 1970) show
that the function B̃ in (11) is the solution to a free
boundary problem. A free boundary problem is a
partial differential equation (PDE) whose boundary
is implicitly determined by an indifference between
stopping to get a reward and continuing to sample.
This characterization of the solution can be derived
from a more general dynamic programming principle
for continuous-time stochastic control (see, e.g., Pham
2009, §5.2.1).

The appendix shows that B̃ satisfies the following
free boundary problem:

0 = −
1
s2

−B̃s4w1s5

+
1
2
B̃ww4w1s51 for all 4w1s5∈C, (12)

B̃4w1s5=D4w1s5 on the boundary ¡C of C, (13)

B̃w4w1s5=Dw4w1s5 at regular points of ¡C, (14)

where D4w1s5=max801w9 is the (normalized) reward
for taking the better of 0 and w when stop-
ping, and one or more variables in the subscript of
B̃ or D indicate differentiation with respect to those
variables.

By solving for B̃, we find the optimal stop-
ping boundary and the continuation region that it
defines, C. Inside C it is optimal to continue sam-
pling. Outside C it is optimal to stop sampling and
implement the better of the known standard, with
reward m, or the alternative whose mean reward is
unknown.

The following pair of structural results further char-
acterize C in terms of a simple function of one vari-
able. First, in Proposition 5, the symmetry of the
normal distribution implies an interesting symmetry
structure for B̃4w1s5−max8w109, the expected benefit
of the optimal sampling plan relative to selecting the
better of w and 0. Then, Proposition 6 uses this sym-
metry structure to show that the continuation region
is symmetric about w=0 and can be described by a
function of one variable.

Proposition 5. B̃4w1s5−max8w109= B̃4−w1s5−
max8−w1090

Proposition 6. C=84w1s52 �w�<b4s59 for some func-
tion b4s5≥0 for s≥0.

The description of C in Proposition 6 can be directly
mapped using Proposition 4 to the first unstandard-
ized continuous-time problem (8) and, via the diffu-
sion approximation, to the original sampling selection
problem (6). As a result, the upper and lower opti-
mal stopping boundaries of the original problem in
4�t1nt5 coordinates can be approximated by

m±�−1b41/4�nt550 (15)

Thus, sampling continues as long as the posterior
mean �t is in the range m± c1/3�2/3b4�2/3/4c2/3nt55.

Interestingly, this optimal continuation set has both
an upper and a lower stopping boundary, which dif-
fers from the optimal continuation set for the selection
problem when there is a positive discount rate. If the
discount rate is positive, then there is no lower stop-
ping boundary, and one samples forever with positive
probability if the reward m of the known standard is
not more than the (nonpositive) discounted reward of
sampling forever (Chick and Gans 2009). In contrast,
without discounting, a positive sampling cost implies
that the penalty for sampling forever is infinite, and if
an alternative is sufficiently worse than m, one would
prefer to stop sampling and accept a known expected
reward of m.

2.2. Empirical Results for Diffusion
Approximation when k=1

A finite differences (FD) scheme with a trinomial
tree was implemented to solve the standardized free
boundary problem in (12) to (14) that is central to
this paper. There can be a small bias when estimating
B̃4w1s5 with FD. That bias can be corrected, to first
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Figure 2 The Continuation Set of the Standardized Free Boundary Problem in (12)–(14) Is Between the Dashed Lines
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Note. The solid lines give level sets of the expected reward of continuing when it is optimal to do so, B̃4w1s5−max401w5.

order, by running the FD with several levels of dis-
cretization (values of ãs). We observed a linear bias as
ãs was varied over numerous values of ãs and cor-
rected the bias in estimates of B̃4w1s5 reported below,
assuming a linear bias.

Figure 2 displays the optimal stopping bound-
ary with dashed lines for two ranges of s. The fig-
ure also displays the contours of the expected ben-
efit for continuing to sample when it is optimal
to do so, B̃4ws1s5−max4ws105. The continuation set
has upper and lower stopping boundaries given by
Proposition 6. For small values of s (left panel of Fig-
ure 2) the upper boundary of the continuation set
appears to be convex in s and is narrow. Small val-
ues of s indicate that a large number of samples have
been observed, so the scaled value �U of the true
sampling mean is likely to be close to the scaled pos-
terior mean, w. Only a narrow range of values of w
merit additional sampling.

For larger values of s (right panel of Figure 2), the
upper boundary of the continuation set appears to be
concave in s and includes a wider range of values
of w in the continuation region. This is because there
is still a great deal of uncertainty about U when s is
large, and sampling has more value.

These figures and others like it (not shown) show
that the upper boundary b4s5 of the optimal continua-
tion set of the standardized diffusion is approximately
b̃4s5, where

b̃4s5

=















































00233s2 if s≤11

0000537s4 −0006906s3

+003167s2 −0002326s if 1<s≤31

00705s1/2 ln4s5 if 3<s≤401

006426s42ln4s55104 −ln432�571/2 if 40<s0

(16)

This function is easily computed and is a good
approximation to the optimal stopping boundary over
the range of values that we tested (0008<s<61300).
The form of b̃4s5 is based on numerical approxima-
tions and not analytical results. We hypothesize that
it is also satisfactorily accurate for s∈ 40100085.

Figure 3 shows the optimal stopping boundary
with dashed lines in coordinates that are more natu-
ral for a decision maker (the posterior mean �t =yt/nt

and effective number of samples nt , rather than ws1s).
The figure presumes that c=1, �=105, and m=0.
The contours in Figure 3 describe the expected net
benefit of following the optimal policy, rather than
stopping. That expected net benefit is B4m1�t1nt5−
max8m1�t9. Above the upper dashed line and below
the lower dashed line it is optimal to stop immedi-
ately. In those regions, the expected net benefit of fol-
lowing the optimal policy is 0, because it is optimal to
stop there. Within the continuation set, the benefit of
using the optimal stopping boundary increases with
the amount of uncertainty about the unknown mean
(small nt) and as the mean of the distribution for the
unknown mean approaches that of the known alter-
native (�t approaches m). From the figure, the benefit
of sampling optimally when m=0, n0 =6, and �0 =0,
rather than selecting an alternative without sampling,
exceeds 10,000 in this example. That benefit exceeds
30,000 when n0 =1 (data not shown).

The approximation in (16) for the diffusion’s opti-
mal stopping boundary suggests a continuation set of
width O41/n2

t 5 for sufficiently large nt . At the same
time, Proposition 3 says that there is a fixed finite
number of samples beyond which it is never optimal
to sample. This apparent contradiction is resolved by
noting that the bound in Proposition 3 requires that
integral numbers of samples be taken, and that the
bound in (16) allows for fractional samples.

The optimal stopping boundary in this section
is useful for two reasons. First, the PDE need not
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Figure 3 Expected Reward from Continuing to Sample When It Is Optimal to Do So as a Function of the Effective Number of Samples nt and the
Posterior Mean �t (c=1, � =105, m=0)
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be implemented numerically to solve the problem
when k=1. Instead, the optimal stopping boundary
for the original problem is readily approximated via
b̃4s5. Second, the optimal stopping boundary for k=

1 alternative will be useful for the case of multiple
alternatives.

3. Sequential Sampling to Select the
Best of Multiple Alternatives

We now present a new sequential sampling procedure
for the sampling selection problem of §1 when there
are k>1 alternatives. The key elements of such a pro-
cedure, as exemplified in Figure 4, are (i) a stopping
rule that determines when to stop sampling, (ii) an
allocation rule that identifies which alternative, i4t5, to
sample when continuing at times t=0111000, and (iii) a
selection rule that chooses an alternative to imple-
ment when sampling has stopped.

The optimal selection rule when k≥1 is known.
Bellman’s equation in (5) indicates that, conditional
on selecting an alternative for implementation, the
selection rule that picks the alternative with the
largest posterior mean reward is optimal. We use this
selection rule uniformly.

