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Abstract. We extend the concept of the correlated knowledge-gradient policy for ranking and
selection of a finite set of alternatives to the case of continuous decision variables. We propose an
approximate knowledge gradient for problems with continuous decision variables in the context of a
Gaussian process regression model in a Bayesian setting, along with an algorithm to maximize the
approximate knowledge gradient. In the problem class considered, we use the knowledge gradient for
continuous parameters to sequentially choose where to sample an expensive noisy function in order
to find the maximum quickly. We show that the knowledge gradient for continuous decisions is a
generalization of the efficient global optimization algorithm proposed by Jones, Schonlau, and Welch.

Key words. Model Calibration, Bayesian Global Optimization, Gaussian Process Regression,
Knowledge Gradient, Expected Improvement

AMS subject classifications. 62L05 62L10 62L20

1. Introduction. Our goal is to find the global maximum of a real valued con-
tinuous function that is expensive to compute and that can only be evaluated with
uncertainty. We need an algorithm that can give satisfactory results with as few
function evaluations as possible. For this reason, we are willing to spend extra time
deciding where we would like to evaluate the function next. This problem arises in
applications such as simulation optimization, the design of machinery, medical diag-
nostics, biosurveillance, and the design of business processes.

We extend the concept of the knowledge-gradient policy for correlated beliefs
(KGCB) described in [9] and [10], originally developed to find the best of a finite set
of alternatives, to problems where we are trying to maximize over a multidimensional
set of continuous variables. The KGCB policy maximizes the marginal value of a
single measurement and has produced very promising results in discrete ranking and
selection problems without requiring the use of any tunable parameters. In [10] the
KGCB policy is used in a simulation optimization application to tune a set of continu-
ous parameters which must be discretized to perform the search. However, the KGCB
policy becomes computationally too expensive when it is necessary to discretize over
a large multidimensional vector. We extend the knowledge gradient to multidimen-
sional continuous problems, and then show that the knowledge gradient concept is at
least competitive with, or outperforms, specialized algorithms for specific problems.

Although the concept for the knowledge gradient is very general, we choose to
model the function to be optimized using Gaussian process regression with a squared
exponential covariance function and model the noise in the observations as additive
Gaussian noise. The knowledge gradient for continuous parameters (KGCP) policy
that we propose extends the well known efficient global optimization algorithm in
[16] to the case of noisy observations. When choosing a sampling decision, the KGCP
accounts for the fact that an additional observation will update the regression function
at unsampled decisions as well as at the sampling decision; the updated best decision
will not necessarily be the current best decision or sampling decision.

This paper makes the following contributions: (1) We propose an approximation
to the knowledge gradient for multidimensional continuous decision variables which
can be efficiently computed; (2) We describe a gradient ascent algorithm that can be
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used to maximize the knowledge gradient for continuous parameters without resorting
to discretization; (3) We prove that, under mild conditions, the knowledge gradient
for continuous parameters policy applied to maximizing a continuous function with
observation noise will cause the uncertainty in the regression model to disappear in the
limit; (4) We examine the competitive performance with sequential kriging, a widely
used algorithm which lacks our theoretical guarantees, on a series of test functions.

This paper is organized as follows. Section 2 reviews the literature for continuous
global optimization problems. Section 3 describes the Bayesian model capturing our
prior belief in the function being optimized. We review the knowledge gradient for
discrete alternatives, which guides measurements by computing the marginal value of
information. Section 4 describes how the knowledge gradient can be computed for
continuous measurements. The knowledge gradient for continuous parameters is then
compared to the expected improvement in [16]. Our approach requires approximating
the knowledge gradient as a continuous function, and we derive a gradient ascent
algorithm for this purpose. In Section 5 we give mild conditions under which the
posterior variance at each decision in the regression model will go to zero almost surely
when using the knowledge gradient for continuous parameters policy for finding the
global maximum of a function with observation noise. Finally, Section 6 compares
the knowledge gradient for continuous parameters to sequential kriging optimization
[15], which is a popular algorithm for determining sequential measurements in the
presence of noise, on a set of test functions.

2. Literature Review. We briefly present and summarize some of the cur-
rent approaches to maximizing an expensive function with observation noise. The
applications are vast, and multiple research disciplines have addressed the problem.
Simulation optimization covers gradient-based methods (see [32], [17], [39], [12], and
[33]), direct search methods (see [39]), and metaheurstics (see [11]). The term model-
based optimization can be used to categorize the fields of trust regions (see [29], [4],
[3], and [6]), response surface methodology (see [2], [14], [26], [27], [28], and [31]), and
the surrogate management framework (see [1]). Finally, Bayesian global optimization
consists of algorithms which combine Bayesian models of the function with single-step
look ahead criteria.

Bayesian global optimization takes a statistical approach to optimizing functions
efficiently (see [35]). One of the first approaches in the field is [20] that approxi-
mates a one-dimensional function with a Wiener process and uses a probability of
improvement criterion to choose the next point to sample. [40] uses the probability of
improvement concept for higher dimensions in the P-algorithm. [45] as well as [25] and
[21] also use a one-dimensional Wiener process but then use expected improvement
criteria to choose the next point to sample; they discuss convergence in the case of no
observation noise. For the case of no observation noise, [34] introduces the popular
DACE (design and analysis of computer experiments) kriging model to approximate
the expensive function; a kriging model is a method of interpolation based on random
spatial processes (see [23], [5], [18], and [19]) and is referred to as Gaussian process
regression in computer science (see [30]). [16] presents the efficient global optimization
(EGO) algorithm for optimizing expensive functions without noise which combines a
kriging model with an expected improvement criterion (also see [36] and [37]). Work
has been done in [41] to prove convergence for an expected improvement algorithm in
the case of no observation noise if the true function comes from a reproducing kernel
Hilbert space generated by the covariance function. Another example of Bayesian
global optimization is [13] which combines radial basis interpolation and a utility
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function based on the uncertainty of the response surface weighted by how close the
response surface’s value at that point is to a specified target value.

Recent extensions of Bayesian global optimization explicitly account for observa-
tion noise, although limited convergence theory has been developed for the following
algorithms. In [15], sequential kriging optimization (SKO) combines a kriging model
with an expected improvement criterion which accounts for noisy functions observa-
tions; the expected improvement criterion is weighted by a term that favors decisions
with higher uncertainty. One challenge of SKO, like many other Bayesian global op-
timization algorithms, is maximizing the expected improvement criterion to find the
next sampling decision; the Nelder-Mead simplex method is suggested. [43] and [42]
present an informational approach to global optimization (IAGO) which combines
a kriging model, Monte Carlo, and other approximation techniques to estimate the
distribution of the global minimizer of the function after an additional observation.
The sampling decision is made by minimizing the entropy (which can be interpreted
as uncertainty) of the global minimizer. The approaches in [7] and [8] address the
issue of different levels of noise using an expected improvement criterion with kriging
models found in [5] which allow for noisy observations.

3. The Model. We consider the following optimization problem

argmaxx∈Xµ(x) (3.1)

where x ∈ Rp is a decision vector, X is a compact feasible set of decisions, and
µ : Rp → R1 is a continuous function we wish to maximize. Let ŷn+1 be the sam-
ple observation of the sampling decision xn for n = 0, .., N − 1. The variance of an
observation, given µ, at a decision x is λ(x), and we assume λ : Rp → R1 is continu-
ously differentiable over the domain X and is known. In practice, the variance of the
observation noise is unknown but can be estimated. We assume ŷn+1 has a normal
distribution centered around the true function,

ŷn+1|µ, xn ∼ N (µ(xn),λ(xn)),

and ŷ1, ..., ŷN+1 are independent given µ and x0, ..., xN . Our goal is to sequentially
choose xn at each iteration n = 0, ..., N − 1 in order to approach the solution to (3.1)
as quickly as possible.

Adopting a Bayesian framework, we start with some belief or information about
the truth, µ. We treat µ as a random variable and assign it a Gaussian process
(GP) prior density. µn is our updated mean of our random variable, given n obser-
vations. Then, for any x0, .., xn ∈ X , our a priori distribution is [µ(x0), ..., µ(xn)]T ∼
N (µ0([x0, ..., xn]),Σ0([x0, ..., xn]) where µ0([x0, ..., xn]) = E([µ(x0), ..., µ(xn)]T ) and
Σ0([x0, ..., xn]) = Cov([µ(x0), ..., µ(xn)]T ). Next we define a filtration Fn where Fn

is the sigma-algebra generated by x0, ŷ1, ..., xn−1, ŷn. We define µn([x0, ..., xn]) =
E([µ(x0), ..., µ(xn)]T |Fn) and Σn([x0, .., xn]) = Cov([µ(x0), .., µ(xn)]T |Fn) for
x0, ..., xn ∈ X . In addition we use the notation Σn(x0, x1) = Cov(µ(x0), µ(x1)|Fn).

The multivariate normal distribution is a natural conjugate family when the ob-
servations come from a normal distribution with known variance. This means our
posterior is also multivariate normal. Hence, conditioned on Fn, [µ(x0), ..., µ(xn)]T ∼
N (µn([x0, ..., xn]),Σn([x0, ..., xn])). Next we explain a method to assign the initial
covariance between µ(x0) and µ(x1).

3.1. Covariance Structure. In order to specify the covariance matrix for our
a priori distribution of µ at x0, ..., xn ∈ X , it is sufficient to specify a covariance
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function. Similar to [34] and [10], we assume a Gaussian covariance function. Letting
x0 and x1 be arbitrary decisions in X , we write,

Cov(µ(x0), µ(x1)) = β exp(−
p∑

i=1

αi(x
0
i − x1

i )
2),α > 0,β > 0, (3.2)

where α ∈ Rp is called the activity of µ and β ∈ R1 controls the uncertainty of our
belief about µ. The initial covariance function given in (3.2) is a metric, meaning the
covariance of two decisions decreases as the distance between them increases. The
parameter αi for i = 1, ..., p is called the activity in dimension i and represents how
smooth µ is in dimension i (see [16]). For example, a very small αi would make the
covariances bigger, indicating that µ is believed to be very smooth in dimension i.
The key idea is that the true function should be positively correlated at nearby points.
For example, if µ(x) is greater than µ0(x), then, for small δ ∈ Rp, we should expect
µ(x + δ) to be greater than µ0(x + δ) as well, assuming µ is smooth. [30] explains
that Gaussian processes with this covariance function are very smooth because they
have mean square derivatives of all orders.

