
Applied Probability Trust (27 July 2011)

TWENTY QUESTIONS WITH NOISE:
BAYES OPTIMAL POLICIES FOR ENTROPY LOSS

BRUNO JEDYNAK,∗ Johns Hopkins University

PETER I. FRAZIER,∗∗ Cornell University

RAPHAEL SZNITMAN,∗∗∗ Johns Hopkins University

Abstract

We consider the problem of 20 questions with noisy answers, in which we seek to
find a target by repeatedly choosing a set, asking an oracle whether the target
lies in this set, and obtaining an answer corrupted by noise. Starting with a
prior distribution on the target’s location, we seek to minimize the expected
entropy of the posterior distribution. We formulate this problem as a dynamic
program and show that any policy optimizing the one-step expected reduction
in entropy is also optimal over the full horizon. Two such Bayes-optimal policies
are presented: one generalizes the probabilistic bisection policy due to Horstein
and the other asks a deterministic set of questions. We study the structural
properties of the latter, and illustrate its use in a computer vision application.

Keywords: twenty questions; dynamic programing; bisection; search; object
detection; entropy loss; sequential experimental design; Bayesian experimental
design

2010 Mathematics Subject Classification: Primary 60J20
Secondary 62C10;90B40;90C39

1. Introduction

In this article, we consider the problem of finding a target X∗ ∈ Rd by asking a
knowledgeable oracle questions. Each question consists in choosing a set A ⊆ Rd,
querying the oracle whether X∗ lies in this set, and observing the associated response.
While this is closely related to the popular game of “twenty questions”, we consider here
the case where answers from the oracle are corrupted with noise from a known model.
This game appears naturally in a number of problems in stochastic search, stochastic
optimization, and stochastic root finding. In this paper we present an illustrative
application in computer vision.

We consider a Bayesian formulation of this problem using entropy loss. In d = 1
dimension, we seek to minimize the expected entropy of the posterior after a fixed
number of questions. After formulating the problem in Sec. 2, we show in Sec. 3 that
any policy myopically maximizing the expected one-step reduction in entropy is also
optimal in a fully sequential sense (Theorems 1 and 2), and to follow such a policy it
is sufficient to query sets A whose posterior probability of containing X∗ is a specific

∗ Postal address: Whitehead 208-B, 3400 North Charles Street, Baltimore, Maryland, 21218
∗∗ Postal address: 232 Rhodes Hall, Cornell University, Ithaca, NY 14853
∗∗∗ Postal address: Hackerman Hall, 3400 North Charles Street, Baltimore, Maryland, 21218

1

2 B. Jedynak, P.I. Frazier, and R. Sznitman

value given in Theorem 2. We then provide two specific Bayes optimal policies. The
first, described in Sec. 4.1, poses questions about intervals, A = (−∞, x). The second,
which we call the dyadic policy and describe in Sec. 4.2, poses questions about more
general sets. We also provide further analysis of this second policy: a law of large
numbers and a central limit theorem for the posterior entropy (Theorem 3); and an
explicit characterization of the expected number of size-limited noise-free questions
required to find the target after noisy questioning ceases (Theorem 4). Sec. 5 considers
a modified version of the entropic loss in d = 2 dimensions, and shows that a simple
modification of the dyadic policy is asymptotically Bayes optimal for this loss function
(Theorem 5). Sec. 5 also provides a central limit theorem for the posterior entropy
under this policy (Theorem 6). Sec. 6 provides an illustrative application in computer
vision, and Sec. 7 concludes the paper.

When the noise corrupting the oracle’s responses is of a special form, that of a
symmetric channel, the Bayes optimal policy for d = 1 with questions A restricted to be
intervals (described in Sec. 4.1) takes a particularly natural form: choose A = (−∞, x)
where x is the median of the posterior distribution. This policy, called the probabilistic
bisection strategy, was first proposed in [12] (republished in [13]). This policy was
recently shown to be optimal in the binary symmetric case by one of the authors in
[31]. [4] introduces a similar procedure that measures on either side of the median of
the posterior over a discrete set of points, and shows that its error probability decays
at an asymptotically optimal rate. For a review of these two procedures, see [5]. [14, 1]
also both consider a noisy binary search problem with constant error probability over
a discrete set of points, and give optimality results for policies similar to measuring at
the median of the posterior. In [14], this is part of a larger analysis in which the error
probability may vary. [19, 20] analyze noise-tolerant versions of generalized binary
search for searching in a space of hypotheses. A parallel line of research has considered
the case when the oracle is adversarial rather than stochastic, and is surveyed in [21].