The identification of a stopping rule and alloca-
tion rule remains. Although §1 shows that any opti-
mal policy satisfies Bellman’s recursion, the curse of

Figure 4 A Generic Sequential Sampling Procedure

1. Specify the parameters and prior distributions for each
alternative and set t=0.

2. While the stopping rule is not satisfied
(a) Use the allocation rule to identify which alternative

i4t5∈811210001k9 to sample.
(b) Take one sample for alternative i4t5, update its statistics,

and increment t.
3. Select the alternative I4T 5∈801110001k9 with the largest

posterior mean.

dimensionality prevents us from solving it numeri-
cally when k is even moderately large. We therefore
propose a solution that takes advantage of the struc-
tural results and approximations for the case of k=1
alternative from §2. This solution, which we call ESP,
has two components: a stopping rule and an alloca-
tion rule. These rules can either be based on only the
stopping boundary b4·5, for which we write ESPb, or
on the full solution B̃4·5, for which we write ESPB.

The ESPb stopping rule we now propose assesses
whether there is a dynamic policy that allocates
all samples to a single alternative before making a
selection and that achieves a positive net value of
sampling. In other words, the ESPb stopping rule con-
tinues to sample if and only if there is an alternative
i4t5∈811210001k9 such that comparing that one alterna-
tive with an unknown mean with a known value m′

t

would result in continuation for the case of k=1 alter-
native. The relevant value of m′

t is the maximum of
the posterior expected rewards of the other alterna-
tives, given the information to time t. Based on (15),
this is equivalent to continuing to sample if and only
if there is an alternative i>0 such that

c1/3
i �2/3

i b4�2/3
i /4c2/3

i ni1t55>ãi1t1

where ãi1t =��i1t−maxj 6=i�j1t� is the difference in
expected value between alternative i and the best
of the other alternatives (including 0) conditional on
information up to time t.

The development in §2 for k=1 also suggests two
allocation rules for the case of k>1. The first such
allocation is based on the expected net benefit of being
able to optimally sample from one alternative before
stopping and select an alternative for implementation.
Propositions 4 and 5 describe the expected net ben-
efit of the best nonanticipative sampling policy that
allocates only to alternative i, in a comparison of alter-
native i relative to the best of the means of the other
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alternatives, relative to the expected reward of stop-
ping immediately to select an alternative for imple-
mentation. That expectation is B̃4−�ãi1t11/4�ni1t55/�,
which gives rise to our first new allocation rule, the
ESPB allocation.

The ESPB allocation samples the alternative i>0 that
maximizes B̃4−�ãi1t11/4�ni1t55/�.

Selecting the largest such figure of merit
requires the full solution B̃45 of the standardized
PDE. The development in §2 suggests the following
allocation, called the ESPb allocation, as an alter-
native. It does not require B̃45, is much faster to
compute, and is much easier to implement.

The ESPb allocation samples the alternative that is
furthest inside the continuation set as measured in
standardized coordinates, argmaxi>0 b4�

2/3
i /4c2/3

i ni1t55
−ãi1t/4c

1/3
i �2/3

i 5.
Thus we have two new procedures, identified by

their allocation and stopping rules, respectively: the
ESPB1ESPb procedure and the ESPb1ESPb procedure.
These procedures are equivalent and optimal, up to
a diffusion approximation, for k=1. When k>1, the
ESPb stopping rule considers a strict subset of possi-
ble future sampling policies when deciding whether
to stop, and therefore may stop prematurely. Further-
more, these two allocations might not sample the opti-
mal choice determined by Bellman’s equation when
k>1 and sampling continues. Both procedures, how-
ever, perform extremely well in numerical results pre-
sented below. The ESPb1ESPb procedure is very easy
to implement, especially when using the approxima-
tion b̃, and so we recommend its use in practice over
the more cumbersome ESPB1ESPb procedure.

The ESPb and ESPB allocations do not always
require the figures of merit for all alternatives to be
recomputed after each sample is observed. For exam-
ple, if alternative j does not have one of the two
largest �i1t and is sampled, and the new sample does
not make it one of the two best, then only the figure
of merit for alternative j needs to be recomputed. This
feature can save considerable computation for large
values of k.

Step 1 in Figure 4, the specification of parame-
ters and the prior distribution, remains to be dis-
cussed. The sampling variance and average cost per
sample can be estimated from test simulations dur-
ing code development. The prior distributions for
the unknown means may be elicited using expert
judgment (O’Hagan et al. 2006). One may instead
assume a noninformative prior distribution for the
unknown parameters and observe n0 samples for each
alternative in an initialization phase so that the result-
ing posterior distribution can be used as the prior
distribution for the sequential sampling phase, which
begins with resetting t=0. For the case of normal
samples with unknown mean and known variance,

the prior distribution would have a mean that is the
sample mean from the initialization phase and a vari-
ance of �2/n0.

4. Tools to Assess the Performance of
New ESPs

This section first presents several bounds, allocation
rules, and stopping rules that can be used as com-
parators for the newly proposed procedures in §3. We
summarize the main intuition for the rules here and
refer the reader to the original papers from which
they are derived and Chick and Frazier (2009) for
further details. They will be used to assess the per-
formance of the new procedure of §3 in numerical
experiments below.

4.1. Bounds for the Value Function
We first present bounds on the value function V ∗4 Eät5
that provide an upper bound on the expected opti-
mality gap for the procedures tested, as well as an
assessment of the improvement that can be expected
relative to the naive approach of allocating an equal
number of samples per alternative in a round-robin
fashion. Additionally, because V ∗4 Eät5 is the expected
value of developing a simulator (and using an opti-
mal selection algorithm), bounds on V ∗4 Eä5 can be
used to decide whether to develop a simulator in the
first place.

One upper bound on the value function V ∗4 Eät5 is
the expected reward of having perfect information
about each alternative at zero cost. The bound follows
directly from Proposition 1.

Proposition 7. Vmax4 Eät5
4

= E6maxi=01110001kUi �
Eät7≥

V ∗4 Eät5.

For a lower bound, we note that the value function
V ∗4 Eät5 of the sampling selection problem is at least
as large as the expected reward of any one-stage alloca-
tion policy. Formally, a one-stage allocation maps each
sampling budget ß≥minici to an allocation of those
samples across the k alternatives, with a total of �i =
�i4ß5≥0 samples for alternative i, so that

∑k
i=1ci�i ≤

ß. We require that each �i4ß5 be nondecreasing in ß.
We set �= 4�11�210001�k5 and allow ß and �i to be real
valued for mathematical convenience. In implemen-
tations, the values of �i will be rounded to integer
values.

To describe the reward obtained from a one-stage
allocation, we need to describe the distribution of the
posterior means that arise from one stage of sampling.
Standard results (de Groot 1970) show that the poste-
rior mean Zi =E6Xi1t+t′+1 � Eät+t′ 7 that will result given
that �i samples will be observed for alternative i>0
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(of the t′ samples total) is a random variable that is
distributed as

Zi ∼Normal

(

�i1t

�2
i �i

ni1t4ni1t+�i5

)

0 (17)

Note that Z0 =m almost surely because the mean
for alternative 0 is assumed known. The variance of
Zi increases in �i for i>0 because more sampling
leads to potentially greater changes in the posterior
mean.

The following lower bound on the value function
arises from checking the so-called equal allocation.

Proposition 8. If �i4ß5=�ß/k� for each i, then

V ∗4 Eät5≥Vmin4 Eät5
4

= sup
ß≥mini ci

E
[

max
i=01110001k

Zi

]

−ß0

4.2. Allocation Rules for Comparison
We now summarize allocation rules that have been
proposed in the literature so that the new procedure
from §3 can be compared with other procedures. Each
allocation rule identifies which alternative to sample
from next, given a decision to sample at least one
more time before stopping to select an alternative.

Except for the equal allocation, these allocation
rules each assess the EVI of certain one-stage poli-
cies, and some account for the cost of the sam-
ples themselves. The allocations differ in that they
consider different classes of one-stage policies and
approximations to the EVI of sampling when closed
forms are not known. Although the class of one-stage
policies considered may allow multiple samples when
assessing the EVI of sampling, each of these alloca-
tions allocates only one sample at a time.

The equal allocation samples the k alternatives one at
a time in a round-robin fashion, so that each alterna-
tive has approximately the same number of samples
at any time. This is used as a comparator in many
studies.