3.2. Updating Equations. After the first n sampling decisions, the distribu-
tion of [µ(x0), ..., µ(xn−1)]T conditioned on Fn is multivariate normal and hence
completely characterized by µn([x0, ..., xn−1]) and Σn([x0, .., xn−1]), which can be
calculated as follows in (3.6) and (3.7). For a fixed n, define the matrix Σ0 =
Σ0([x0, ..., xn−1]) which can be calculated using (3.2). Given the assumptions in our
model, we can use the Kalman filter equations in [24] or equivalently the Gaussian
process regression equations given in [30] to compute the posterior distribution of µ
given Fn. We calculate the measurement residual ỹn and the residual covariance Sn

as

ỹn =




ŷ1

...
ŷn



−




µ0(x0)

...
µ0(xn−1)



 , (3.3)

Sn = Σ0 +Diagonal([λ(x0), ...,λ(xn−1)]). (3.4)

We can then calculate the optimal Kalman gain using

Kn = Σ0[Sn]−1. (3.5)

Note that if the minimum value of the observation noises, λmin, is strictly positive,
[Sn]−1 is well defined because the minimum eigenvalue of Sn is greater than λmin.
Let In be an n× n identity matrix. Finally, the updated expected values of µ at the
first n sampled points, and the covariance matrix between µ at the first n sampled
points, conditioned on Fn, are given respectively by




µn(x0)

...
µn(xn−1)



 =




µ0(x0)

...
µ0(xn−1)



+Knỹn, (3.6)

Σn = (In −Kn)Σ0. (3.7)

The above equations update the distribution of µ at the first n sampling decisions
conditioned on Fn, but we also need to update the distribution of µ(x) conditioned
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on Fn, where x ∈ X is an arbitrary decision variable that has not been sampled yet.
We can do this with the following equations. Define Σ̄0 = Σ0([x0, ..., xn−1, x]) and
Σ̄n = Σn([x0, ..., xn−1, x]), and let %0 be a column vector of zeros. Our new optimal
Kalman gain is given by

K̄n = Σ̄0




In
−
%0T



 [Sn]−1. (3.8)

We can now update µ0 and Σ̄0 with the following equations,





µn(x0)
...

µn(xn−1)
µn(x)




=





µ0(x0)
...

µ0(xn−1)
µ0(x)




+ K̄nỹn, (3.9)

Σ̄n = (In+1 − K̄n
[
In | %0

]
)Σ̄0. (3.10)

If we explicitly want the distribution of µ(x) conditioned on Fn at some arbitrary
decision x we can pull out the pertinent formulae from (3.9) and (3.10);

µn(x) = µ0(x) +
[
Σ0(x0, x) , · · · , Σ0(xn−1, x)

]
[Sn]−1ỹn, (3.11)

Σn(x, x) = Σ0(x, x)−
[
Σ0(x0, x) , · · · , Σ0(xn−1, x)

]
[Sn]−1





Σ0(x0, x)
...

Σ0(xn−1, x)



 . (3.12)

Equation (3.11) is a linear smoother if µ0(x) = 0 ∀x and is referred to as Gaussian
process regression (GPR) in [30] and regressing kriging in [8]. There are also recursive
equations equivalent to (3.9) and (3.10) which update µn and Σn (see [10]). [10] shows
that after we have selected our sampling decision, xn, but before we observe ŷn+1, our
updated regression function is normally distributed conditioned on the information
available at iteration n:





µn+1(x0)
...

µn+1(xn−1)
µn+1(xn)




=





µn(x0)
...

µn(xn−1)
µn(xn)




+ σ̃(Σ̄n, xn)Zn+1, (3.13)

where Zn+1 =
(
ŷn+1 − µn(xn)

)
/
√
λ(xn) + Σn(xn, xn), with

σ̃(Σ, x) ! Σex√
λ(x) + eTxΣex

; (3.14)

here ex is a column vector of zeros with a 1 at the row corresponding to decision x.
It can be shown that Zn+1 ∼ N (0, 1) because Var(ŷn+1 − µn(xn)|Fn) = λ(xn) +
Σn(xn, xn).

3.3. The Knowledge-Gradient Policy. The knowledge-gradient policy as de-
scribed in [10] for discrete X is the policy which chooses the next sampling decision
by maximizing the expected incremental value of a measurement. The knowledge
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gradient at x, which gives the expected incremental value of the information gained
from a measurement at x, is defined as the following scalar field:

νKG,n(x) ! E
[
max
u∈X

µn+1(u)

∣∣∣∣F
n, xn = x

]
−max

u∈X
µn(u). (3.15)

The knowledge-gradient policy chooses the sampling decision at time n by maximizing
the knowledge gradient,

xn ∈ argmaxx∈X νKG,n(x). (3.16)

By construction, the knowledge gradient policy is optimal for maximizing the
maximum of the predictor of the GP if only one decision is remaining. [10] shows
that in the case of a finite set of decisions, the knowledge gradient policy samples
every decision infinitely often as the number of sampling decisions goes to infinity;
in other words, the knowledge gradient policy finds the best decision in the limit. In
addition, [10] shows that the knowledge gradient policy is consistently competitive
with or outperforms sequential kriging optimization (SKO) on several test functions.

The knowledge gradient can be explicitly computed when the feasible set of deci-
sions, X , is finite (see [10]). In the case where X is continuous, if p is small and X is
bounded, then X can be discretized, allowing for the use of the technique in [10] for
discrete decisions. However, the complexity of the calculation of this approximation
of the knowledge gradient grows exponentially with the number of feasible decisions,
|x|, because we must use a dense |x|×| x| covariance matrix in our calculation.

4. The Knowledge Gradient for Continuous Parameters. In this section
we propose an approximation of the knowledge gradient that can be calculated and
optimized when our feasible set of decisions is continuous. The approximation we pro-
pose can be calculated at a particular decision, x, along with its gradient at x, allowing
us to use classical gradient-based search algorithms for maximizing the approxima-
tion. This strategy avoids the need to discretize the measurement space X into a
large number of points to be evaluated. Furthermore, it scales to multidimensional
parameter spaces which would be impossible to discretize.

We form the knowledge gradient for continuous parameters (KGCP) by replacing
the maximum over X ⊂ Rp with the maximum over x0, ..., xn, the first n sampling
decisions and the current sampling decision,

ν̄KG,n(x) ! E
[
max

i=0,..,n
µn+1(xi)

∣∣∣∣F
n, xn = x

]
− max

i=0,..,n
µn(xi)|xn=x. (4.1)

We define the knowledge gradient for continuous parameters policy, πKGCP , as the
policy which selects the next sampling decision by maximizing the knowledge gradient
for continuous parameters,

xn ∈ argmaxx∈X ν̄KG,n(x). (4.2)

This approximation should improve as n increases and the maximization is taken
over more terms. The first remark is that the knowledge gradient for continuous
parameters is nonnegative. The proof follows from Jensen’s inequality,

E
[

max
i=0,..,n

µn+1(xi)

∣∣∣∣F
n, xn = x

]
= E

[
max

i=0,..,n
µn(xi) + σ̃i(Σ̄

n, xn)Zn+1

∣∣∣∣F
n, xn = x

]
(4.3)

≥ max
i=0,..,n

µn(xi)|xn=x + σ̃i(Σ̄
n, xn)E

[
Zn+1

∣∣Fn, xn = x
]
(4.4)

= max
i=0,..,n

µn(xi)|xn=x.
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In (4.3) we substituted in the recursive update for µn+1(xi) given in (3.13). σ̃i(Σ, x)
is the ith element of σ̃(Σ, x) which is defined in (3.14). In (4.4) we use Jensen’s
inequality with the convex function φ(z) = maxi=0,..,n µn(xi) + σ̃i(Σ̄n, xn)z where
µn(xi) and σ̃i(Σ̄n, xn) are constants since they are measurable with respect to Fn.

Also, comparing the terms that depend on x in the knowledge gradient and the
knowledge gradient for continuous parameters, we easily see that

E
[
max

i=0,..,n
µn+1(xi)|Fn, xn = x

]
≤ E

[
max
u∈X

µn+1(u)|Fn, xn = x

]
. (4.5)

This fact follows trivially because the maximization in the left term is over a subset
of the set maximized over in the right term. Initially, at time n = 0, the knowledge
gradient for continuous parameters becomes

ν̄KG,0(x) = E[µ1(x0)|F0, x0 = x]− µ0(x0)|x0=x = µ0(x)− µ̄0(x) = 0.

This shows the KGCP policy is indifferent about the first sampling decision. At time
n = 1, (4.2) becomes

x1 ∈ argmaxx∈X

(
E[max

i=0,1
µ2(xi)|F1, x1 = x]− max

i=0,1
µ1(xi)|x1=x

)
.

At this point there is a trade-off between exploring and exploiting in our objective.
Implicitly, the algorithm would like to exploit, or sample near a current maximum of
µn; this seems likely to increase the maximum of µn. However, the algorithm would
also like to explore, i.e. sample far away from any of the previous decisions; these
decisions have more uncertainty and are less correlated with the current maximum of
µn.

4.1. Comparison to the Expected Improvement of EGO. Efficient Global
Optimization (EGO) is a method developed in [16] to optimize functions when there
is no observation noise. For function maximization, EGO uses the expected improve-
ment criterion, E[In(x)|Fn], where the improvement given the information available
at time n is defined to be the following random variable:

In(x) = max

(
µn+1(x)− max

i=1,..,n
ŷi, 0

)
.

In [16], the EGO expected improvement is only defined in the case of no observation
noise, where λ(·) = 0. In this case, the knowledge gradient for continuous parameters
is less than or equal to the EGO expected improvement criterion. In fact, if the
second maximization term in the knowledge gradient for continuous parameters in
(4.1) were over i = 0, .., n − 1, the knowledge gradient for continuous parameters
would be equivalent to the expected improvement in the case of no observation noise.