When the questions are restricted to be intervals, the problem that we consider is
similar to the stochastic root-finding problem considered by the seminal paper [24] and
generalized to multiple dimensions by [3]. In the stochastic root-finding problem, one
chooses a sequence of points x1, x2, . . . to query, and observes the corresponding values
f(x1), f(x2), . . . of some decreasing function f at x, obscured by noise. The goal in
this problem is to find the root of f . Procedures include the stochastic approximation
methods of [24, 3], as well as Polyak-Ruppert averaging introduced independently by
[25, 22]. Asymptotic rates of convergence of these procedures are well understood —
see [15]. Our problem and the stochastic root-finding problem are similar because, if
X∗ is the root of f , then querying whether X∗ is in (−∞, x) can be recast as querying
whether f(x) < 0. The problems differ because the noise in observing whether f(x) < 0
depends upon x and is generally larger when f(x) is closer to 0, while in our formulation
we assume that the distribution of the oracle’s response depends only on whether X∗

is in the queried subset or not.

Both our problem and stochastic root-finding lie within the larger class of problems
in sequential experimental design, in which we choose at each point in time which
experiment to perform in order to optimize some overall value of the information
obtained. The study of this area began with [23], who introduced the multi-armed
bandit problem later studied by [16, 2, 11, 32, 33] and others. For a self-contained
discussion of sequential experimental design in a Bayesian context, see [7].

Twenty Questions with Noise 3

2. Formulation of the problem

Nature chooses a continuous random variable X∗ with density p0 with respect to
the Lebesgue measure over Rd. The fact that X∗ is continuous will turn out to be
important and the arguments presented below do not generalize easily to the case
where X∗ is a discrete random variable.

To discover X∗, we can sequentially ask N questions. Asking the nth question,
0 ≤ n ≤ N − 1, involves choosing a Lebesgue measurable set An ⊂ Rd and evaluating:
“Is X∗ ∈ An?”. To avoid technical issues below, we require that An is the union
of at most Jn half-open intervals, where J0, J1, . . . is a fixed sequence of natural
numbers. The answer, denoted Zn, is the indicator function of the event {X∗ ∈
An}. However, Zn is not openly communicated to us. Instead, Zn is the input of a
memoryless noisy transmission channel from which we observe the output Yn+1. Yn+1

is a random variable which can be discrete or continuous, univariate or multivariate.
The memoryless property of the channel expresses the fact that Yn+1 depends on Zn,
but not on previous questions or answers. As a consequence, repeatedly answering the
same question may not provide the same answer each time. Moreover, we assume that
the distribution of Yn+1 given Zn does not depend on n. There is a measure µ on the
space in which Yn+1 takes value, and the density with respect to µ of Yn+1 given Zn is

P (Yn+1 ∈ dy|Zn = z)

dµ
=

{
f1(y) if z = 1,
f0(y) if z = 0.

(1)

If Yn+1 is discrete, then we make take µ to be a discrete measure, while if Yn+1 is
continuous we may take µ to be the Lebesgue measure. We require that the Shannon
entropy of the conditional distribution P (Yn+1 ∈ · |Zn = z) be finite for both z = 0
and z = 1. At any time step n, we may characterize what we know about X∗ by
computing the conditional density pn of X∗ given the history of previous measurements
Dn = (Am, Ym+1)n−1

m=0. Following the terminology of Bayesian statistics, we call pn the
posterior density. The study of the stochastic sequences of densities pn, under different
policies, constitutes the main mathematical contribution of this paper. For an event
A, we will use the notation

pn(A) =

∫
A

pn(x)dx.

The posterior density pn+1 of X∗ after observing Dn+1 is elegantly described as a
function of pn, f0, f1, the nth question An and the answer to this question Yn+1.

Lemma 1. On the event An = A and Yn+1 = y, the posterior density on X∗ is

pn+1(u) =
1

Z
(f1(y)1u∈A + f0(y)1u6∈A) pn(u),

where

Z = f1(y)pn(A) + f0(y)(1− pn(A)) (2)

Proof. On the event An = A and Yn+1 = y, the posterior density pn+1(u) =
P (X∗∈du|Dn+1)/dλ = P (X∗∈du|Dn, An=A, Yn+1 =y)/dλ, where λ is the Lebesgue

4 B. Jedynak, P.I. Frazier, and R. Sznitman

measure, can be written using Bayes’ formula as

1

Z
[P (Yn+1 ∈ dy|Dn, An = A,X∗ = u)/dµ] [P (X∗ ∈ du|Dn, An = A)/dλ]

=
1

Z
(f1(y)1u∈A + f0(y)1u6∈A) pn(u)

where Z is the normalizing constant, Z =
∫
u

(f1(y)1u∈A + f0(y)1u6∈A) pn(u)du.

Later, we will take conditional expectations given the density pn. Formally, these
conditional expectations are taken with respect to the sigma-algebra generated by the
stochastic process {pn(u) : u ∈ I}. Because pn(u) for each u is a function of Dn by the
recursive expression in Lemma 1, this sigma-algebra is a subset of the sigma-algebra
generated by Dn.