The KG1/LL1 allocation greedily allocates one sample
at a time (�i =1 with no samples for the others) to a
single alternative to maximize the EVI from that sam-
ple, under the hypothetical assumption that only one
more sample can be collected before an alternative is
selected for implementation. This policy is variously
known as the knowledge gradient 4KG5 allocation
(Frazier et al. 2008 derived this for known variances)
and the LL1 allocation (Chick et al. 2010 derived this
for unknown variances). The name LL1 connotes lin-
ear loss (a synonym for opportunity cost) when one
sample is allowed.

The KGß allocation allocates one sample at a time
to the alternative that maximizes the average EVI per
sample, assuming that a budget ß of samples will all

be allocated to that alternative. This alternative is

argmax
i=11210001k

1
ß
�̃i4�5ë

(

ãi1t

�̃i4�5

)

1 (18)

where 4�̃i4�55
2 =�2

i �/4ni1t4ni1t+�551ë4s5=�4s5−sê4−s5,
� is the probability density function (pdf) of the
standard normal distribution, and ê is corresponding
cumulative distribution function (cdf). Although a
measurement is valued according to the average
value obtained over a budget ß of samples, only one
sample is allocated at a time. This is a straightfor-
ward extension of the KG1/LL1 allocation, and may
outperform KG1/LL1 (Frazier and Powell 2010).

The KG∗ allocation is similar to KGß, but recom-
putes ß separately for each alternative at each
time period to maximize the EVI per sample,
maxß≥141/ß5�̃i4�5ë4ãi1t/4�̃i4�555. Thus, KG∗ allocates
one sample at a time to the alternative whose EVI
per sample is largest, over all deterministic single-
alternative budgets. Computing the solution ß∗

i to this
optimization problem over ß for each alternative i>0
can be cumbersome, so instead we employ the follow-
ing asymptotic approximation ß̃∗

i to ß∗
i as in Frazier

and Powell (2010):

ß̃∗

i = cimax
{

11
ni1t

4

(

ã2
i1tni1t

�2
i

−1+

((

ã2
i1tni1t

�2
i

)2

+6
ã2

i1tni1t

�2
i

+1
)1/2)}

0 (19)

The sequential LL allocation allocates one sample at
a time with a variation of the LL allocation. For a
given budget ß, the one-stage policy that minimizes
an easily computed upper bound on the EVI of those
samples is computed (Chick and Inoue 2001, Corol-
lary 1). The optimal value ß∗ of ß that maximizes the
resulting EVI of such an allocation, less the sampling
cost, is then determined. At each stage t=0111000,
the alternative i that is allocated the greatest com-
putational effort by that allocation is selected, i4t5=
argmax8ci�i4ß∗59. Although this sounds like a large
number of approximations, we note that a sequen-
tial LL allocation, in combination with the EOCc1k

stopping rule in §4.3 below, tied for the “best” per-
formance among a variety of procedures in what is
believed to be the largest numerical study of selection
procedures to date (Branke et al. 2007). It tied with the
OCBALL allocation (He et al. 2007) with the EOCc1k

stopping rule, which is derived from different prin-
ciples but can be shown to have certain asymptotic
similarities.

In summary, all of the procedures proposed here,
with the exception of the equal allocation, have been
shown to perform well in numerical experiments else-
where, compared to several other procedures in the
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literature, both frequentist and Bayesian. In some
cases we have adapted or extended them slightly to
improve their performance in the context of this paper
(e.g., to handle differing sampling costs).

4.3. Stopping Rules for Comparison
We now summarize stopping rules that have been
proposed in the literature so that the new procedure
from §3 can be compared with other procedures. Each
stopping rule can be thought of as checking whether
a different, tractable class of one-stage allocation poli-
cies brings enough expected reward to justify contin-
uing to sample as opposed to stopping and selecting
an alternative for implementation.

The EOCc1k stopping rule considers allocations across
more than one alternative when deciding whether
to stop sampling. It is analogous to a similar rule
in Chick and Gans (2009) for discounted rewards. It
checks whether a certain upper bound on the EVI
from continuing to sample using the one-stage LL
allocation above exceeds the cost of those samples, for
at least one sampling budget ß. That bound is based
on the EVI of each of k pairwise comparisons of the
current best alternative with each other alternative.

The KGß stopping rule we consider slightly extends
the knowledge gradient stopping rule of Frazier and
Powell (2008) by allowing for different sampling costs
and multiple samples. With this rule, sampling con-
tinues if and only if there is an alternative i such that
allocating the whole sampling budget to that alter-
native in a single stage of sampling results in a net
expected benefit as compared to not sampling at all;
that is, it assesses the EVI from observing �i =ß sam-
ples from alternative i and no samples from the oth-
ers, and continues if and only if the EVI exceeds ß.

We also consider the KG∗ stopping rule of Frazier
and Powell (2010). This rule continues to sample if
there exists any sampling budget ß≥maxici for which
the KGß stopping rule would continue. It therefore
allows sampling to continue in more situations than
does the KGß stopping rule (because KGß uses a
fixed ß.)

Figure 5 shows the relationship of the continu-
ation sets for these stopping rules for the special
case of k=1. The figure presumes that c=1, �2 =105,
and m=0. The optimal stopping boundary somewhat
exceeds the KG∗ stopping boundary, and the relative
error percentage increases somewhat as the effective
number of samples nt increases. The KG∗ continuation
set coincides, theoretically, with the EOCc1k continua-
tion set for the special case of k=1. The KG∗ continu-
ation set in turn contains the continuation sets of the
KGß stopping rules. The nesting of the continuation
sets is explained by the nesting of the sets of policies
by which each stopping rule is defined. Those contin-
uation sets are not nested for ß=1, 10, and 100.

Figure 5 Upper Portion of Stopping Boundaries with k=1 Alternative
and c=1, � =105, and m=0
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5. Numerical Examples: Sequential
Sampling for Selection with
Known Variances

Simulation results are presented first for k=1 and
then for k>1. With k=1 we compare the known opti-
mal result for the diffusion with the approximations
in the above stopping rules to assess their degree of
suboptimality. With k>1, we assess the performances
of the various procedures by comparing them with
bounds on their performance. In summary, the new
ESP approach allows for improvements beyond the
performance of any other procedure we have found
in the literature, at least for these experiments.

The expected reward of a selection procedure was
estimated with Monte Carlo (MC) experiments. In
each experiment, a large number of random prob-
lem instances were generated from the prior dis-
tribution Eä0 for the unknown parameters of each
alternative. Selection procedures were applied to each
problem instance. Results from each procedure are
compared with each other and with the theoretical
upper bound Vmax4 Eä05 from Proposition 7 and the
benchmark value Vmin4 Eä05 of the one-stage equal allo-
cation from Proposition 8.

We implemented the ESPb stopping rule, the ESPB

and ESPb allocations, and all comparators in Matlab
and Java with one exception. Because the ESPB allo-
cation is more cumbersome to implement and slower
to compute than other allocations, we did not imple-
ment it in Java. Results for the ESPb stopping rule
and ESPb allocation as well as for the comparator pro-
cedures in §4 were consistent with these two imple-
mentations, confirming correct implementation. The
results in this section examine the ESPb stopping rule,
the ESPb allocation, and the comparators. We assess
the performance of the ESPB allocation in §6.4 below.
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Table 1 Performance of Stopping Rules for k=1, c=1, �0 =0, and � =105 Calculated Using Monte Carlo Simulation with 106 Samples

Stopping rule E6cT 7 E6OC7 E6cT +OC7 E[Reward] Suboptimality (%)

Panel A
ESPb 64033±0013 3208±004 9701±004 39179701±004 —
EOCc1k 29090±0006 12700±102 15609±102 39173703±102 0.15
KG∗ (ß̃∗) 29039±0006 12806±102 15800±102 39173602±102 0.15
KG1 6088±0001 1110301±504 1111000±504 38178403±504 2.54

Panel B
ESPb 321085±0025 26300±100 58409±100 3140406±100 —
EOCc1k 142053±0011 61201±108 75406±108 3123408±108 4.99
KG∗ (ß̃∗) 136051±0011 63309±109 77004±109 3121900±109 5.45
KG1 10053±0001 2150405±406 2151500±406 1147404±406 56.69

Notes. For panel A, the PDE estimate is V ∗40101n05≈B40101n05=31407, and the bounds are Vmax =31989 and Vmin =31170. In panel B, the PDE estimate is
V ∗40101n05≈B40101n05=391800, and the bounds are Vmax =391894 and Vmin =391613. In panel A, n0 =1, and in panel B, n0 =100.