Proposition 4.1. In the case of no observation noise, ν̄KG,n(x) ≤ E[In(x)|Fn].
Furthermore, E[In(x)|Fn] = E

[
maxi=0,..,n µn+1(xi)|Fn, xn = x

]
−maxi=0,..,n−1 µn(xi).
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Proof:

ν̄KG,n(x) = E
[

max
i=0,..,n

µn+1(xi)|Fn, xn = x

]
− max

i=0,..,n
µn(xi)|xn=x

≤ E
[

max
i=0,..,n

µn+1(xi)

∣∣∣∣F
n, xn = x

]
− max

i=0,..,n−1
µn(xi)

= E
[
max

(
µn+1(xn), max

i=0,..,n−1
µn(xi)

)∣∣∣∣F
n, xn = x

]
− max

i=0,..,n−1
µn(xi) (4.6)

= E
[
max

(
µn+1(xn), max

i=1,..,n
ŷi

)∣∣∣∣F
n, xn = x

]
− max

i=1,..,n
ŷi

= E
[
max

(
µn+1(xn)− max

i=1,..,n
ŷi, 0

)∣∣∣∣F
n, xn = x

]

= E[In(x)|Fn]. (4.7)

In (4.6) we used the fact that, conditioned on Fn, ŷi+1 = µn(xi) = µn+1(xi) for
i = 0, ..., n− 1 since there is no observation noise.

The EGO algorithm maximizes the expected improvement given in (4.7) at each
iteration which is similar to maximizing the knowledge gradient for continuous pa-
rameters at each iteration when there is no observation noise.

4.2. Calculation of the Knowledge Gradient for Continuous Param-
eters. We will first show how to calculate the knowledge gradient for continuous
parameters, and then derive the gradient of this continuous function that can be used
in a steepest ascent algorithm. The knowledge gradient for continuous parameters in
(4.1) can be efficiently calculated at a particular x ∈ X by using the two algorithms
in [10], which we will now summarize. We define the pairs (ai, bi) for i = 0, ..., n as
the sorted pairs (µn(xi), σ̃i(Σ̄n, xn)) conditioned on Fn and xn = x for i = 0, ..., n.
The pairs (ai, bi) are sorted such that bi ≤ bi+1 for i = 0, ..., n − 1. If there exists
some i )= j such that bi = bj and ai ≤ aj , then the pair (aj , bj) dominates (ai, bi)
and you add (ai, bi) to a list of initially dominated lines. The ai’s are the intercepts
and the bi’s are the slopes of the lines in Figure 4.1(a). Furthermore we define A0

as the index map such that (ai, bi) = (µn(xA0
i ), σ̃A0

i
(Σ̄n, xn)). For a fixed xn = x, ai

and bi are Fn measurable and hence constants. We now simplify the first term in the
knowledge gradient for continuous parameters,

E
[

max
i=0,...,n

µn+1(xi)

∣∣∣∣F
n, xn = x

]
= E

[
max

i=0,...,n
µn(xi) + σ̃i(Σ̄

n, xn)Zn+1

∣∣∣∣F
n, xn = x

]
(4.8)

= E
[

max
i=0,...,n

ai + biZ

]
. (4.9)

In (4.8) we substituted in the recursive update for µn(xi) given in (3.13). We next
summarize the two algorithms in [10] which show how to efficiently calculate the term
in (4.9).

Algorithm 1 is a scan-line algorithm that replaces the maximization in (4.9) with
a piecewise linear function using indicator functions. In Algorithm 1, A1 is called the
accept set and is a vector of indices which keeps track of all the i’s such that line
ai + biz is part of the epigraph shown in Figure 4.1(a). We keep track of the values
of z where the lines intersect in a vector c. ci+1 is the largest value of z such that
line ai + biz is part of the epigraph shown in Figure 4.1(a). In terms of the lines in
the accept set A1, c1+A1

i
is the intersection of aA1

i
+ bA1

i
z and aA1

i+1
+ bA1

i+1
z. Solving

for the z such that these lines intersect we get c1+A1
i
= (aA1

i
− aA1

i+1
)/(bA1

i+1
− bA1

i
)

for i = 1, ..., ñ, where ñ is the length of A1 minus one. Also we set c0 = −∞ and
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cn+1 = +∞. For convenience, we define ãi = a(A1
i )
, b̃i = b(A1

i )
, c̃i+1 = c(1+A1

i )
, and

c̃0 = −∞ for i = 0, ..., ñ. Algorithm 1 efficiently calculates constants c̃0, ..., c̃ñ+1 and
the vector of indices, A1, so that a function of the form f(z) = maxi=0,...,n ai + biz

can be rewritten as f(z) =
∑ñ

i=0(aA1
i
+ bA1

i
z)1[c̃i,c̃i+1)(z). The algorithm is outlined

in Figure 4.2, using the convention that the first index of a vector is zero.

a3 + b3z

c3 c4 = +∞c0 = −∞ c2 c1

a2 + b2za1 + b1z

A = [0,2, 3]

a0 + b0z

1

(a) A visualization of Algorithm 1.

ã0 + b̃0z ã2 + b̃2z

ã1 + b̃1z

c̃0 = −∞ c̃1 c̃2 c̃3 = +∞

(b) The output of Algorithm 1 with new indices.

Fig. 4.1. Algorithm 1 is a scan line algorithm to re-express f(z) = maxi=0,...,n ai + biz as

f(z) =
∑ñ

i=0(ãi + b̃iz)1[c̃i,c̃i+1)(z).

Next, Algorithm 2 from [10] shows how to simplify the expectation in (4.10) to
(4.11), which is something we can easily compute.

E
[

max
i=0,...,n

ai + biZ

]
= E

[
ñ∑

i=0

(
aA1

i
+ bA1

i
Z
)
1[c̃i,c̃i+1)(Z)

]
(4.10)

=
ñ∑

i=0

[
aA1

i
P[Z ∈ [c̃i, c̃i+1)] + bA1

i
E[Z1[c̃i,c̃i+1)(Z)]

]

=
ñ∑

i=0

[
aA1

i
(Φ(c̃i+1)− Φ(c̃i)) + bA1

i
(φ(c̃i)− φ(c̃i+1))

]
.(4.11)

In (4.11), φ(·) and Φ(·) are the pdf and cdf of a standard normal random variable,
respectively.

4.3. The Gradient of the Knowledge Gradient for Continuous Param-
eters. Next, we show how to calculate the gradient of the knowledge gradient for
continuous parameters, ∇xν̄KG,n(x), at a fixed x ∈ X . This will allow us to use
gradient ascent to maximize the knowledge gradient for continuous parameters. Let
A = A0[A1] , meaning Ai = A0

A1
i
; A is now a reordered index set. For example, if

A0 = [2, 1, 0] and A1 = [0, 2, 1], then A = [2, 0, 1]. A contains the indices i such that

(µn(xA0
i )+ σ̃A0

i
(Σ̄n, xn))z is part of the epigraph of Figure 4.1(b) for some value of z.

Proposition 4.2. The gradient of the first term in (4.1) is given by

∇xE
[

max
i=0,..,n

µn+1(xi)

∣∣∣∣F
n, xn = x

]

=
ñ∑

i=0

[(
∇xnµn(xAi )

)
(Φ(c̃i+1)− Φ(c̃i)) +

(
∇xn σ̃Ai (Σ̄

n, xn)
)
(φ(c̃i)− φ(c̃i+1))

]

+
ñ∑

i=0

[(
µn(xAi ) + σ̃Ai (Σ̄

n, xn)c̃i+1

)
φ(c̃i+1)∇xn c̃i+1 −

(
µn(xAi ) + σ̃Ai (Σ̄

n, xn)c̃i
)
φ(c̃i)∇xn c̃i

]
.
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(01) c0 = −∞, cn+1 = +∞, A1 = [0]
(02) for i = 1 : n
(03) if (ai, bi) not initially dominated
(04) loopdone = false
(05) while loopdone == false
(06) j = A1(end)
(07) cj+1 = (aj − ai)/(bi − bj)
(08) if length(A1) )= 1 & cj+1 ≤ ck+1 where k = A1(end− 1)
(09) Delete last element in A1.
(10) else add i to the end of A1.
(11) loopdone = true
(12) end
(13) end
(14) end
(15) end

Fig. 4.2. Summary of Algorithm 1 from [10].

Proof:

∇xE
[

max
i=0,..,n

µn+1(xi)

∣∣∣∣F
n, xn = x

]

= ∇xn

ñ∑

i=0

[
µn(xAi ) (Φ(c̃i+1)− Φ(c̃i)) + σ̃Ai (Σ̄

n, xn) (φ(c̃i)− φ(c̃i+1))
]

(4.12)

=
ñ∑

i=0

[(
∇xnµn(xAi )

)
(Φ(c̃i+1)− Φ(c̃i)) +

(
∇xn σ̃Ai (Σ̄

n, xn)
)
(φ(c̃i)− φ(c̃i+1))

]

+
ñ∑

i=0

[
µn(xAi )∇xn (Φ(c̃i+1)− Φ(c̃i)) + σ̃Ai (Σ̄

n, xn)∇xn (φ(c̃i)− φ(c̃i+1))
]

(4.13)

=
ñ∑

i=0

[(
∇xnµn(xAi )

)
(Φ(c̃i+1)− Φ(c̃i)) +

(
∇xn σ̃Ai (Σ̄

n, xn)
)
(φ(c̃i)− φ(c̃i+1))

]

+
ñ∑

i=0

[(
µn(xAi ) + σ̃Ai (Σ̄

n, xn)c̃i+1

)
φ(c̃i+1)∇xn c̃i+1 −

(
µn(xAi ) + σ̃Ai (Σ̄

n, xn)c̃i
)
φ(c̃i)∇xn c̃i

]
.