We will measure the quality of the information gained about X∗ from these N
questions using the Shannon differential entropy. The Shannon differential entropy
(see [6] Chapter 9), or simply “the entropy” of pn, H(pn), is defined as

H(pn) = −
∫ +∞

−∞
pn(x) log pn(x)dx

where log is the logarithm in base 2. In particular, we consider the problem of finding
a sequence of N questions such that the expected entropy of X∗ after observing the
N th answer is minimized.

We will write this problem more formally as the infimum over policies of the expec-
tation of the posterior entropy, but before doing so we must formally define a policy.
Informally, a policy is a method for choosing the questions An as a function of the
observations available at time n. The technical assumption that each question An is a
union of only finitely many intervals ensures the Borel-measurability of H(pN) under
each policy.

First, An is the union of at most Jn half-open intervals, and so may be written

An =

Jn⋃
j=1

[an,j , bn,j),

where an,j ≤ bn,j are elements of R = R ∪ {−∞,+∞}. If an,j = −∞ then the
corresponding interval is understood to be open on the left. Here J0, J1, . . . , JN−1 is
any fixed sequence of natural numbers that is the same for all policies. If An comprises
strictly less than Jn intervals then we may take an,j = bn,j for some j. When An is
written in this way, the space in which An takes values may be identified with the

space An = {(aj , bj) : j = 1, . . . , Jn, aj ≤ bj}, which is a closed subset of R2Jn
.

Then, with p0 fixed, pn may be identified with the sequence ((am,j , bm,j)
Jm
j=1, Ym+1)n−1

m=0,
which takes values in the space Sn = (A0×· · ·×An−1)×Rn. Furthermore, the function
pn 7→ H(pn) may be written as a measurable function from Sn to R.

Thus, after having identified possible values for An with points in An and possible
values for pn with points in Sn, we define a policy π to be a sequence of functions
π = (π0, π1, . . .), where πn : Sn 7→ An is a measurable function. We let Π be
the space of all such policies. Any such policy π induces a probability measure on

Twenty Questions with Noise 5

((an,j , bn,j)
Jn
j=1, Yn+1)N−1

n=0 . We let Eπ indicate the expectation with respect to this
probability measure. In a slight abuse of notation, we will sometimes talk of p ∈ Sn
and A ∈ An, by which we mean the density p assocatied with a vector in Sn, or the
set A associated with a vector in An.

With this definition of a policy π, the associated measure Eπ, and the space of all
policies Π, the problem under consideration may be written,

inf
π∈Π

Eπ[H(pN)]. (3)

Any policy attaining the infimum is called optimal. We consider this problem for the
general case in Sec. 3, and for the specific cases of d = 1 and d = 2 in Sec. 4 and Sec. 5
respectively. In Sec. 5, we also consider a modification of this objective function that
separately considers the entropy of the marginal posterior distribution, and ensures
that both entropies are small. This prevents a policy from obtaining optimality by
learning one coordinate of X∗ without learning the other.

3. Entropy Loss and Channel Capacity

In this section we consider the problem (3) of minimizing the expected entropy of
the posterior over Rd. We present general results characterizing optimal policies, which
will be used to create specific policies in Sec. 4 and Sec. 5.

We first present some notation that will be used within our results. Let ϕ be the
function with domain [0, 1] defined by

ϕ(u) = H(uf1 + (1− u)f0)− uH(f1)− (1− u)H(f0).

ϕ(u) is a mutual information, see (7) and (10). The associated channel capacity C is

C = sup
u∈[0,1]

ϕ(u).

Below, in Theorem 1, we show that this maximum is attained in (0, 1). Let u∗ ∈ (0, 1)
be a point attaining this maximum, so ϕ(u∗) = C.

We show that an optimal policy consists of choosing each An so that pn(An) = u∗.
When the An are chosen in this way, the expected entropy decreases arithmetically by
the constant C at each step. Moreover, if the communication channel is symmetric in
the sense that ϕ(1 − u) = ϕ(u), ∀0 ≤ u ≤ 1, then u∗ = 1

2 . In the noiseless case, or
even the case where the support of f0 and f1 do not overlap, the model is symmetric,
C = 1 and the obvious bisection policy is optimal.

Optimal policies constructed by choosing pn(An) = u∗ are greedy policies (or
“knowledge-gradient” policies as defined in [9]), since they make decisions that would
be optimal if only one measurement remained, i.e., if N were equal to n + 1. Such
greedy policies are usually used only as heuristics, and so it is interesting that they are
optimal in this problem.

Our analysis relies on dynamic programming. To support this analysis, we define
the value function,

V (p, n) = inf
π∈Π

Eπ[H(pN)|pn = p], p ∈ Sn, n = 0, . . . , N.