5.1. Numerical Results: One Sampled Alternative
Table 1 shows MC simulation results for these stop-
ping rules when there is k=1 simulated alterna-
tive. We estimated (plus or minus one standard
error) the expected sampling cost, E6cT 7, the expected
opportunity cost, E6OC7=E6maxi=01110001kUi−UI4T 5 �ä07,
and the total expected penalty for not know-
ing the means, E6cT +OC7. The expected reward,
E[Reward] =E6−cT +UI4T 5 �ä07, was estimated indi-
rectly by Vmax4 Eä05−E6cT +OC7.

We set c=1, �0 =0, �=105, and m=0 for both n0 =1
and n0 =100. The relative suboptimality of the stop-
ping rules is calculated in a comparison with the MC
value of the reward with the optimal stopping bound-
ary. In each test, the optimal stopping rule (as com-
puted via the approximate stopping boundary b̃4·5
in (16)) performs best, with EOCc1k second best, fol-
lowed by KG∗ and KG1 in this order. This ordering in
reward, opportunity cost, and number of samples is
explained by the nesting of the continuation regions
as in §4.3. We can make several observations from
these results.

First, the diffusion approximation B40101n05 of the
value of the optimal policy V ∗40101n05 is very close
to the simulated value of the optimal stopping rule,
ESPb, as approximated with b̃4·5. When n0 =1, the
relative difference is 209/391800=00007%, and when
n0 =100, the relative difference is 204/31407=0007%.
Thus, the approximation b̃4·5 for the stopping bound-
ary appears satisfactory. Furthermore, B40101n05 is
slightly higher than the MC estimates based on
discrete-time sampling, as expected, because the dif-
fusion allows stopping at real-valued times but
the MC simulation enforces integer-valued stopping
times.

Second, the KG∗ and EOCc1k stopping rules, both of
which test a range of one-stage allocations to assess
whether to continue or not, perform very well, espe-
cially when n0 is very small. They provide a signifi-
cant benefit relative to the KG1 stopping rule, which

examines only one one-stage allocation. The benefit of
stopping by considering a range of potential stopping
rules is therefore evident. (The KG∗ and EOCc1k stop-
ping rules are equivalent when k=1, but the numer-
ical results differ slightly because the implementa-
tion of KG∗ uses the approximation ß̃∗ in (19) for
the optimal ß, whereas EOCc1k optimizes the budget
numerically.)

Third, the poor performance of KG1 when n0 =100
can be explained by recalling Figure 5. When t is in
the range from 80 to 3,000, the KG1 stopping bound-
ary is rather lower than the optimal stopping bound-
ary. That is the range of t that is most likely to lead
to stopping when n0 =100, given the value of E6cT 7.

5.2. Numerical Results: Multiple
Sampled Alternatives

Table 2 displays the performance of various allocation
and stopping rules for k>1. Here and elsewhere, pro-
cedures are written with the allocation rule first and
the stopping rule second, e.g., KG∗1ESPb is the KG∗

allocation rule with the ESPb stopping rule. The table
does not report the expected percentage of subopti-
mality, because the optimal expected reward is not
known precisely when k>1. Small values of E6cT +

OC7 correspond to better sequential sampling proce-
dures. For reference, the table also reports the penalty
for the optimal one-stage equal allocation, Vmax −Vmin,
and the expected reward from perfect and costless
information, Vmax. We now summarize general con-
clusions supported by the data.

Most strikingly, the ESPb stopping rule performs
best of all stopping rules for any given allocation rule.
It outperforms the KG stopping rules because it con-
siders a broader class of stopping policies. It outper-
forms the EOC-based stopping rules, we hypothesize,
because the EOC-based stopping rules consider allo-
cations that spread samples across the k alternatives,
which in turn incur sampling costs that are detrimen-
tal to a comparison between a given alternative and
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Table 2 Expected Total Penalty for Not Knowing the Mean Rewards, E6cT +OC7, for Several Allocation and Stopping Rules Calculated Using Monte
Carlo Simulation with 106 Samples (for k=21000120) or 105 Samples (for k=501100)

Allocation stop rule k=2 k=3 k=5 k=10 k=20 k=50 k=100

KG1, KG1 21393±9 31508±12 51136±15 71140±18 81767±19 101862±67 121500±72
KG∗, KG∗ (ß̃∗) 426±3 674±4 11040±5 11445±6 11761±6 21245±23 21666±25
LL, EOCc1k 320±2 429±2 577±3 821±4 11095±4 11577±17 21168±22
Equal, EOCc1k 321±2 433±2 629±2 11040±3 11815±3 41220±16 81425±29
KG∗, EOCc1k 319±2 424±2 575±3 799±3 11057±4 11489±16 21027±19
KG1, EOCc1k 318±2 419±2 546±3 728±3 916±3 11223±11 11577±11
KG1, ESPb 231±1 348±2 506±2 694±3 875±3 11158±10 11516±10
KG∗, ESPb 228±1 327±2 458±2 600±2 722±3 905±8 11111±9
ESPb , ESPb 233±1 344±2 505±2 700±3 856±3 11075±11 11308±12
Vmax −Vmin 522 736 11116 11947 31463 71799 141891
Vmax 681104 881815 1161970 1531887 1861748 2241907 2501759

Notes. The Vmax −Vmin (the expected total penalty of the optimal one-stage equal allocation) and Vmax (the expected reward of perfect costless information) are
also reported. Here, m=0, ci =1, �i =105, and ni10 =1 for i=11210001k, and estimates are plus or minus one standard error.

the best of the rest. For each value of k, the best three
allocation–stopping rule pairs use the ESPb stopping
rule, even though these allocations perform poorly
with some other stopping rules. This highlights the
importance of a good stopping rule.

The ESPb stopping rule does very well with the
ESPb allocation and even better with the KG∗ allo-
cation. These combinations are better than the most
effective procedures (LL or OCBALL or KG1/LL1 allo-
cation with the EOCc1k stopping rule) from a large and
recent empirical study (Branke et al. 2007).

The equal allocation samples more than the other
procedures, for any given stopping rule, because it
does not prioritize alternatives for sampling. This is
demonstrated for the EOCc1k stopping rule in the
table.

The KG∗ allocation with the KG∗ stopping rule per-
forms only somewhat better than the optimal one-
stage equal allocation (whose penalty for not knowing
the mean rewards is in the row labeled Vmax −Vmin).
The KG1 stopping rule with the KG1 allocation per-
forms the poorest of the sampling procedures. For
k≤50, it is even worse than the optimal one-stage
equal allocation.

The differences in performance between the poli-
cies grows with k. As k grows, the approximations
made by the KG∗ and KG1 stopping rules, which con-
sider allocations to only a single alternative, become
more restrictive and less justified. They cause the dif-
ference in values between the best single-alternative
allocation and the best allocation overall to become
larger. The EOCc1k stopping rule considers allocations
that sample multiple alternatives. This explains why
KG1 and KG∗ stop earlier than EOCc1k as k increases.

Although the KG1 and KG∗ stopping rules did not
perform well, the corresponding KG1 and KG∗ alloca-
tion rules perform very well when paired with other
stopping rules. For example, KG∗, ESPb was the best
of all the procedures in this test, and the KG1 and

KG∗ allocations perform better than all other alloca-
tion rules when paired with the EOCc1k stopping rule.
This dichotomy is a consequence of the KG method’s
strength in estimating the differences in value between
different sampling choices and its weakness in esti-
mating the overall value of sampling, that is, it is
important for an allocation rule to correctly estimate
the ordering of the expected values of sampling more
than the expected values themselves.