Equation (4.12) is just the gradient of (4.11). In (4.13) we used the product
rule because c0, ..., cn+1 all depend on xn. In the last line we use the fact that
∂
∂xΦ(f(x)) = φ(f(x)) ∂

∂xf(x) and ∂
∂xφ(f(x)) = −φ(f(x))f(x) ∂

∂xf(x) to differentiate
the second term. The first term in the final equation is analogous to (4.11) with the
scalars µn(xi) and σ̃i(Σ̄n, xn) replaced with the vectors∇xnµn(xi) and∇xn σ̃i(Σ̄n, xn).

The calculation of ∇xn c̃i for i = 0, ..., ñ + 1 is relatively straightforward. An
equivalent equation for the c̃i’s which are output from Algorithm 1 is c̃i = ãi−1−ãi

b̃i−b̃i−1

for i = 1, ..., ñ with c̃0 = −∞ and c̃ñ+1 = +∞. Then using the quotient rule we can
calculate the following:

∇xn c̃i =

{
(b̃i−b̃i−1)(∇ãi−1−∇ãi)−(ãi−1−ãi)(∇b̃i−∇b̃i−1)

(b̃i−b̃i−1)2
, for i = 1, ..., ñ

%0, for i = 0, ñ+ 1.
(4.14)

As long as we can calculate ∇xnµn(xi) and ∇xn σ̃i(Σ̄n, xn) for i = 0, ..., n, we can
calculate the expression in Proposition 4.2 and the gradient of the knowledge gradient
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for continuous parameters. The equations for these values are expressed in the next
two lemmas.

Lemma 4.3.

∇xnµn(xi) =

{
%0, if i < n

∇xnµ0(xn) + Jn[Sn]−1ỹn, if i = n,

where we let Jn be the following matrix of first-order partial derivatives,

Jn =
[
∇xnΣ0(x0, xn) , · · · , ∇xnΣ0(xn−1, xn)

]
(4.15)

= 2




α1(x0

1 − xn
1 )Σ

0(x0, xn) · · · α1(x
n−1
1 − xn

1 )Σ
0(xn−1, xn)

...
. . .

...
αp(x0

p − xn
p )Σ

0(x0, xn) · · · αp(xn−1
p − xn

p )Σ
0(xn−1, xn)



 . (4.16)

Proof: Given in Appendix 8.1.
Lemma 4.4.

∇xn σ̃i(Σ̄
n, xn) =

B∇xneTxiΣ̄nexn − eTxiΣ̄nexn∇xnB

B2
,

where B !
√

λ(xn) + eTxnΣ̄nexn and

∇xneTxiΣ̄nexn =






2DIAG(α)(xi − xn)Σ0(xi, xn)− Jn[Sn]−1Σ0exi , if i < n

−2Jn[Sn]−1





Σ0(x0, xn)
...

Σ0(xn−1, xn)



 , if i = n

and

∇xnB =
1

2
(λ(xn) + Σn(xn, xn))−

1
2



∇xnλ(xn)− 2Jn[Sn]−1




Σ0(x0, xn)

...
Σ0(xn−1, xn)







 .

Proof: Given in Appendix 8.2.

4.4. Maximizing the Knowledge Gradient for Continuous Parameters.
We begin by giving an illustrative example of the knowledge gradient for continuous
parameters on a one-dimensional Gaussian process with normally distributed obser-
vation noise with a variance of 0.1. Figure 4.3(a) shows the results of the estimate
of the function after four observations along with the actual observations. Figure
4.3(b) shows both the knowledge gradient for continuous parameters and the exact
knowledge gradient over a finely discretized set of decisions. The knowledge gradient
is larger at decisions with more uncertainty as well as points where the estimate of the
function is larger. We can see that the knowledge gradient is nonconcave and seems
to have local minima near previously sampled points. Furthermore, many of the local
maxima appear to be approximately halfway between previously sampled points.

In Figure 4.3(c) and 4.3(d) we show the estimate of the function and knowledge
gradient after nine observations. Again the knowledge gradient is not concave but
many of the local maxima appear to be approximately halfway between previously

11
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Fig. 4.3. (a) The estimate of the function along with the 95% confidence intervals of the
estimate after 4 observations. (b) The knowledge gradient for continuous parameters (KGCP) and
exact knowledge gradient over a finely discretized set of decisions (KGCB) after 4 observations. (c)
The estimate of the function after 9 observations. (d) The knowledge gradient after 9 observations.

sampled points. In higher dimensions, a gradient ascent algorithm started multiple
times is appropriate for approximately maximizing a nonconcave continuous function.

We now have an objective that can be quickly evaluated along with its gradient
at any decision x. We propose using a multi-start gradient ascent algorithm with
constraints for the domain. Heuristically, as suggested above, there is likely to be a
local maximum roughly halfway between two previously sampled points. Furthermore,
we have a good guess at a starting step size that will keep our algorithm looking in the
region between these two previously sampled points based on the distance between the
two points. We can calculate all the midpoints between the set of sampled points and
use them as starting points of our gradient ascent with a fixed step size chosen such
that the magnitude of the first step is one fourth of the Euclidian distance between the
two corresponding previously sampled points. We also choose to start the gradient
ascent algorithm at the previously sampled decisions. These points are likely to be
very close to a local minimum and are thus reasonable starting locations for a gradient
ascent algorithm, although a reasonable starting step size is more ambiguous. We
can then take the maximum over all of the restarts to approximately get the overall
maximum of the knowledge gradient for continuous parameters. We perform

(n
2

)
+ n
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restarts which may become computationally expensive at n grows large. Alternatively
we could maximize KGCP over a set of candidate points chosen by an LHS design or
use a genetic algorithm (see [8]). It is worth noting that it is not critical to get the exact
maximum of the knowledge gradient for continuous parameters in order to determine
the next sampling decision. There are likely several distinct points that are worth
sampling and it may be acceptable if on one iteration the algorithm chooses a point
which does not exactly maximize the knowledge gradient for continuous parameters.

4.5. The KGCP Policy. We now give an outline of the KGCP policy.

KGCP policy
(1) for n = 0, ..., N − 1
(2) Choose sampling decision: xn ∈ argmaxx∈X ν̄KG,n(x) using Section 4.4.
(3) Get noisy observation ŷn+1 of function at xn.
(4) Update µn+1 and Σn+1 using (3.9) and (3.10).
(6) end
(7) Implement x" ∈ argmaxx∈X µN (x).

In line 2 we choose the sampling decision by maximizing the knowledge gradient
for continuous parameters defined in (4.1). This maximization should be approxi-
mated by using the algorithm in Section 4.4. Also, the maximization in line 7 to find
the implementation decision cannot be explicitly solved either. We approximate the
solution using a multistart gradient ascent algorithm with the same starting points
used in Section 4.4. The gradient of µN (x) can be evaluated using Lemma 4.3. If
no prior knowledge about the parameters is available, an initial phase of sampling
decisions chosen following a Latin hypercube design can be run before starting the
KGCP policy as suggested in a similar context in [16].

In general we will not be given the parameters of the covariance function, α and
β, the variance of observation noise, λ(), or the mean of the initial prior distribution
on µ, µ0(). If these parameters are not known, a step should be added before line 2
for estimating the covariance function parameters using MLE, maximum a posterior
estimation (see [30]), or robust parameter estimation (see [38]). For example, we can
approximately maximize the likelihood over the parameters by using patternsearch()
in Matlab started at multiple points chosen by a Latin hypercube sampling (LHS)
design using the command lhsdesign().

5. Convergence. In this section we show that, although the KGCP can be re-
garded as a near-sighted objective for finding the maximum of µ(x), the KGCP policy
searches enough so that uncertainty of the regression function converges to zero al-
most surely for each decision as the number of sampling decisions and observations
increases to infinity. Note that additional conditions would need to be specified before
making the claim about the consistency of the posterior and finding the maximum of
µ(x) almost surely in the limit. The proof is based on the fact that the knowledge
gradient for continuous parameters of each decision converges to zero as the number
of iterations of the algorithm goes to infinity. We then show that this implies that
the conditional variance of µ at every observation converges to zero; in other words,
we become certain of µ at every point. We define V arn[·], Covn[·], and Corrn[·] as
V ariance[·|Fn], Covariance[·|Fn], and Correlation[·|Fn], respectively. For simplic-
ity in this section we assume the variance of the observation noise is a constant. Our
presentation will need the following assumptions:

Assumption 5.0.1. λ(x) = λ > 0, µ0(x) = µ0, and the estimates of α, β, λ,
and µ0 are fixed.
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Assumption 5.0.2. lim supn→∞ |µn(x) − µn(u)| is bounded for every x, u ∈ X
almost surely.

Assumption 5.0.3. For any x )= u, ∃c s.t. lim supn→∞ |Corrn[µ(x), µ(u)]| ≤
c < 1 almost surely.

Assumption 5.0.4. We can exactly maximize the KGCP; xn ∈ argmaxx∈X ν̄KG,n(x).

Proposition 5.1. For every sample path, the knowledge gradient for continuous
parameters of a decision x, ν̄KG,n(x), converges to zero if the conditional variance of
µ(x) converges to zero.
Proof: We first need an upper bound on the knowledge gradient for continuous
parameters. We show in Appendix 8.3 that

ν̄KG,n(x) ≤
√

2βV arn[µ(x)]

πλ
. (5.1)

Combining the fact that the knowledge gradient for continuous parameters is nonneg-
ative and that the upper bound of the knowledge gradient for continuous parameters
in (5.1) decreases to zero as V arn[µ(x)] → 0, we obtain the desired result.

The next proposition provides a way to put an upper bound on the conditional
variance of µ near an accumulation point, xacc, of the sampling decisions. Figure 5.1
has a diagram of the points being considered. xacc is an accumulation point of the
sampling decisions. xd is an arbitrary fixed point in an open ball centered around xacc

with radius ε; we are interested in V ar[µ(xd)]. xmult is a point we consider measuring
multiple times. xnear is a point which is closer to xd than xmult is close to xd in terms
of the initial covariance; formally, Σ0(xmult, xd) ≤ Σ0(xnear, xd). We denote an open
ball centered at a with radius ε as B(a, ε) = {x|d(x, a) < ε}.