6 B. Jedynak, P.I. Frazier, and R. Sznitman

Standard results from controlled Markov processes show that this value function
satisfies Bellman’s recursion (Section 3.7 of [8]),

V (p, n) = inf
A∈An

E[V (pn+1, n+ 1)|An = A, pn = p], p ∈ Sn, n < N, (4)

where the expectation is taken over Yn+1, and any policy attaining the minimum of
(4) is optimal (Section 2.3 of [8]). In general, the results of [8] for general Borel models
imply only that V (·, n) : Sn 7→ R is universally measurable, and do not imply Borel-
measurability. However, we show below in Theorem 2 that, in our case, V (·, n) : Sn 7→
R is a Borel-measurable function.

As a preliminary step toward solving Bellman’s recursion, we present the following
theorem, which shows that minimizing the expected entropy of the posterior one step
into the future can be accomplished by choosing An as described above. Furthermore,
it shows that the expected reduction in entropy is the channel capacity C.

Theorem 1.
inf
A∈An

E[H(pn+1)|An = A, pn] = H(pn)− C. (5)

where the expectation is taken over Yn+1. Moreover, there exists a point u∗ ∈ (0, 1)
such that ϕ(u∗) = C, and the minimum in (5) is attained by choosing A such that
pn(A) = u∗.

Proof. We first rewrite the expected entropy as

E[H(pn+1) | An = A, pn] = H(pn)− I(X∗, Yn+1 | An = A, pn),

where I(X∗, Yn+1 | An = A, pn) is the mutual information between the conditional
distributions of X∗ and Yn+1 (see [6] Chapter 2), and we have noted that the entropy
of X∗ given An = A and pn is exactly H(pn). This leads to

inf
A∈An

E[H(pn+1) | An = A, pn] = H(pn)− sup
A∈An

I(X∗, Yn+1 | An = A, pn). (6)

Temporarily fixing A, we expand the mutual information as

I(X∗, Yn+1 | An = A, pn) = H(Yn+1 | An = A, pn)−H(Yn+1 | X∗, An = A, pn). (7)

where H(.|.) is the conditional entropy, as defined in [6] Chapter 2. Using (2),

H(Yn+1 | An = A, pn) = H(pn(A)f1 + (1− pn(A))f0). (8)

Also,

H(Yn+1 | X∗, An = A, pn) =

∫
u

pn(u)H(Yn+1 | X∗ = u,An = A, pn)du

=

∫
u∈A

pn(u)H(f1)du+

∫
u 6∈A

pn(u)H(f0)du

= H(f1)pn(A) +H(f0)(1− pn(A)). (9)

The difference between (8) and (9) is ϕ(pn(A)), and so

I(X∗, Yn+1 | An = A, pn) = ϕ(pn(A)) (10)

Twenty Questions with Noise 7

This and (6) together show that

sup
A∈An

I(X∗, Yn+1 | An = A, pn) = sup
A∈An

ϕ(pn(A)) = sup
u∈[0,1]

ϕ(u) = C.

This shows (5), and that the infimum in (5) is attained by any set A with ϕ(pn(A)) = C.
It remains only to show the existence of a point u∗ ∈ (0, 1), with ϕ(u∗) = C.

First, ϕ is a continuous function, so its maximum over the compact interval [0, 1]
is attained. If the maximum is attained in (0, 1), then we simply choose u∗ to be this
point. Now consider the case when the maximum is attained at u ∈ {0, 1}. Because
ϕ is a mutual information, it is non-negative. Also, ϕ(0) = ϕ(1) = 0. Thus, if the
maximum is attained at u ∈ {0, 1}, then ϕ(u) = 0 for all u, and one can choose u∗ in
the open interval (0, 1).

We are ready now to present the main result of this section, which gives a simple
characterization of optimal policies.

Theorem 2. Any policy that chooses each An to satisfy

pn(An) = u∗ ∈ arg max
u∈[0,1]

ϕ(u) (11)

is optimal. In addition, for each n, the value function V (·, n) : Sn 7→ R is Borel-
measurable and is given by

V (pn, n) = H(pn)− (N − n)C. (12)

Proof. It is enough to show for each n = 0, 1, . . . , N that the value function is given
by (12), and that the described policy achieves the minimum in Bellman’s recursion
(4). Measurability of V (·, n) : Sn 7→ R then follows from the fact that pn 7→ H(pn) is
Borel-measurable when written as a function from Sn to R. We proceed by backward
induction on n. The value function clearly has the claimed form at the final time
n = N . Now, fix any n < N and assume that the value function is of the form claimed
for n+ 1. Then, Bellman’s recursion and the induction hypothesis show,

V (pn, n) = inf
A∈An

E[V (pn+1, n+ 1) | An = A, pn]

= inf
A∈An

E[H(pn+1)− (N − n− 1)C | An = A, pn]

= inf
A∈An

E[H(pn+1) | An = A, pn]− (N − n− 1)C (13)

= H(pn)− C − (N − n− 1)C

= H(pn)− (N − n)C

where we have used Theorem 1 in rewriting (13) in the next line. Theorem 1 also
shows that the infimum in (13) is attained when A satisfies pn(A) = u∗, and so the
described policy achieves the minimum in Bellman’s recursion.