5.3. Numerical Results: Special Configurations
The performance reported in Table 2 is the average
performance over a large number of different con-
figurations drawn from the prior distribution. On
any given configuration, however, the relative order-
ing of the policies may differ. To assess this vari-
ability, we also examined performance on variants
of the slippage configuration (with ui =u1 −� for i=
21310001k and some �>0) and the monotone decreas-
ing means configuration (with ui =u1 −�4i−15 for i=
21310001k), which are commonly studied in the lit-
erature. To summarize our results, we found that
on the slippage configuration, the LL, EOCc1k proce-
dure performs well, perhaps because the EOCc1k stop-
ping rule slightly overestimates the Bayesian value
of continuing, which can be advantageous on dif-
ficult configurations. On the monotone decreasing
means configuration, procedures with the ESPb stop-
ping rule, and in particular the KG∗, ESPb proce-
dure, perform best. Although the relative ordering of
the policies varies with configuration, we recommend
ESPb, ESPb and KG∗, ESPb for use because of their
excellent performance in the average case.

6. Sequential Sampling for Selection
When Variances Are Unknown

The general setup in §1 assumed normally distributed
samples with known variances. Much of the analysis
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in that section can be extended to account for sam-
ples with other distributions. Propositions 1 and 2
and cited results from Bertsekas and Shreve (1978,
Chap. 9) hold more generally under the follow-
ing conditions: (i) a finite set of sufficient statistics
for each Xi exists so that we can define a fixed-
length parameter vector äi1t for the posterior on the
unknown parameters Ri of alternative i’s sampling
distribution at time t; (ii) the samples Xi1t are con-
ditionally independent given Ri; (iii) the unknown
parameters R= 4R11R210001Rk5 are a priori indepen-
dent across alternatives, P4R5=

∏k
i=1P4Ri5; (iv) the

integral E6Xi1t7=
∫ ∫

Xi1tdPXi1t �äi10
exists and is finite.

This section uses this extension to account for nor-
mally distributed samples with unknown variance,
which is much more common in practice than having
known variances. In doing so, we will refer to sev-
eral properties of the Student t distribution. Let ��4x5
denote the pdf of a standard Student t distribution
with � degrees of freedom, let ê�4x5 denote the corre-
sponding cdf, and let ë�6s7=

∫ �

s
4x−s5��4x5dx denote

the standard Student t linear loss function. One can
show that ë�6s7= 44�+s25/4�−155��4s5−sê�4−s5 for
�>1. If T� is a standard Student t random variable
with � degrees of freedom, then we say that �+

T�/
√
� is a three parameter Student t random variable,

denoted St4�1�1�5, with precision �. When �>2, the
variance is �−1�/4�−25.

6.1. Special Case: Normally Distributed Samples
with Unknown Variances

We now suppose that the samples Xi1t are normally
distributed and conditionally independent, given the
unknown means and unknown variances. Let �i be
the random variable that represents the unknown
variance and whose realization is �2

i . Then, condi-
tioned on the unknown means Ui and unknown vari-
ances �i,

8Xi1t2 t=11210009 �Ui1�i
iid
∼ Normal4Ui1�i5

for i=11210001k.

We further presume that the prior distribution for
each unknown mean and variance is in the family
of conjugate priors for normally distributed samples
with unknown means and variances (de Groot 1970),

�i ∼ InvGamma
(

�i101�i10

)

1

Ui ��i ∼ Normal4�i101�i/�i1051
(20)

where �i10>1 and �i10>0 are shape and scale param-
eters, respectively, of an inverted gamma distribution
with a finite mean E6�i7=�i10/4�i10 −15 and variance
Var61/�i7=�i10/�

2
i10, and where �i10 and �i10 describe

the a priori mean and variance, respectively, of the
unknown sampling mean. It follows that Ui is an

St
(

�i101�i�i10/�i1012�i10

)

random variable. We further
presume that the prior distributions are independent
from one i to the next.

In general, the prior distribution for the unknown
means and variances can be specified by selecting
parameters �i101�i101�i10>0 and �i10 for each i. If
each �i10 exceeds 1, then the a priori variance of
each Ui exists. An alternative method for obtaining
a prior distribution is to use a reference prior distri-
bution (Bernardo and Smith 1994) together with an
initial stage of data. That corresponds to observing �0
samples for each alternative and then setting �i10 =

x̄i1�0
, �i10 = 4�0 −15/2, �i10 = �̂2

i4�0 −15/2, where �̂2
i =

∑�0
j=14xi1j − x̄i1�0

52/4�0 −15, and �i10 =�0. One would
then reset t=0 and start the sampling procedure.

With the conjugate prior distribution in (20), the
posterior distribution has the same form. If xt is the
vector of samples after a total of t samples have
been observed, and li1t of those samples have been
from alternative i>0, the posterior distribution of the
unknown parameters is

�i �xt ∼ InvGamma
(

�i1t1�i1t

)

1

Ui ��i1xt ∼ Normal4�i1t1�i/�i1t51
(21)

where x̄i1t is the average of the li1t samples for alter-
native i, �i1t =�i10 +li1t/2,

�i1t =�i10 +
1
2

(

�i10li1t
�i10 +li1t

4�i10 − x̄i1t5
2
+

li1t
∑

j=1

4xi1j − x̄i1t5
2

)

1

�i1t =�i10 +li1t1 and �i1t = 4�i10�i10 +li1t x̄i1t5/�i1t

(de Groot 1970).
The bounds Vmin4 Eä5≤V ∗4 Eä5≤Vmax4 Eä5 from Propo-

sitions 7 and 8 carry over directly under the assump-
tion that the Ui are distributed as in (21). The proofs
of those bounds do not rely on the sampling distri-
butions. The random variables Zi required for Vmin
can be described in closed form. Suppose that t′

additional samples are to be observed, with �i sam-
ples to be observed for alternative i so that t′ =

∑

i�i.
Bernardo and Smith (1994, p. 440) show that the pos-
terior mean Zi =E6Xi1t+�i+1 � Eät7, given that �i samples
will be observed for alternative i>0, has a distribu-
tion analogous to (17), namely,

Zi ∼St

(

�i1t1
�i1t�i1t4�i1t+�i5

�i1t�i
12�i1t

)

0 (22)

For alternative i=0, which has a known mean m, we
have �0 =�01t =m, U0 =m, and Z0 =m as before.

6.2. One Alternative with an Unknown Variance
This subsection adapts our analysis from §2 with k=1
to handle unknown sampling variances. We drop the
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subscript i in this subsection. The posterior distribu-
tion for the unknown parameters of the alternative
at time t is therefore ät = 4�t1�t1�t1�t5 for t=0111000,
where �t =�0 +t is the effective number of samples.

The diffusion approximation in §2 provides a
convenient policy with plug-in estimators. We esti-
mate the unknown sampling variance after t sam-
ples are observed with its posterior expectation,
Var6Xt+1 �ät7=E6�i �ät7=�t/4�t−15. The optimal stop-
ping boundary used by ESPb is approximated by
recalling (15) and substituting �t/4�t−15 for �2 and
�t for nt , so that sampling continues as long as the
posterior mean �t remains in the interval defined by

m±c1/3

(

�t

�t−1

)1/3

b

((

�t

�t−1

)1/3
/

4c2/3�t5

)

0 (23)

These substitutions require that �t>0 and �t>1 for
t=01110000 If �0>0 or �0>1 are not satisfied (e.g.,
because of the selection of an improper prior distribu-
tion), then a finite stopping boundary is not initially
defined, and sampling should continue at least until
�t>1 and �t>0.

6.3. Multiple Alternatives with
Unknown Variances

The ESPs from §3 for the case of k>1 alternatives
with known variances are easily adapted to the case
of unknown variances using the plug-in estimators
�t/4�t−15 for �2 and �t for nt , as in (23). The bounds
for comparison and the allocation and stopping rules
in §4 can also be readily adapted to the case of
unknown variances. To adapt the KG-type rules, we
use these plug-in estimators. In particular, for KG∗,
we substitute these plug-in estimators into the expres-
sion (19) for ß̃∗

i , and then again substituting ß̃∗
i for ß

in (18). For LL and EOCc1k, the papers that derived
these rules treated unknown variances directly.