ε
xacc

xd

xmult

xnear

β0 = Σ0(xmult, xd)

β1 = Σ0(xmult, xnear)

β2 = Σ0(xnear, xd)

Fig. 5.1. A diagram of the points: xacc is an accumulation point; xmult is a point being
measured multiple times; xnear is a point near to xd we are considering to measure; xd is an
arbitrary fixed point in the open ball centered at xacc.

Proposition 5.2. Fix ε > 0 and consider an arbitrary point xd ∈ B(xacc, ε),
where B(xacc, ε) is an open ball centered at xacc with radius ε. If we have measured
n points in the ball B(xacc, ε), an upper bound on the conditional variance of µ(xd)
can be constructed by hypothetically measuring one particular point xmult n times,
where xmult satisfies Σ0(xmult, xd) ≤ Σ0(x, xd), ∀x ∈ B(xacc, ε). Furthermore the
upper bound on the conditional variance of µ(xd) is β − (Σ0(xmult, xd))2 n

βn+λ for
every sample path.
Proof: Sketch of proof (See Appendix 8.4 for full proof): We wish to find an upper
bound on the conditional variance of µ(xd) which will converge to zero as n → ∞
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and ε → 0. The ordering of the decision-observation pairs can be changed without
altering the conditional variance of µ(xd), and the conditional variance of µ(xd) is
a decreasing sequence. Therefore, after we have measured n points in B(xacc, ε),
maxx0,...,xn−1∈B(xacc,ε)V arn[µ(xd)] is an upper bound on the conditional variance of
µ(xd); we have ignored the decisions outside of B(xacc, ε) because they would only
lower the conditional variance more. We define the policy πmult which sets x0 =
· · · = xn−1 = xmult. We can derive that under the policy πmult, V arn[µ(x)] =
β − (Σ0(xmult, x))2 n

βn+λ .

First consider the change Varn[µ(xd)] − Varn+1[µ(xd)] under πmult if we have
measured xmult n times and then measure xmult one more time. We define β0 =
Σ0(xmult, xd). The decrease in the conditional variance of µ(xd) from measuring
xmult once more is

Varn[µ(xd)]− Varn+1[µ(xd)] =
β2
0λ

((n+ 1)β + λ)(nβ + λ)
. (5.2)

Second we consider measuring the change in Varn[µ(xd)]− Varn+1[µ(xd)] if we have
measured xmult n times and then measure xnear one time where xnear satisfies
Σ0(xmult, xd) ≤ Σ0(xnear, xd). xnear can be thought of as a point close to xd be-
cause µ(xnear) has a higher initial covariance with µ(xd) than µ(xmult) does. We
define β1 = Σ0(xmult, xnear) and β2 = Σ0(xnear, xd). Note that β0 ≤ β2 and
0 < β0,β1,β2 ≤ β; Figure 5.1 visually shows the relationships between the points.
The decrease in the conditional variance of µ(xd) from measuring xnear is

Varn[µ(xd)]− Varn+1[µ(xd)] =

(
β2 −

nβ0β1

nβ + λ

)2 (
β − nβ2

1

nβ + λ
+ λ

)−1

. (5.3)

We want to show that if we have measured xmult n times (and measured nothing
else) that the amount we can lower the conditional variance of µ(xd) by observing
xmult again given in (5.2) is smaller than the amount given in (5.3) if we observe a new
point xnear. We verify this is true algebraically in Appendix 8.4. We have shown that,
for any n ≥ 0, if we have sampled the decisions x0, ..., xn−1 = xmult the additional
decrease in the conditional variance of µ(xd) would be smallest by setting xn = xmult.
This is true for n = 0, 1, 2, ..., so using an induction argument this proves that
maxx0,...,xn−1∈B(xacc,ε)V arn[µ(xd)] equals V arn[µ(xd)] under πmult. As explained
above, maxx0,...,xn−1∈B(xacc,ε)V arn[µ(xd)] is an upper bound on the conditional vari-
ance of µ(xd) after we have measured n points in B(xacc, ε) (and possibly more points
outside B(xacc, ε)). Under πmult, V arn[µ(xd)] = β − (Σ0(xmult, xd))2 n

βn+λ which
gives us the upper bound.

Proposition 5.3. Let xacc be an accumulation point of the sequence of sampling
decisions {xn}∞n=0. Consider a point xd ∈ B(xacc, ε) using the Euclidean distance.
Then limn→∞ V arn[µ(xd)] ≤ β − β exp(−8

∑p
i=1 αiε2) for every sample path.

Proof: We first show that V arn[µ(xd)] converges because it is a decreasing sequence
that is bounded below by zero. If we measure xn at time n, the equation for the
conditional variance becomes

Σn+1(xd, xd) = Σn(xd, xd)− (Σn(xn, xd))2(Σn(xn, xn) + λ)−1. (5.4)

The second term in (5.4) is clearly positive and thus Σn+1(xd, xd) ≤ Σn(xd, xd). Now,
n is arbitrary, so we can conclude that V arn(µ(xd)) is a decreasing sequence bounded
below by zero. We define V ar∞[µ(xd)] as the limit of V arn[µ(xd)].
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xacc is an accumulation point so for all ε > 0 there are an infinite number of n
with xn ∈ B(xacc, ε). We now put an upper bound on V arn[µ(xd)]. Under the policy
πmult of only measuring xmult we can see

lim
n→∞

V arπ
mult,n[µ(x)] = β − (Σ0(xmult, x))2

β
.

Let {kn}∞n=0 be a subsequence of natural numbers such that the policy π chooses
xkn ∈ B(xacc, ε) ∀n. Let xmult satisfy Σ0(xmult, xd) ≤ Σ0(x, xd), ∀x ∈ B(xacc, ε).
Using Proposition 5.2, we see that

V arπ,kn [µ(xd)] ≤ V arπ
mult,n[µ(xd)] = β − (Σ0(xmult, xd))2

n

βn+ λ0
. (5.5)

Now, letting n go to infinity we get

V ar∞[µ(xd)] = lim
n→∞

V arπ,n[µ(xd)] = lim
n→∞

V arπ,kn [µ(xd)] ≤ β −
(Σ0(xmult, xd))2

β
. (5.6)

This equation holds for any xmult which satisfies Σ0(xmult, xacc) ≤ Σ0(x, xacc), ∀x ∈
B(xacc, ε) for a fixed ε > 0. We next take the supremum over all such xmult to obtain

V ar∞[µ(xd)] ≤ sup
x∈B(xacc,ε)

(
β − (Σ0(x, xd))2

β

)

= β −
(infx∈B(xacc,ε)(Σ

0(x, xd))2

β

≤ β −
infx∈B(xacc,ε)(βe

−
∑p

i=1 αi(xi−xd
i )

2

)2

β

≤ β − (βe−
∑p

i=1 αi4ε
2

)2

β
= β − βe−8

∑p
i=1 αiε

2

. (5.7)

Equation (5.7) uses the fact that (xi−xd
i )

2 ≤ 4ε2 because x, xd ∈ B(xacc, ε) using the
Euclidean distance.

Corollary 5.4. Since Proposition 5.3 was true for an arbitrary ε > 0 and
limε→0 β − βe−8

∑p
i=1 αiε

2

= 0, we can conclude that limn→∞ V arn[µ(xacc)] = 0.
We now want to show that the knowledge gradient for continuous parameters of

the points being sampled as n goes to infinity gets arbitrarily close to zero.
Theorem 5.5. Using the KGCP policy, lim infn→∞ supx∈X ν̄KG,n(x) = 0 for

every sample path.
Proof: Using equation 5.1 from the proof of Proposition 5.1, we put an upper bound
on the knowledge gradient for continuous parameters at xn,

ν̄KG,n(xn) ≤ 2√
2π

√
βV arn[µ(xn)]

λ
. (5.8)

First, the sequence of sampling decisions is a bounded sequence in Rp and thus
has an accumulation point, xacc. Also, the sequence {supx∈X ν̄KG,n(x)}∞n=0 is a non-
negative sequence because the knowledge gradient for continuous parameters is non-
negative. Let {kn}∞n=0 be a subsequence of natural numbers such that the KGCP
policy chooses xkn ∈ B(xacc, ε) ∀n. Now using Proposition 5.3 we write

limn→∞ V arn[µ(xkn)] ≤ β − βe−8
∑p

i=1 αiε
2

. Combining this with (5.8) we get,

0 ≤ lim inf
n→∞

ν̄KG,kn(xkn) ≤ lim inf
n→∞

2√
2π

√
βV arkn [µ(xkn)]

λ
≤ 2√

2π

√
β(β − βe−8

∑p
i=1 αiε2)

λ
.
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Since this equation was true for an arbitrary ε > 0 and

limε→0
2√
2π

√
β(β−βe−8

∑p
i=1 αiε

2
)

λ = 0, we can conclude that lim infn→∞ ν̄KG,kn(xkn) =

0. This implies that lim infn→∞ ν̄KG,n(xn) = 0 as well because the lim inf of a sequence
is less than or equal to the lim inf of one of its subsequences. Recalling that under
the KGCP policy ν̄KG,n(xn) = supx∈X ν̄KG,n(x) by Assumption 5.0.4 and because
ν̄KG,n(x) is continuous and X is compact, we arrive at the desired result.

For the following theorems we need Assumption 5.0.2 that prevents the updated
mean from approaching infinity or negative infinity. We need Assumption 5.0.3 which
ensures the function does not become perfectly correlated at two different decisions;
this seems intuitive but is not trivial to prove.