We offer the following interpretation of the optimal reduction in entropy shown in
Theorem 2. First, the entropy of a random variable uniformly distributed over [a, b]
is log(b − a). The quantity 2H(X) for a continuous random variable X can then be
interpreted as the length of the support of a uniform random variable with the same

8 B. Jedynak, P.I. Frazier, and R. Sznitman

entropy as X. We refer to this quantity more simply as the “length of X.” If the
prior distribution of X∗ is uniform over [0, 1], then the length of X∗ under p0 is 1 and
Theorem 2 shows that the expected length of X∗ under pN is no less than 2−CN , where
this bound on the expected length can be achieved using an optimal policy.

We conclude this section by discussing u∗ and C in a few specific cases. In general,
there is no simple expression for u∗ and for C. However, in certain symmetric cases
the following proposition shows that u∗ = 1

2 .

Proposition 1. If the channel has the following symmetry

ϕ(u) = ϕ(1− u),∀0 ≤ u ≤ 1 (14)

then 1
2 ∈ arg maxu∈[0,1] ϕ(u) and we may take u∗ = 1

2 . Furthermore, if

H(uf1 + (1− u)f0) = H(uf0 + (1− u)f1) for all u ∈ [0, 1], (15)

then this is sufficient to guarantee (14).

Proof. Let u′ be a maximizer of ϕ(u). It might be equal to u∗, or if there is more
than one maximizer, it might differ. Note that 1

2 = 1
2u
′ + 1

2 (1 − u′). ϕ is concave
([6] Chapter 2, Theorem 2.7.4), implying ϕ(1

2) ≥ 1
2ϕ(u′) + 1

2ϕ(1 − u′). Now, using
ϕ(u′) = ϕ(1− u′), we obtain ϕ(1

2) ≥ ϕ(u′), which shows that 1
2 ∈ arg maxu∈[0,1] ϕ(u).

If (15) is met, then H(f0) = H(f1) by taking u = 0, and (14) follows directly from the
definition of ϕ.

A few simple channels with expressions for u∗ and C are presented in Table 1. We
use the notation B(u) for a Bernoulli random variable with parameter u and h(u) for
H(B(u)), the entropy of this random variable. In the multivariate normal case, u∗ = 1

2
follows from Proposition 1 because uf1 + (1− u)f0 is the multivariate normal density
with mean um1 + (1− u)m0 and variance Σ, and the entropy of a multivariate normal
distribution does not depend on its mean, implying (15) is satisfied.

4. 1-Dimensional Optimal Policies

We now present two specific policies in d = 1 dimension that satisfy the sufficient
conditions for optimality given in Theorem 2: the probabilistic bisection policy, and
the dyadic policy. After defining these two policies in Sections 4.1 and 4.2, we study
the sequence of entropies (H(pn) : n ≥ 1) that they generate, focusing on the dyadic
policy. In addition to Theorem 2, which shows that Eπ[H(pn)] = H(p0)− nC for any
optimal policy π, the analysis of the dyadic policy in Sec. 4.2 provides a strong law of
large numbers and a central limit theorem for H(pn). In further analysis of the dyadic
policy, Sec. 4.3 analyzes the number of size-limited noise-free questions required to find
X∗ after noisy questioning with the dyadic policy ceases, which is a metric important
in the application discussed in Sec. 6.

To support the analysis in Sections 4.1 and 4.2, we first give here a general expression
for the one-step change in entropy, H(pn+1) − H(pn), under any policy π satisfying
pn(An) = u∗.

Twenty Questions with Noise 9

Channel Model Channel Capacity u∗

Binary Symmetric
0 1

f0 1− ε ε
f1 ε 1− ε

1− h(ε) 1
2

Binary Erasure
0 1 e

f0 1− ε 0 ε
f1 0 1− ε ε

1− ε 1
2

Z
0 1

f0 1 0
f1 ε 1− ε

h(u∗(1− ε))− u∗h(ε) 1/(1−ε)
1+eh(ε)/(1−ε)

Multivariate Normal f0 ∼ N(m0,Σ)
f1 ∼ N(m1,Σ)

Not analytical 1
2Symmetric

Table 1: Channel capacity, and the value u∗ at which the channel capacity is achieved

Lemma 2.