6.4. Numerical Analysis with Unknown Variances

6.4.1. One Alternative. The approximation in §6.2
for the optimal stopping boundary when the sampling

Table 3 Expected Total Penalty for Not Knowing the Mean Rewards, E6cT +OC7, When Variances Are Unknown, for Several Allocation and Stopping
Rules Calculated Using Monte Carlo simulation

Allocation stop rule k=2 k=3 k=5 k=10 k=20 k=50 k=100

KG1/LL11KG1 4,041 5,950 9,155 13,059 17,654 26,085 37,113
KG∗1KG∗4ß̃∗5 701 994 1,447 2,317 2,389 3,238 3,315
LL1EOCc1k 549 791 1,149 1,432 2,151 2,483 2,963
KG∗1EOCc1k 552 873 1,081 1,595 2,095 2,435 3,679
KG11ESPb 399 558 754 1,227 1,897 3,660 5,740
KG∗1ESPb 366 555 774 965 1,420 1,984 2,747
ESPb1ESPb 376 545 791 1,088 1,607 1,915 2,335
ESPB1ESPb 393 543 759 1,010 1,423 2,066 3,198
Vmax −Vmin 781 1,066 1,609 2,600 4,051 7,062 10,340
Vmax 30,110 39,350 52,120 69,180 84,900 104,320 117,930

Notes. Here, m=0, ci =1, �i10 =0, �i10 =5, �i10 =10, and �i10 =9×1010 so that E6�i 7= 410552 for i=11210001k. The Vmax −Vmin and Vmax are also reported.

variance is unknown and when k=1 appears to be
effective. We report here results when the prior distri-
bution for the unknown variance is InvGamma4��0

=10,
��0

=9×10105, so the expectation of the variance is 1010.
The prior distribution for the unknown mean, given a
variance �i, is Normal4��0

=0, �i/�0), with �0 =5. Sam-
ples cost c=1. The reward of the known standard is
m=U0 =0. This determines Eä0.

With these parameters, the maximum one could
hope to obtain, in expectation, is Vmax4 Eä05=171598.
When the estimated stopping boundary in §6.2 is
used, the expected sampling cost is E6cT 7=11902±

0056, and the expected opportunity cost is E6OC7=
E6maxjUj −UI4T 5 �äT 7=7302±34, for an expected net
reward of Vmax4 Eä05−E6cT +OC7=107403×104 ±34, as
estimated by Monte Carlo with 105 samples. This uses
fewer samples and incurs less opportunity cost, in
expectation, than the optimal one-stage equal alloca-
tion, which observes 206 samples and has an expected
opportunity cost of 20907 and an expected net reward
of Vmin4 Eä05=171180.

6.4.2. Several Alternatives. Table 3 summarizes
the performance of the allocations and stopping rules
when the variance is unknown and when there are
k>1 alternatives. The bounds for the value function
(Vmax and Vmin) are estimated with Monte Carlo meth-
ods (3×106 samples for a relative standard error of
the means of 0006%). The performance of ESPb1ESPb

is assessed with 501000/k samples. The performance
of the other procedures is estimated with at least
151000/k samples. The standard error for the penalty
for not knowing the mean (E6cT +OC7) of ESPb1ESPb

for k=100 is 281, and the relative error decreases
with k.

Most of the conclusions made in the known vari-
ance case remain true in the unknown variance case.
The ESPb stopping rule is better than all of the other
stopping rules for any given allocation rule. The gap
between the reward possible with perfect information
and the best one-stage equal allocation, Vmax −Vmin,
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also increases with k. If that gap is sufficiently small in
the eyes of the analyst, as it might be for small k, and
predictability is required in the number of samples
collected, then the optimal one-stage equal allocation
can be used. Otherwise, the ESPb stopping rule is rec-
ommended. The size of the penalty for not knowing
the means, E6cT +OC7, is better for that stopping rule,
relative to other stopping rules, for larger k.

One substantive difference between the numerical
results for the two cases of known and unknown sam-
pling variances is the performance of the two best
allocation rules with the ESPb stopping rule. For the
example with the known sampling variance in §5.2,
the KG∗ allocation is best, with the ESPb allocation
second best (with other sampling policies being less
effective). Here, the KG∗ and ESPb allocations are
equally good (within statistical error), with a relative
improvement in ESPb for larger k. The reason appears
to be that ß̃∗, as computed using plug-in estimators
in (19), is relatively further from the true optimal ß∗.

We also assess the ESPB allocation, which has
longer run times than the other procedures because
of numerical extrapolation of the value of B̃4w1s5
for various w1s. Conceptually, the ESPB allocation
should be at least as good as the ESPb allocation.
In Table 3, the ESPB1ESPb procedure is tied for best
with the KG∗1ESPb and ESPb1ESPb procedures, within
the sampling noise of the experiments (less than 1.5
standard errors). The performance of ESPB might
be improved by refining the FD grid from which a
numerical extrapolation of B̃4w1s5 is made or with
future research on theoretical approximations to its
value. We do not recommend ESPB until a more com-
putationally efficient implementation becomes avail-
able. Instead, we recommend the ESPb1ESPb proce-
dure because it is easy to implement using (16) and
approximately as effective in these experiments. The
KG∗1ESPb procedure is also very effective.

7. Conclusion
The vast preponderance of selection procedures have
been concerned with statistical thresholds for sam-
pling and stopping and have ignored the cost
of sampling. In many applications, however, the cost
of sampling is important. This paper uses the cost of
sampling and the expected economic benefit of the
alternative that is ultimately selected to sequentially
determine which alternatives to sample and when
to stop to implement an alternative. This is accom-
plished by examining a broad class of nonanticipa-
tive sampling policies, not just one-stage policies as is
common in the literature.

When comparing k=1 alternative with normally
distributed samples and a known sampling variance
to a known mean, the ESPb stopping rule is optimal,

up to an asymptotic approximation. For k>1 alter-
natives, the optimal policy is shown to exist but is
unknown. We provide somewhat suboptimal policies
for k>1, with or without known variances, that are
motivated by the k=1 optimality analysis and are
more effective in our numerical examples than any
other procedure of which we are aware. With their
readily computed approximations, the ESPb1ESPb and
KG∗1ESPb procedures are also simple to implement.
Because of their excellent performance and ease of
implementation, we wholeheartedly recommend their
use in practice.

From a practical perspective, there is only one main
parameter to assess: the cost per sample as measured
in the same units as the output of the simulation. Such
sampling costs are a more direct economic means to
control sequential sampling and selection than are
techniques that ignore sampling costs.
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Appendix. Mathematical Proofs
This appendix contains proofs of the mathematical results
that were omitted in the main text. The proofs of some
results are written to handle a more general case than that
of normal distributions with unknown means. In particular,
we use the notation for more general distributions that was
introduced at the start of §6.

Before presenting the proofs, we note some formalism
about the definition of a policy in §1. A policy � is a
sequence of universally measurable kernels, where the ker-
nel at time t gives the distribution of the random variables
i4t5 (and therefore of T ) as a function of the history up to
time t, as summarized by Eät . The values of äi are presumed
to be in some space ìäi

. We define ç to be the set of all such
policies. We allow universally measurable kernels (which
include those that are Borel measurable) because uncount-
ably large ìäi

create the possibility that the value function
will be universally measurable but not Borel measurable
(Bertsekas and Shreve 1978, Chap. 7).