Theorem 5.6. If Assumptions 5.0.1, 5.0.2, 5.0.3, and 5.0.4 are satisfied and if
lim infn→∞ supx∈X ν̄KG,n(x) = 0, then V arn(µ(x)) converges to zero for all x.
Proof:

ν̄KG,n(x)

= E
[

max
i=0,..,n

µn+1(xi)|Fn, xn = x

]
− max

i=0,..,n
µn(xi)|x

n=x

= E
[

max
i=0,..,n

µn+1(xi)|Fn, xn = x

]
−max(µn(xi# ), µn(x)) (5.9)

≥ E
[
max(µn+1(xi# ), µn+1(x))|Fn

]
−max(µn(xi# ), µn(x))

= E
[
max

(
µn(xi# ) + σ̃i# (Σ̄

n, x)Zn+1, µn(x) + σ̃n(Σ̄
n, x)Zn+1

)
|Fn

]
−max(µn(xi# ), µn(x))

= E
[
max

(
a1 + b1Z

n+1, a2 + b2Z
n+1)]−max(a1, a2) (5.10)

=






∫ a2−a1
b1−b2

−∞ (a2 + b2z) f(z)dz +
∫∞

a2−a1
b1−b2

(a1 + b1z) f(z)dz −max(a1, a2), if b2 ≤ b1

∫ a2−a1
b1−b2

−∞ (a1 + b1z) f(z)dz +
∫∞

a2−a1
b1−b2

(a2 + b2z) f(z)dz −max(a1, a2), if b1 < b2

=

{
a2Φ(a2−a1

b1−b2
)− b2φ(

a2−a1
b1−b2

) + a1(1− Φ(a2−a1
b1−b2

)) + b1φ(
a2−a1
b1−b2

)−max(a1, a2), if b2 ≤ b1

a1Φ(a2−a1
b1−b2

)− b1φ(
a2−a1
b1−b2

) + a2(1− Φ(a2−a1
b1−b2

)) + b2φ(
a2−a1
b1−b2

)−max(a1, a2), if b1 < b2

= a2Φ

(
a2 − a1
|b1 − b2|

)
+ a1

(
1− Φ

(
a2 − a1
|b1 − b2|

))
+ |b1 − b2|φ

(
a2 − a1
|b1 − b2|

)
−max(a1, a2)

= −|a2 − a1|Φ
(
−|a2 − a1|
|b1 − b2|

)
+ |b1 − b2|φ

(
|a2 − a1|
|b1 − b2|

)
. (5.11)

In (5.9), we define i" = argmaxi=0,..,n−1 µn(xi). In (5.10), for convenience, we
define a1 = µn(xi#), a2 = σ̃i#(Σ̄n, x), b1 = µn(x), and b2 = σ̃n(Σ̄n, x). The term
in (5.11) is nonnegative and decreases as |a2 − a1| increases or |b1 − b2| decreases.
Equation (5.11) holds for all decisions x. Now, assume there is a decision xb1 such
that limn→∞ V arn[µ(xb1)] = ε1 > 0. This limit exists because V arn[µ(xb1)] is a
decreasing sequence bounded below by zero as shown in (5.4). Then (5.11) becomes

ν̄KG,n(xb1) ≥ −|µn(xb1)− µn(xi#)|Φ
(

−|µn(xb1)− µn(xi#)|
|σ̃i#(Σ̄n, xb1)− σ̃n(Σ̄n, xb1)|

)

+|σ̃i#(Σ̄
n, xb1)− σ̃n(Σ̄

n, xb1)|φ
(

|µn(xb1)− µn(xi#)|
|σ̃i#(Σ̄n, xb1)− σ̃n(Σ̄n, xb1)|

)
. (5.12)

Now by assumptions 5.0.2 and 5.0.3, ∃c1, c2 such that

lim sup
n→∞

|µn(x)− µn(xi#)| ≤ c1 < ∞,

lim sup
n→∞

Corrn[µ(xb1), µ(xi#)] ≤ c2 < 1.

17



We can now put a lower bound on |σ̃i#(Σ̄n, xb1)− σ̃n(Σ̄n, xb1)|.

| σ̃i#(Σ̄
n, xb1)− σ̃n(Σ̄

n, xb1)|

=
|V arn[µ(xb1)]− Covn[µ(xb1), µ(xi#)]|

λ+ V arn[µ(xb1)]

≥ V arn[µ(xb1)]− Corrn[µ(xb1), µ(xi#)]
√

V arn[µ(xb1)]V arn[µ(xi#)]

λ+ β

≥ (1− Corrn[µ(xb1), µ(xi#)])ε1
λ+ β

.

And now taking the limit inferior, we get

lim inf
n→∞

|σ̃i#(Σ̄
n, xb1)− σ̃n(Σ̄

n, xb1)| ≥ lim inf
n→∞

(1− Corrn[µ(xb1), µ(xi#)])ε1
λ+ β

≥ c2ε1
λ+ β

= c3 > 0.

Going back to (5.12) and taking the limit inferior, we can now write

lim inf
n→∞

ν̄KG,n(xb1) ≥ −c1Φ

(
−c1
c3

)
+ c3φ

(
c1
c3

)
> 0. (5.13)

By assumption the limit inferior of the supremum of the knowledge gradient for con-
tinuous parameters over all decisions is zero and thus (5.13) provides a contradiction.

Corollary 5.7. Under the KGCP Policy, if Assumptions 5.0.1, 5.0.2, 5.0.3,
and 5.0.4 are satisfied, then limn→∞ V arn[µ(x)] = 0 for all x.
Proof: Combining Theorem 5.5 and Theorem 5.6 we are left with the desired result.

6. Numerical Results. In this section we give an illustrative example of the
KGCP policy as well as analyzing its performance on several standard test functions.
We first illustrate the KGCP policy on the 2-dimensional Branin function and set the
variance of the normally distributed observation noise to one (λ = 1). We plot the
true Branin function in Figure 6.1. We stick with the more conservative convention of
an initial LHS design using two times the number of dimensions plus two (2p+2) used
in [10] ([22] suggests using 10p). After every observation we estimate the parameters
(α, β, λ, and µ0) with maximum likelihood estimation. Our estimate of the function
after the initial 6 observations is shown in Figure 6.2(a), and the knowledge gradient
for continuous parameters for each decision is shown in Figure 6.2(b). The knowledge
gradient for continuous parameters is higher at decisions that have higher estimates
or more uncertainty or both. At this point, after each observation, we update our
estimate of the parameters and then choose our sampling decision by maximizing
the knowledge gradient for continuous parameters. We repeat this several times, and
Figure 6.3 shows the estimate of the function after 20 total observations chosen with
the KGCP policy. Comparing these estimates with the true function shown in Figure
6.1, we visually see that the policy has done a good job estimating the upper regions
of the function as desired.
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Fig. 6.1. (a) The negative of the Branin function. (b) A contour plot of the negative Branin
function. We will maximize the negative of the Branin function using noisy observations normally
distributed around the true function.

(a) (b)

Fig. 6.2. (a) The estimate of the function after 6 observations. The actual observations are
plotted as well. (b) The knowledge gradient for continuous parameters surface is plotted. The height
is a measure of how much we expect the maximum of the estimate of the function to increase by
measuring the corresponding decision. We choose the next sampling decision by finding the decision
which maximizes the knowledge gradient for continuous parameters shown in 6.2(b).

6.1. Standard Test Functions. Next we compare the KGCP policy with se-
quential kriging optimization (SKO) from [15] on expensive functions with observation
noise. We use the various test functions used in [10], [16], and [15] as the true mean
and add on normally distributed observation noise with variance λ. We define the
opportunity cost as,

OC = max
i

µ(i)− µ(i"), (6.1)

where i" = argmaxi µn(i), and Table 6.1 shows the performance on the different
functions. These functions were designed to be minimized so the KGCP policy was
applied to the negative of the functions. Each policy was run 500 times with the
specified amount of observation noise. Table 6.1 gives the sample mean and sample
standard deviation of the mean of the opportunity cost after 50 iterations for each
policy. (To get the sample standard deviation of the opportunity cost you would
multiply by

√
500). The means of the opportunity costs which are significantly better

(using Welch’s t test at the .05 level (see [44])) are bolded. The results are given
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Fig. 6.3. (a) The estimate of the function after 20 observations. The actual observations are
plotted as well. (b) The contour plot of the estimate of the function after 20 observations.

for different levels of noise; λ is the variance of the normally distributed noise in the
observations. Because a Gaussian process (GP) is only an approximation (a surrogate)
for the preceding test functions, we next apply KGCP and SKO to functions that are
guaranteed to be GP’s. Each GP row of Table 6.1 summarizes the results of running
the policies on 500 GP’s created as follows: a function was generated from a 1-
dimensional GP with the specified parameters of the covariance matrix in (3.2) over
a 300 point grid on the interval [0, 15]. The standard deviation of each function, σ,
is given as well to give a frame of reference for the values of λ. This number was
created by taking the standard deviation of function values over a discretized grid.
For all these runs (even the Gaussian process surfaces) an initial LHS design of 2p+2
function evaluations is used and maximum likelihood estimation is performed after
each iteration to update the estimates of α, β, λ, and µ0 (see [30]).

KGCP and SKO appear to have similar performance on Hartman 3 and Six Hump
Camelback test functions. However, the KGCP policy does significantly better on the
Ackley 5 and Branin test functions, as well as most of the Gaussian process functions.
To get an idea of the rate of convergence of the KGCP policy, we plot the performance
on the Gaussian processes in Figure 6.4. These promising simulations demonstrate
that the KGCP algorithm is a very competitive policy.

7. Conclusion and Future Work. The knowledge gradient for continuous pa-
rameters is applicable to problems with continuous decision variables and observation
noise and is similar to the expected improvement used in EGO when there is no ob-
servation noise. We presented a gradient ascent algorithm to approximately maximize
the knowledge gradient for continuous parameters. The KGCP policy is very com-
petitive with SKO and has nice convergence theory, giving conditions under which
our uncertainty about the maximum of the expensive function with observation noise
disappears. Extensions could include additional research with a priori distributions
as well as additional approximations to speed up computations as the number of ob-
servations get large. Additional issues for further investigation are evaluating the
algorithm on problems with larger dimensions, p, and extending the algorithm to
unequal variances in the observation noise.