H(pn+1)−H(pn) = −D
(
B

(
u∗f1(y)

Z

)
, B(u∗)

)
+
u(1− u∗)

Z
(f1(y)− f0(y))(H(p+

n)− log u∗ −H(p−n) + log(1− u∗)), (16)

where D is the Kullback-Leibler divergence.

Proof. First, we define two densities:

p+
n (x) =

{
pn(x)
u∗ , if x ∈ An,

0, if x ∈ Ān,
p−n (x) =

{
pn(x)
1−u∗ , if x ∈ Ān,
0, if x ∈ An,

where Ān is the complement of An. Their entropies are respectively,

H(p+
n) = log u∗ − 1

u∗

∫
An

pn(x) log pn(x)dx,

H(p−n) = log(1− u∗)− 1

1− u∗

∫
Ān

pn(x) log pn(x)dx,

and H(pn) = u∗H(p+
n) + (1− u∗)H(p−n) + h(u∗).

10 B. Jedynak, P.I. Frazier, and R. Sznitman

Using Lemma 1, for a given observation Yn+1 = y, we have

H(pn+1) = logZ − pn+1(An) log f1(y)− pn+1(Ān) log f0(y)

− 1

Z
f1(y)

∫
An

pn(x) log pn(x)dx− 1

Z
f0(y)

∫
Ān

pn(x) log pn(x)dx

= logZ − 1

Z
uf1(y) log f1(y)− 1

Z
(1− u)f0(y) log f0(y)

− 1

Z
u∗f1(y)(log u∗ −H(p+

n))− 1

Z
(1− u∗)f0(y)(log(1− u∗)−H(p−n)).

Expanding and rearranging, we obtain (16).

Note also that under an optimal policy, the density of Yn+1 is the mixture of densities
u∗f1 + (1− u∗)f0 according to Lemma 1, and the random variables Y1, Y2, . . . are i.i.d.

4.1. Probabilistic Bisection Policy

We first consider the case when questions are limited to intervals A = (−∞, a),
a ∈ R. This limitation appears naturally in applications such as stochastic root-finding
[24] and signal estimation [5]. In this case, an optimal policy consists of choosing an
such that

∫ an
−∞ pn(x)dx = u∗. Such an an always exists but is not necessarily unique.

When the model is symmetric in the sense of Proposition 1, u∗ = 1
2 , and an is

the median of pn. This policy of measuring at the median of the posterior is the
probabilistic bisection policy introduced by [12]. Thus, the optimal policy with interval
questions and general channels is a generalization of the probabilistic bisection policy,
and we continue to refer to it as the probabilistic bisection policy even when u∗ 6= 1

2 .
We briefly consider the behavior of (H(pn) : n ≥ 1) under the probabilistic bisection

policy. We assume a binary symmetric channel with noise parameter ε. Recall that
u∗ = 1

2 in this case, and

D

(
B

(
f1(Yn+1)

2Z

)
, B

(
1

2

))
= 1− h(ε). (17)

Moreover,

H(pn+1)−H(pn) = h(ε)− 1 +

(
1

2
− ε
)
Wn+1(H(p+

n)−H(p−n),

where the Wn are i.i.d Rademacher random variables. In this situation, even when
p0 is the density of the uniform distribution over the interval [0, 1], the behavior of
the process H(pn) can be complicated. A simulation of H(pn) is presented in Fig. 1.
The high degree of variation of H(pn) around its mean value evident in Fig. 1 may
be disadvantageous in some applications. We do not pursue the probabilistic bisection
policy further in this paper.

4.2. Dyadic Policy

Consider now the situation where all sets in An are available as questions, and p0

is piecewise constant with finite support. Let I = {Ik : k = 0, . . . ,K − 1} be a finite
partition of the support of p0 into intervals such that p0 is constant and strictly positive
in each of these intervals. We assume that each interval Ik is closed on the left and

Twenty Questions with Noise 11

● ● ● ● ● ●
● ● ● ● ● ● ●

●
● ●

●
● ● ●

●
● ● ● ● ● ●

● ●
● ● ● ●

● ● ●
● ● ● ●

● ● ● ● ●
● ● ● ● ●

0 10 20 30 40 50

−3
0

−2
5

−2
0

−1
5

−1
0

−5
0

eps=0.2

n

H
(X
_n
)