Proof of Proposition 1. Let F= 4Ft5t≥0 be the filtration
generated by 4 Eät5t≥0. By construction, T is a stopping time
of this filtration. Beginning with the definition of the sam-
pling selection problem in (3) and conditioning on FT and
U11U210001Uk, the tower property of conditional expectation
provides

V �4 Eä05=E�

[T−1
∑

t=0

−ci4t5 + UI4T 5

∣

∣

∣

Eä0

]

0

We then add and subtract E6maxiUi7, which is finite by the
integrability of each Ui and does not depend on �. Thus

V �4 Eä05 = E
[

max
i

Ui+� Eä0

]

+E�

[T−1
∑

t=0

−ci4t5+UI4T 5−max
i

Ui

∣

∣

∣

Eä0

]

0

Observing that UI4T 5−maxjUi =LI4T 5 completes the proof.
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Lemmas and Definitions for Proof of Proposition 3
Here and throughout the proof of Proposition 3, Eä repre-
sents a generic prior or posterior distribution, to which we
may assign any Eä0 or Eät . Before proving Proposition 3,
we state a few definitions and lemmas. Let çi =

8�∈ç2 ��8i405= i1T >09=19 be the set of measurement
policies that sample alternative i at time 0. Then, the so-
called Q-factor for first sampling alternative i and behaving
optimally afterward may be written as follows:

Q4 Eä1i5= sup
�∈çi

E�

[

−

T−1
∑

t=0

ci4t5+UI4T 5

∣

∣

∣

Eä0 = Eä

]

0

For any given i∈811210001k9, let ç′
i be the set of policies

that measure alternative i at time 0 and whose decisions i4t5
at each subsequent time t=1121000 depend on both Ui and
Eät . Thus, ç′

i is similar to the set of policies çi except that
policies in ç′

i may depend on the additional piece of infor-
mation Ui. Then define

A4 Eä1i5= sup
�∈ç′

i

E�

[

−

T−1
∑

t=0

ci4t5+UI4T 5

∣

∣

∣

Eä0 = Eä

]

0

This definition is identical to that of Q4 Eä1i5 except the
supremum is taken over policies in ç′

i, rather than çi. We
may interpret A4 Eä1i5 as the best value possible in a problem
in which one is forced to first measure alternative i once,
revealing the true value Ui of this alternative, and subse-
quent measurements are made with noise as in the origi-
nal problem to discover the values of the other alternatives.
Notice that i is fixed in A4 Eä1i5, and thus the true value of
only this single alternative is revealed.

Now define J �4 Eä1i5 to be the value of policy � in a prob-
lem where alternative i has a fixed value �i10 so that

J �4 Eä1i5=E�

[

−

T−1
∑

t=0

ci4t5+max
(

�i101max
j 6=i

�j1T

)

∣

∣

∣

Eä0 = Eä

]

0

Lemma 1. sup�∈ç J
�4 Eä1i5 − ci + E64Ui−�i105

+ � Eä0 = Eä7≥

A4 Eä1i5 for any given i∈811210001k9.

Proof of Lemma 1. Observe that the objective function

−

T−1
∑

t=0

ci4t5+max
(

�i101max
j 6=i

�j1T

)

1 (24)

of which J �4 Eä1i5 is an expectation, is independent of
Ui given �i10 because beliefs are independent across
alternatives.

Because the objective function (24) does not depend
on Ui, the supremum of its expected value over all poli-
cies depending on Ui, sup�∈ç′

i
J �4 Eä5, is unchanged if we

restrict to the policies in çi (the policies in ç′
i with-

out explicit dependence on Ui); that is, sup�∈ç′
i
J �4 Eä1i5=

sup�∈çi
J �4 Eä1i5.

Furthermore, this lack of dependence on Ui implies that
sup�∈çi

J �4 Eä1i5=sup�∈ç J
�4 Eä1i5−ci because the initial mea-

surement of alternative i required by membership in çi car-
ries only the cost ci, and the observation of alternative i

can be ignored. Combining this with sup�∈ç′
i
J �4 Eä1i5=

sup�∈çi
J �4 Eä1i5 provides

sup
�∈ç′

i

J �4 Eä1i5=sup
�∈ç

J �4 Eä1i5−ci0 (25)

Now, for any fixed policy �∈ç′
i, we have

J �4 Eä1i5+E
[

4Ui−�i105
+

� Eä0 = Eä
]

=E�

[

−

T−1
∑

t=0

ci4t5+max
(

�i101max
j 6=i

�j1T

)

+4Ui−�i105
+

∣

∣

∣

Eä0 = Eä

]

≥E�

[

−

T−1
∑

t=0

ci4t5+max
(

�i10 +4Ui−�i105
+1max

j 6=i
�j1T

)

∣

∣

∣

Eä0 = Eä

]

≥E�

[

−

T−1
∑

t=0

ci4t5+max
(

Ui1max
j 6=i

�j1T

)

∣

∣

∣

Eä0 = Eä

]

0

Take the supremum of both sides of the inequality over all
policies �∈ç′

i. The left-hand side becomes sup�∈ç′
i
J �4 Eä1i5

+E64Ui−�i105
+ � Eä0 = Eä7, whereas the right-hand side be-

comes A4 Eä1i5. Replacing sup�∈ç′
i
J �4 Eä1i5 using (25) shows

the claimed inequality. Q.E.D.

Lemma 2. sup�∈ç J
�4 Eä1i5≤V ∗4 Eä5.

Proof of Lemma 2. Fix i, and let ç′′ =8�∈ç2
i4t5 6= i ∀t P� -a.s.9 be the set of policies that never mea-
sure alternative i. Under the objective function −

∑T−1
t=0 ci4t5+

max4�i101maxj 6=i�j1T 5, of which J �4 Eä1i5 is an expectation,
measurements of alternative i incur a cost ci but have
no benefit because max4�i101maxj 6=i�j1T 5 is unimproved by
them. Thus, any policy �∈ç has a corresponding policy
� ′′ ∈ç′′ (obtained by skipping decisions by � to measure
alternative i, but otherwise behaving identically) for which
J �

′′

4 Eä1i5≥ J �4 Eä1i5. Thus,

sup
�∈ç

J �4 Eä1i5= sup
�∈ç′′

J �4 Eä1i50

For any policy �∈ç′′, the posterior distribution on the
value of alternative i is the same as the prior distribution,
so �i1T =�i10. Thus,

J �4 Eä1i5 = E�

[

−

T−1
∑

t=0

ci4t5+max
(

�i1T 1max
j 6=i

�j1T

)

∣

∣

∣

Eä0 = Eä

]

= V �4 Eä50

The supremum over a larger set results in a value at least
as large as the supremum over a smaller set and ç′′ ⊂ç, so

sup
�∈ç

J �4 Eä1i5= sup
�∈ç′′

J �4 Eä1i5 = sup
�∈ç′′

V �4 Eä5

≤ sup
�∈ç

V �4 Eä5=V ∗4 Eä50 Q.E.D

Proof of Proposition 3. Let �∗ be any optimal pol-
icy. We will show that T ≤k+

∑k
i=16�

2
i /42�c2

i 5−ni107 almost
surely under �� . Observe that for any fixed i=11210001k,

Q4 Eä1i5 ≤ A4 Eä1i5≤sup
�∈ç

J �4 Eä1i5+E64Ui−�i105
+

� Eä0 = Eä7−ci

≤ V ∗4 Eä5+E64Ui−�i105
+

� Eä0 = Eä7−ci0
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The first inequality follows by noting that Q4 Eä1i5 and
A4 Eä1i5 are both supremums of the same quantity but over
different sets, with çi ⊂ç′

i. The second and third inequali-
ties follow from Lemmas 1 and 2, respectively.

Consider any Eä for which E64Ui−�i105
+ � Eä0 = Eä7<ci.

The inequality (26) above implies Q4 Eä1i5<V ∗4 Eä5. Because
Bellman’s optimality equation tells us that V ∗4 Eä5 is the
maximum of Q4 Eä1j5 over all j=01110001k, we must have
Q4 Eä1j5>Q4 Eä1i5 for some j 6= i. This implies that the policy
�∗ chooses not to measure alternative i when the current
posterior distribution is Eä. Instead, it either stops measur-
ing, or it measures some alternative other than i.