REFERENCES

20



KGCP SKO

Test Function
√
λ E (OC) σ(OC) Med E (OC) σ(OC) Med

Ackley 5 (X = [−15, 30]5)

√
.1 5.7304 .1874 4.0964 7.8130 .1802 6.4978√

1.0 10.8315 .2413 10.5855 12.6346 .2088 13.3955
p = 5,σ = 1.126

√
10.0 17.3670 .1477 18.3281 18.1126 .1156 18.6481

Branin

√
.1 .0141 .0044 .0046 .0460 .0023 .0302√

1.0 .0462 .0039 .0234 .1284 .0218 .0737
p = 2,σ = 51.885

√
10.0 .2827 .0186 .1386 .4396 .0248 .2685

Hartman3

√
.1 .0690 .0063 .0249 .1079 .0075 .0650√

1.0 .5336 .0296 .2658 .5012 .0216 .3737
p = 3,σ = .938

√
10.0 1.8200 .0541 1.6182 1.8370 .0510 1.6552

Six Hump Camelback

√
.1 .0714 .0087 .0698 .1112 .0059 .0797√

1.0 .3208 .0192 .1315 .3597 .0156 .2035
p = 2,σ = 3.181

√
10.0 1.0264 .0391 .8641 .8488 .0370 .6585

GP (α = .1, β = 100)
√
.1 .0076 .0057 .0000 .0195 .0041 .0043

p = 1,σ = 8.417

√
1.0 .0454 .0243 .0018 .0888 .0226 .0182√

10.0 .3518 .0587 .0337 .2426 .0216 .0535
GP (α = 1, β = 100)

√
.1 .0077 .0022 .0000 .0765 .0311 .0000

p = 1,σ = 9.909

√
1.0 .0270 .0045 .0000 .1993 .0486 .0255√

10.0 .4605 .1028 .0489 .6225 .0669 .1558
GP (α = 10, β = 100)

√
.1 .1074 .0259 .0000 .5302 .0799 .0000

p = 1,σ = 10.269

√
1.0 .1846 .0286 .0000 .6638 .0839 .0839√

10.0 1.0239 .1021 .1415 1.8273 .1450 .6290
Table 6.1

Performance on Standard Test Functions. Each row summarizes 500 runs of each policy
on the specified test function with the specified observation noise variance. We define σ(OC) as
Std (E (OC)) and Med as the median OC.
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Fig. 6.4. (a)-(c) show examples of Gaussian Processes with the given covariance parameters.
(d)-(f) show the mean opportunity cost of the KGCP policy on the various Gaussian processes.
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8. Online Appendix.

8.1. Computing ∇xnµn(xi). If i < n then µn
xi does not depend on xn so

∇xnµn(xi) = 0. Now consider when i = n. We start with equation (3.9) for µn(xn)
where xn has not been sampled and then simplify.

µn(xn) = µ0(xn) + eTn+1Σ̄
0




In
−
%0T



 [Sn]−1ỹn

= µ0(xn) +
[
Σ0(x0, xn) , · · · , Σ0(xn−1, xn)

]
[Sn]−1ỹn

Now, because [Sn]−1ỹn does not depend on the decision xn, we can easily take the
gradient.

∇xnµn(xn) = ∇xnµ0(xn) +
[
∇xnΣ0(x0, xn) , · · · , ∇xnΣ0(xn−1, xn)

]
[Sn]−1ỹn

= ∇xnµ0(xn) + Jn[Sn]−1ỹn. (8.1)

where we Jn is defined in (4.15). When going from (4.15) to (4.16) we used the fact
that the covariance function was of the form specified in (3.2).

8.2. Computing ∇xn σ̃i(Σn, xn). First, recall that

σ̃i(Σ̄
n, xn) =

eTxiΣ̄nexn

√
λ(xn) + eTxnΣ̄nexn

, i = 0, ..., n.

(8.2)
After we derive the gradient of the numerator and denominator of this equation, we
can find the gradient of (8.2) by using the quotient rule for differentiation.

∇xn σ̃i(Σ̄
n, xn) =

√
λ(xn) + eTxn Σ̄nexn∇xneTxi Σ̄

nexn − eTxi Σ̄
nexn∇xn

√
λ(xn) + eTxn Σ̄nexn

|λ(xn) + eTxn Σ̄nexn |

8.2.1. The Numerator. First we consider the numerator of (8.2).

eTxi Σ̄
nexn = eTxi(I − K̄n [

In | '0
]
)Σ̄0exn (8.3)

= eTxi Σ̄
0exn − eTxiK̄

n [
In | '0

]
Σ̄0exn (8.4)

= Σ0(xi, xn)− eTxi Σ̄
0




In
−
'0T



 [Sn]−1 [In | '0
]
Σ̄0exn (8.5)

= Σ0(xi, xn)−
[
Σ0(x0, xi) , · · · , Σ0(xn−1, xi)

]
[Sn]−1





Σ0(x0, xn)
...

Σ0(xn−1, xn)



(8.6)

= Σ0(xi, xn)−
[
Σ0(x0, xn) , · · · , Σ0(xn−1, xn)

]
[Sn]−1





Σ0(x0, xi)
...

Σ0(xn−1, xi)



(8.7)

In (8.3) we used the definition of Σ̄n in (3.10). From (8.4) to (8.6) we just inserted
the definition of K̄n given in (3.8). Going from (8.6) to (8.7) we took the transpose
of the last term which is a scalar and used the fact that [Sn]−1 is symmetric. We first
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consider the case where i < n. In this case [Sn]−1




Σ0(x0, xi)

...
Σ0(xn−1, xi)



 = [Sn]−1Σ0exi and

does not depend on xn so we can easily compute the gradient,

∇xneTxi Σ̄
nexn = ∇xnΣ0(xi, xn)−

[
∇xnΣ0(x0, xn) , · · · , ∇xnΣ0(xn−1, xn)

]
[Sn]−1Σ0exi

= 2DIAG(α) ∗ (xi − xn)Σ0(xi, xn)− Jn[Sn]−1Σ0exi . (8.8)

Now we consider the case where i = n. Using standard matrix differentiation, we
can compute the gradient.

∇xneTxn Σ̄nexn =





0− 2
[

∂
∂xn

1
Σ0(x0, xn) , · · · , ∂

∂xn
1
Σ0(xn−1, xn)

]
[Sn]−1





Σ0(x0, xn)
...

Σ0(xn−1, xn)





...

0− 2
[

∂
∂xn

p
Σ0(x0, xn) , · · · , ∂

∂xn
p
Σ0(xn−1, xn)

]
[Sn]−1





Σ0(x0, xn)
...

Σ0(xn−1, xn)









= −2
[
∇xnΣ0(x0, xn) , · · · , ∇xnΣ0(xn−1, xn)

]
[Sn]−1





Σ0(x0, xn)
...

Σ0(xn−1, xn)





= −2Jn[Sn]−1





Σ0(x0, xn)
...

Σ0(xn−1, xn)



 .

8.2.2. The Denominator. Now we consider the denominator of (8.2).

√
λ(xn) + eTxn Σ̄nexn

=
√

λ(xn) + eTxn(I − K̄n
[
In | '0

]
)Σ̄0exn (8.9)

=
√

λ(xn) + Σ0(xn, xn)− eTxnK̄n
[
In | '0

]
Σ̄0exn (8.10)

=

√√√√√λ(xn) + Σ0(xn, xn)− eTxn Σ̄0




In
−
'0T



 [Sn]−1
[
In | '0

]
Σ̄0exn (8.11)

=

√√√√√√λ(xn) + Σ0(xn, xn)−
[
Σ0(x0, xn) , · · · , Σ0(xn−1, xn)

]
[Sn]−1





Σ0(x0, xn)
...

Σ0(xn−1, xn)
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In (8.9) we inserted the definition of Σ̄n given in (3.10). Going from (8.10) to (8.11)
we inserted the definition of K̄n given in (3.8). Now we take the gradient.

∇xn

√
λ(xn) + eT

xnΣnexn

=





1
2
(λ(xn) + Σn(xn, xn))

− 1
2 ( ∂

∂xn
1

λ(xn) − 2

[
∂

∂xn
1

Σ0(x0, xn) , · · · , ∂
∂xn

1
Σ0(xn−1, xn)

]
[Sn]−1





Σ0(x0, xn)

.

.

.

Σ0(xn−1, xn)




)

.

.

.

1
2
(λ(xn) + Σn(xn, xn))

− 1
2 ( ∂

∂xn
p

λ(xn) − 2

[
∂

∂xn
p

Σ0(x0, xn) , · · · , ∂
∂xn

p
Σ0(xn−1, xn)

]
[Sn]−1





Σ0(x0, xn)

.

.

.

Σ0(xn−1, xn)




)





=
1

2
(λ(xn) + Σn(xn, xn))

− 1
2 (∇xnλ(xn) − 2

[
∇xnΣ0(x0, xn) , · · · , ∇xnΣ0(xn−1, xn)

]
[Sn]−1





Σ0(x0, xn)

.

.

.

Σ0(xn−1, xn)




)

=
1

2
(λ(xn) + Σn(xn, xn))

− 1
2




∇xnλ(xn) − 2Jn[Sn]−1





Σ0(x0, xn)

.

.

.

Σ0(xn−1, xn)









8.3. Proof of Proposition 5.1. We derive the upper bound of the knowledge
gradient for continuous parameters given in (5.1), starting with

E
[

max
i=0,..,n

µn+1(xi)

∣∣∣∣F
n, xn = x

]
(8.12)

= E
[

max
i=0,..,n

µn(xi) + σ̃i(Σ̄
n, xn)Zn+1

∣∣∣∣F
n, xn = x

]
(8.13)

≤ max
i=0,..,n

µn(xi) + E
[

max
j=0,..,n

σ̃j(Σ̄
n, xn)Zn+1

∣∣∣∣F
n, xn = x

]

= max
i=0,..,n

µn(xi) + E
[

max
j=0,..,n

σ̃j(Σ̄
n, xn)Zn+11(Zn+1 > 0) + max

k=0,..,n
σ̃k(Σ̄

n, xn)Zn+11(Zn+1 ≤ 0)

∣∣∣∣F
n, xn = x

]

= max
i=0,..,n

µn(xi) + E
[
Zn+11(Zn+1 > 0)

]
max

j=0,..,n
σ̃j(Σ̄

n, xn) + E
[
Zn+11(Zn+1 ≤ 0)

]
min

k=0,..,n
σ̃k(Σ̄

n, xn)

= max
i=0,..,n

µn(xi) +
1

√
2π

max
j=0,..,n

σ̃j(Σ̄
n, xn)−

1
√
2π

min
k=0,..,n

σ̃k(Σ̄
n, xn)

≤ max
i=0,..,n

µn(xi) +
2

√
2π

max
j=0,..,n

|σ̃j(Σ̄
n, xn)|. (8.14)

We now need an upper bound on |σ̃j(Σ̄n, xn)| in (8.14). We just note that

∣∣σ̃j(Σ̄
n, xn)

∣∣ =

∣∣∣∣∣
exj Σ̄nexn

√
λ+ eTxnΣ̄nexn

∣∣∣∣∣

=

∣∣∣∣∣
Covn[µ(xj), µ(xn)]√
λ+ V arn[µ(xn)]

∣∣∣∣∣

=

∣∣∣∣∣
Corrn[µ(j), µ(xn)]

√
V arn[µ(xj)]V arn[µ(xn)]√

λ+ V arn[µ(xn)]

∣∣∣∣∣

≤

∣∣∣∣∣

√
V arn[µ(xj)]V arn[µ(xn)]√

λ

∣∣∣∣∣

=

√
V arn[µ(xj)]V arn[µ(xn)]

λ
. (8.15)
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Combining (8.14) and (8.15) we have an upper bound on the knowledge gradient for
continuous parameters.