●●

●●

●

●

●

●

●●

●

●

●●

●●●

●●●

●

●

●

●●●●●

●●●

●●●

●

●●●●●

●

●●

●●●●

●

●●●

●●

●

●

●●

●

●●

●●●●●●

●

●

●●

●

●●

●

●

●

●

●●●●

●

●

●●●●●●●

●●

●●

●

●●●●

●●● ●●●●
●

●

●●

●

●●

●

●●
●

●●●

●

●

●●●●●●●
●●

●

●●●

●

●

●●

●●●●●
●
●
●
●
●●●

●

●●

●

●
●
●●
●
●●●

●

●

●

●

●

●●●
●
●

●

●

●

●●●

●●

●

●

●
●●●
●●●
●

●

●●
●●●●
●
●●

● ●

●
●
●
●

●

●●

●
●
●

●

●●●

●●

●

●

●
●
●●●●

●
●●●

●

●●
●

●

●

●●

●
●
●●
●

●

●

●
●
●●●

●

●
●
●
●●
●
●

●
●

●●

●

●

●
●

●

●●
●
●●

●

●

●
●
●●

●

●

●

●

●●●●

●

●

●

●●

●

●

●
●●●

●

●●●

●

●

●

●

●

●

●
●

●
●
●
●

●●
●

●●●

●

●

●●●●●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●●

●
●
●
●
●
●

●

●
●

●

●●
●

●
●●

●

●●

●

●
●

●

●●
●●

●

●●

●

●

●●●●
●

●

●

●
●●

●

●

●

●

●
●

●
●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●●
●
●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●●

●
●

●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●
●●

●

●●

●
●

●

●
●●●

●

●
●

● ●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●
●

●

●
●●

●

●

●

●

●●

●

●

●●●
●●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●
●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●
●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●●

●

●●

●

●
●
●

●●

●

●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●
●

●

●

●

●
●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

0 10 20 30 40 50
−4

−3
−2

−1
0

eps=0.4

n

H
(X
_n
)

●●
●

●●

●

●●●●

●

●

●

●

●●

●

●

●●

●●

●●

●●●

●●

●●●●

●

●●

●

●

●●

●●

●

●

●●

●●

●●●●

●

●

●●

●●●

●●●●

●●●●

●

●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●●●●●

●●

●●

●
●
●

●

●
●

●●

●
●

●

●
●●●●
●

●●

●
●
●

●

●●●

●

●
●
●●●

●

●●●
●
●

●

●●●●

●

●
●
●

●

●●●●●
●
●

●●

●
●●●●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●
●●●
●

●

●
●

●

●●
●
●

●●

●●●
●
●

●

●

●
●●

●

●●

●

●●

●

●
●
●●
●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●●

●●
●●●●

●

●●

●

●
●
●

●●

●

●
●

●

●
●●

●●

●
●

●

●

●

●
●
●●

●

●●
●

●●

●

●
●
●
●●

●

●

●

●●

●

●
●
●●
●
●

●●

●
●
●●

●●

●

●

●●
●

●

●

●

●●
●
●
●●●

●

●●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●
●
●●●

●●

●

●
●

●

●

●●●
●
●

●

●

●

●

●
●
●

●

●

●

●
●●●

●

●

●

●
●

●

●

●●

●●

●
●

●
●●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●

●
●
●●

●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

● ●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

0 10 20 30 40 50

−3
0

−2
5

−2
0

−1
5

−1
0

−5
0

eps=0.2

n

H
(X
_n
)

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0 10 20 30 40 50

−3
0

−2
5

−2
0

−1
5

−1
0

−5
0

f0=N(−1,1) f1=N(1,1)

n

H
(X
_n
)

●● ●
●●

●
●

●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●
●

●
●●
●

●●

●

●

●

●

●
●
●●

●

●

●
●

●●
●

●
●●
●●●

●

●●

●

●
●
●
●●

●

●
●

●
●
●

●
●
●
●

●

●
●

●
●●

●

●
●

●

●
●
●
●

●

●●

●●
●
●
●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●●

●●●

●

●

●

●●

●

●●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●
●

●
●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●
●●
●

●
●
●
●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●
●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●
●●

●

●

●

●●

●

●

●

●

●●
●

●●●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●
●●

●

●
●●
●●●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●●
●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●
●●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●
●
●
●

●●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

Figure 1: The process H(pn) for the binary symmetric channel. p0 is Uniform([0, 1]). Top:
The questions are chosen by the probabilistic bisection policy. Top Left: ε = 0.2, C = 0.28.
Top Right: ε = 0.4, C = 0.03. Bottom: The questions are chosen according to the dyadic
policy. Bottom Left: binary symmetric channel ε = 0.2 Bottom Right: Normal channel.
f0 ∼ N(−1, 1), f1 ∼ N(1, 1). C = 0.47.

open on the right, so Ik = [ak, bk) with ak ∈ R and bk ∈ R. This assumption is without
loss of generality, because if it is not met, we can alter the prior density p0 on a set
of Lebesgue measure 0 (which does not change the corresponding prior probability
measure) to meet it. We also assume that the constants Jn used to construct An
satisfy Jn ≥ 2n+1K. If this restriction is not met, then we are free to increase Jn in
most applications.

For each k = 0, . . . ,K − 1 we partition Ik into two intervals, A0,2k and A0,2k+1,

A0,2k = [a0,2k, b0,2k) = [ak, ak + u∗(bk − ak)),

A0,2k+1 = [a0,2k+1, b0,2k+1) = [ak + u∗(bk − ak), bk).