Consider further the inequality E64Ui−�i1t5
+ � Eät7<ci. By

applying the preceding argument to Eät instead of Eä, we see
that �∗ will not measure alternative i when this inequality
is satisfied. We have,

E64Ui−�i1t5
+

� Eät7=�i1tE
[(

Ui−�i1t

�i1t

)+
∣

∣

∣

∣

Eät

]

=�i1t/
√

2�1

because 4Ui−�i1t5/�i1t is a standard normal random vari-
able under Pt , and the expectation of the positive part
of a standard normal random variable is 1/

√
2�. Thus,

the inequality E64Ui−�i1t5
+ � Eät7<ci holds iff �i1t/

√
2�<ci,

which holds iff ni1t>4�2
i /2�c2

i 5, where we have noted the
definition �2

i1t =�2
i /ni1t and rearranged terms. This implies

that we never measure alternative i when ni1t>4�2
i /2�c2

i 5.
Because ni1t increases by 1, and only when alternative i is
measured, we have that ni1t ≤1+4�2

i /2�c2
i 5 for all t.

The total number of measurements at a particular time
is the sum of the number of times each individual alterna-
tive has been measured; that is, t=

∑k
i=1ni1t −ni10 for t≤T .

Applying this uniform bound on ni1t to the time t=T pro-
vides T =

∑k
i=1ni1T ≤

∑k
i=141+4�2

i /2�c2
i 5−ni105, the claimed

deterministic upper bound on T . Q.E.D.

Derivation of Free Boundary Problem in (12) to (14)
Recall that the choice �2�2�=1 causes 4Ws1s5 to be a Brow-
nian motion without drift and with unit volatility in the −s
scale, going from 4ws0

1s05 back to time s=0.
We now turn to the supremum supS∈601s07

�−1E6−441/S5−
41/s055+max801WS9 �Ws0

=ws0
−m̃7 in (11). The supremum

exists because the expectation over which the supremum is
taken is finite for at least one stopping time, S=s0 almost
surely, and is uniformly bounded above by E6max801W09 �
Ws0

=ws0
−m̃7. This uniform bound is derived by drop-

ping the sampling cost −441/S5−41/s055 and noting that
max801Ws9 is a submartingale in the −s time scale, implying
that supS∈601s07

E6max801WS9 �Ws0
=ws0

−m̃7 is attained when
S=0 almost surely.

We now set w=ws0
−m̃ and s=s0 and check whether

4w1s5 is in the continuation set or not. If 4w1s5 is in the
continuation set, then by definition S<s almost surely (one
stops at a time less than s, going in reverse time). Because
4w1s5 is in the continuation set, we can examine B̃4w1s5 by
examining the evolution of the process from time s to time
s−h for some small h>0. While sampling for a time h, a
cost of 1/4s−h5−1/s=h/4s4s−h55 is incurred, and the pro-
cess goes to 4w+ãw1s−h5 if it is not stopped, for some ãw

whose distribution is Normal401h5 by properties of a reverse
time Brownian motion. Therefore,

B̃4w1s5 = −
h

s4s−h5
+E6B̃4w+ãw1s−h5 �ws =w1s7+o4h5

= −
h

s4s−h5
+E

[

B̃4w1s5−hB̃s4w1s5+ãwB̃w4w1s5

+
4ãw52

2
B̃ww4w1s5+o4h5+o44ãw525

]

= −
h

s4s−h5
+B̃4w1s5−hB̃s4w1s5+

h

2
B̃ww4w1s5+o4h51

where the o4h5 in the first equality is due to the potential of
stopping before h time elapses, the second equality comes
from the usual Taylor series expansion for functions of a
Brownian motion, and the third equality follows by exam-
ining the first two moments of the random variable ãw.
We subtract B̃4w1s5 from both sides, divide through by h,
and let h→0 to get the claimed heat equation in (12), 0=

−41/s25−B̃s4w1s5+41/25B̃ww4w1s5.
To get the boundary conditions, note first that the reward

in the expectation of (12) simplifies to max801w9 for points
4w1s5 outside of the continuation set, because the term
441/S5−41/s55 equals zero when stopping immediately. On
the boundary one is indifferent between stopping and con-
tinuing. Thus, if D4w1s5=max401w5, then B̃4w1s5=D4w1s5
on the boundary. Chernoff (1961, §§4 and 6) provides a
heuristic argument for the “smooth pasting” condition,
B̃w4w1s5=Dw4w1s5, when the boundary is regular (when
there are not multiple values of w on the boundary for a
given s). Bather (1970) formalized Chernoff’s (1961) argu-
ment for a broad class of optimal stopping problems.
Q.E.D.

Proof of Proposition 5. We show the result by first
showing that the expected reward for stopping in a given
continuation set is closely related to the expected reward for
stopping in the mirror image of that continuation set. For a
given stopping rule S that stops sampling only outside of
a given continuation set, consider the stopping rule S ′ that
stops at 4−w1s5 if and only if S stops at 4w1s5. Then for
ws0

≥0 we have

B̃4ws0
1s05

= sup
S∈601s07

ES

[

−

(

1
S

−
1
s0

)

+max801WS9
∣

∣

∣

Ws0
=ws0

]

= sup
S∈601s07

ES6WS �Ws0
=ws0

7

+ES

[

−

(

1
S

−
1
s0

)

−min801WS9
∣

∣

∣

Ws0
=ws0

]

=ws0
+ sup

S∈601s07
ES

[

−

(

1
S

−
1
s0

)

−min801WS9
∣

∣

∣

Ws0
=ws0

]

=ws0
+ sup

S∈601s07
ES′

[

−

(

1
S ′

−
1
s0

)

+max801WS′ 9
∣

∣

∣

Ws0
=−ws0

]

=ws0
+B̃4−ws0

1s051

where the first equality is by definition and the second
equality follows by the linearity of expectations and the
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observation that x=max801x9+min801x9 for all x. The third
equality follows because ES6WS �Ws0

=ws0
7=ws0

does not
depend on S, because the process is a martingale on the
compact set 601s07. The fourth equality follows because
−min801x9=max801−x9 and WS =−WS′ by construction and
the fact that the statistics of WS −ws0

are the same as for
−4WS −ws0

5 by properties of the normal distribution. The
last equality follows because a supremum over S∈ 601s07 is
the same as the supremum over S ′ ∈ 601s07.

Thus, the claimed property is true for ws0
≥0. The case of

ws0
<0 follows similarly. Q.E.D.

Proof of Proposition 6. By the arguments in Proposi-
tion 5, the optimal stopping boundary is symmetric about
w=0, so that 4w1s5∈C if and only if 4−w1s5∈C for s≥
0 (because the choice of s0>0 is arbitrary). Therefore, we
can prove the claim by showing that, for any w1a≥0,
4w1s+a5∈C implies that 4w1s5∈C.

Fix some ws0
1a≥0 and suppose 4ws0

+a1s05∈C. This
implies the existence of a stopping rule S of W in the −s
scale such that S<s0 almost surely and E6−441/S5−41/s055−
min801WS9 �Ws0

=ws0
+a7≥ws0

+a. We write

0 ≤ E
[

−

(

1
S

−
1
s0

)

+max801WS9
∣

∣

∣

Ws0
=ws0

+a

]

−4ws0
+a5

= ES

[

−

(

1
S

−
1
s0

)

−min801WS +a9
∣

∣

∣

Ws0
=ws0

]

−4ws0
+a5

≤ ES

[

−

(

1
S

−
1
s0

)

−min801WS9
∣

∣

∣

Ws0
=ws0

]

−ws0
0

The second line is due to the fact that the stochastic pro-
cess 8Ws 2 s∈ 601s079 with Ws0

=ws0
+a is equal in distribution

to 8Ws +a2 s∈ 601s079 with Ws0
=ws0

. The third line is due to
min801WS +a9−a≤min801WS9. Because S<s0 almost surely,
the final line implies that 4ws0

1s05∈C. Thus, 4�w�+a1s5∈C
implies that 4�w�1s5∈C for all a≥0. Thus we can define
b4s5= inf8w 2w>0 and 4w1s5 6∈C9 as required. By construc-
tion, b4s5≥0. Q.E.D.

Proof of Proposition 8. The proof follows directly
from the original problem definition in (3), the defini-
tion of Zi in (17), and by noting that, upon stopping,
ZI4T 5 =E6XI4T 51T+1 � Eät7 is the posterior mean of the alterna-
tive that has the highest posterior mean after sampling stops
at time T = t+t′. Q.E.D.
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