ν̄KG,n(x) ≤
2

√
2π

max
j=0,..,n

√
V arn[µ(xj)]V arn[µ(xn)]

λ
≤

√
2βV arn[µ(xn)]

πλ
=

√
2βV arn[µ(x)]

πλ
(8.16)

The knowledge gradient for continuous parameters is nonnegative and the above
upper bound on the knowledge gradient for continuous parameters of a decision x
converges to zero as the conditional variance of µ(x) converges to zero.

8.4. Proof of Proposition 5.2. We derive how the conditional variance of
µ(xd) decreases if we repeatedly measure a particular point xmult n times with noise
variance λ for each observation. We define the policy πmult which sets x0 = · · · =
xn−1 = xmult. Under this policy we see,

Σn(x, x)

= eTx Σ̄
nex

= eTxn(I − K̄n
[
In | %0

]
)Σ̄0exn (8.17)

= Σ0(x, x)− eTx K̄
n
[
In | %0

]
Σ̄0ex (8.18)

= Σ0(x, x)− eTx Σ̄
0




In
−
%0T



 [Sn]−1
[
In | %0

]
Σ̄0ex

= Σ0(x, x)−
[
Σ0(x0, x) , · · · , Σ0(xn−1, x)

]
[Sn]−1




Σ0(x0, x)

...
Σ0(xn−1, x)



 (8.19)

= Σ0(x, x)−
[
Σ0(x0, x) , · · · , Σ0(xn−1, x)

] [
Σ0 + λIn

]−1




Σ0(x0, x)

...
Σ0(xn−1, x)





= β −
[
Σ0(xmult, x) , · · · , Σ0(xmult, x)

]







β · · · β
...

. . .
...

β · · · β



+ λIn





−1 


Σ0(xmult, x)

...
Σ0(xmult, x)





= β − (Σ0(xmult, x))2eT



β




1 · · · 1
...

. . .
...

1 · · · 1



+ λIn





−1

e (8.20)

= β − (Σ0(xmult, x))2
n

βn+ λ
. (8.21)

In (8.17) we insert the definition of Σ̄n given in (3.10). In (8.18) we insert the definition
of K̄n given in (3.8). [Sn]−1 is positive semi-definite, so the second term in (8.19) is
nonnegative. In (8.20) e is a column vector of ones, and we simplify the expression
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using the definition of the inverse of Sn,

[Sn]−1



β




1 · · · 1
...

. . .
...

1 · · · 1



+ λIn



 = In,

eT [Sn]−1



β




1 · · · 1
...

. . .
...

1 · · · 1



+ λIn



 e = eT Ine,

eT [Sn]−1 [βne+ λe] = n,

eT [Sn]−1e =
n

βn+ λ
. (8.22)

First consider the change Varn(µ(xd))−Varn+1(µ(xd)) if we have measured xmult n
times and then measure xmult one more time. We use (8.21) and assume Σ0(x, x) =
β, ∀x. Also, define β0 = Σ0(xmult, xd). The decrease in the conditional variance of
µ(xd) from measuring xmult once more is

Varn(µ(xd))− Varn+1(µ(xd))

=
(
β −B2

0n(nβ + λ)−1
)
−
(
β −B2

0(n+ 1)((n+ 1)β + λ)−1
)

(8.23)

= B2
0(n+ 1)((n+ 1)β + λ)−1 −B2

0n(nβ + λ)−1

=
B2

0(n+ 1)(nβ + λ)−B2
0n((n+ 1)β + λ)

((n+ 1)β + λ)(nβ + λ)

=
β2
0λ

((n+ 1)β + λ)(nβ + λ)
. (8.24)

In (8.23) we just used (8.21) which gives an expression for V arn(µ(x)) if we mea-
sure xmult n times and nothing else. Second we consider measuring the change in
Varn(µ̂(xd)) − Varn+1(µ̂(xd)) if we have measured xmult n times and then measure
xnear one time, where xnear ∈ B(xacc, ε) and satisfies Σ0(xmult, xd) ≤ Σ0(xnear, xd).
We define β1 = Σ0(xmult, xnear) and β2 = Σ0(xnear, xd). Note that β0 ≤ β2 and
0 < β0,β1,β2 ≤ β.

Σn+1(xd, xd)

= Σn(xd, xd)− Σn(xnear, xd) (Σn(xnear, xnear) + λ)−1 Σn(xnear, xd) (8.25)

= Σn(xd, xd)−
(
Σn(xnear, xd)

)2
(Σn(xnear, xnear) + λ)−1

= Σn(xd, xd)−
(
Σ0(xnear, xd)−

nΣ0(xmult, xd)Σ0(xmult, xnear)

nβ + λ

)2

(Σn(xnear, xnear) + λ)−1

= Σn(xd, xd)−
(
β2 −

nβ0β1

nβ + λ

)2 (
β − (Σ0(xmult, xnear))2

n

nβ + λ
+ λ

)−1

(8.26)

= Σn(xd, xd)−
(
β2 −

nβ0β1

nβ + λ

)2 (
β −

nβ2
1

nβ + λ
+ λ

)−1

In (8.25) we use the recursive equation for updating the conditional variance. In
(8.26) we plugged in the equation for Σn(xnear, xd) which is derived in the same way
as (8.21). Equivalently we can write

Varn(µ(xd))− Varn+1(µ(xd)) =

(
β2 −

nβ0β1

nβ + λ

)2 (
β − nβ2

1

nβ + λ
+ λ

)−1

.(8.27)
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We now want to show that if we have measured xmult n times that the amount we
can lower the conditional variance of µ(xd) by observing xmult again given in (8.24)
is smaller than the amount given in (8.27) if we observe a new point xnear.

(
β2 −

nβ0β1

nβ + λ

)2 (
β − nβ2

1

nβ + λ
+ λ

)−1

=

(
β2(nβ + λ)− nβ0β1

nβ + λ

)2 ( (β + λ)(nβ + λ)− nβ2
1

nβ + λ

)−1

=
(β2(nβ + λ)− nβ0β1)

2

(nβ + λ) ((β + λ)(nβ + λ)− nβ2
1)

≥ (β0(nβ + λ)− nβ0β1)
2

(nβ + λ) ((β + λ)(nβ + λ)− nβ2
1)

(8.28)

≥ (β0(nβ + λ)− nβ0β)
2

(nβ + λ) ((β + λ)(nβ + λ)− nβ2)
(8.29)

=
β2
0λ

2

(nβ + λ)(nβλ+ βλ+ λ2)

=
β2
0λ

(nβ + λ)((n+ 1)β + λ)
(8.30)

In (8.28) we replaced β2 with the smaller β0. This is valid because the overall term
is positive and the numerator is nonnegative because β0 ≤ β2 and β1 ≤ β. In (8.29)
we replaced β1 with the larger β. This is valid because the derivative of (8.28) with
respect to β1 is negative. Using the quotient rule the derivative of (8.28) with respect
to β1 becomes:

(nβ + λ)
(
(β + λ)(nβ + λ) − nβ2

1

)
2(β0(nβ + λ) − nβ0β1)(−nβ0) − (β0(nβ + λ) − nβ0β1)

2 (nβ + λ)(−2nβ1)

c2

= 2n(nβ + λ)c−2
((

(β + λ)(nβ + λ) − nβ2
1

)
(β0(nβ + λ) − nβ0β1)(−β0) − (β0(nβ + λ) − nβ0β1)

2 (−β1)
)

= 2n(nβ + λ)c−2
(
(β0(nβ + λ) − nβ0β1)

2 β1 −
(
(β + λ)(nβ + λ) − nβ2

1

)
(β0(nβ + λ) − nβ0β1)β0

)

= 2n(nβ + λ)c−2
(
(nβ + λ − nβ1)

2 β2
0β1 −

(
(β + λ)(nβ + λ) − nβ2

1

)
(nβ + λ − nβ1)β

2
0

)

= 2n(nβ + λ)c−2β2
0(nβ + λ − nβ1)

(
(nβ + λ − nβ1) β1 −

(
(β + λ)(nβ + λ) − nβ2

1

))

= 2n(nβ + λ)c−2β2
0(nβ + λ − nβ1) ((nβ + λ)β1 − (β + λ)(nβ + λ))

= 2n(nβ + λ)2c−2β2
0︸ ︷︷ ︸

≥0

(nβ + λ − nβ1)︸ ︷︷ ︸
≥0

(β1 − β − λ)
︸ ︷︷ ︸

≤0

≤ 0.

We have now shown that if we have measured xmult n times that the amount we
can lower the conditional variance of µ(xd) by observing xmult again given in (8.24)
is smaller than the amount given in (8.27) if we observe a new point xnear. This is true
for n = 0, 1, 2, ... so using an induction argument we seemaxx0,...,xn−1∈B(xacc,ε)V arn[µ(xd)]
equals V arn[µ(xd)] under πmult. "
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