With this partition, the mass p0(A0,2k) = u∗ p0(Ik). The question asked at time 0 is

A0 =

K−1⋃
k=0

A0,2k,

and p0(A0) = u∗.

12 B. Jedynak, P.I. Frazier, and R. Sznitman

A0,0 A0,1

A1,0 A1,1 A1,2 A1,3

A2,0 A1,1 A2,2 A2,3 A2,4 A2,5 A2,6
A2,7

p0(x)

x0 1

n = 0

n = 1

n = 2

prior

Figure 2: Illustration of the dyadic policy when p0 is uniform on [0, 1] and u∗ = 5/8. The
prior is displayed on top. Below, the sets An,k are illustrated for n = 0, 1, 2. Each question
An is the union of the dark grey subsets An,k for that value of n.

We use a similar procedure recursively for each n = 0, 1, . . . to partition each An,k
into two intervals, An+1,2k and An+1,2k+1, and then construct the question An+1 from
these partitions. Let Kn = 2n+1K and for k = 0, . . . ,Kn − 1 define

An+1,2k = [an+1,2k, bn+1,2k) = [an,k, an,k + u∗(bn,k − an,k)),

An+1,2k+1 = [an+1,2k+1, bn+1,2k+1) = [an,k + u∗(bn,k − an,k), bn,k).

Then from these, we define the question to be asked at time n+ 1,

An+1 =

Kn−1⋃
k=0

An+1,2k.

This construction is illustrated in Fig. 2.
Observe pn+1(An+1,2k) = u∗ pn+1(An,k) implies pn+1(An+1) =

∑Kn−1
k=0 u∗ pn+1(An,k) =

u∗ because {An,k : k = 0, . . . ,Kn−1} is a partition of the support of p0. Thus, this con-
struction satisfies pn(An+1) = u∗, and is optimal. In addition, the setsA0, . . . , An−1 are
constructed without knowledge of the responses, and thus this policy is non-adaptive.
This is useful in applications allowing multiple questions to be asked simultaneously.
We call this policy the dyadic policy because each question is constructed by dividing
the previous question’s intervals into two pieces.

We now provide an analysis that leads to a law of large numbers and a central limit
theorem for H(pn) under this policy when n is large. Under the dyadic policy, we have

H(p+
n) = H(pn) + log u∗ and H(p−n) = H(pn) + log(1− u∗),

which implies, using (16), that

H(pn+1)−H(pn) = −D
(
B

(
u∗f1(Yn+1)

u∗f1(Yn+1) + (1− u∗)f0(Yn+1)

)
, B(u∗)

)
, (18)

where Yn is, as already stated, a sequence of i.i.d random variables with density the
mixture u∗f1 + (1−u∗)f0. We read from (18) that H(pn) is, in this case, a sum of i.i.d

Twenty Questions with Noise 13

random variables. Moreover, each one is bounded above and below. Indeed,

0 ≤ D
(
B

(
u∗f1(Yn+1)

u∗f1(Yn+1) + (1− u∗)f0(Yn+1)

)
, B(u∗)

)
≤ max(D(B(0), B(u∗)), D(B(1), B(u∗))),

implying the bound

min(log(u∗), log(1− u∗)) ≤ H(pn+1)−H(pn) ≤ 0. (19)

For the binary symmetric channel, (18) reduces to a constant, as noted in (17). This
proves the following theorem.

Theorem 3. For any piecewise constant p0, using the dyadic policy,

lim
n→∞

H(pn)

n
= −C a.s. (20)

and

lim
n→∞

H(pn) + nC√
n

D
= N(0, σ2), (21)

where σ2 is the variance of the increment H(pn+1)−H(pn), and can be computed from
the distribution given in (18). A degenerate situation occurs for the binary symmetric
channel with noise ε. In this case, the sequence H(pn) = H(p0)− nC is constant.

The dyadic policy is illustrated in the bottom graphs of Fig 1. H(pn) is plotted as
a function of n. The binary symmetric channel model with ε = 0.2 is shown on the
bottom left. The sequence H(pn) is constant, in sharp contrast with the behavior of
H(pn) for the same model under the probabilistic bisection policy, shown on the top
left of the same figure. Finally, a Normal channel is presented on the bottom right.

4.3. Expected number of noise-free questions

In this section, we consider an alternative to entropy for measuring performance,
which arises in the example considered in Section 6. We suppose that, in addition to
the noisy questions previously discussed, we also have the ability to ask a noise-free
oracle whether X∗ lies in a given set, where the sets about which we can ask noise-free
questions come from some restricted class, e.g., their size is below a threshold. In
Section 6, the sets about which we can ask noise-free questions correspond to pixels in
an image. We suppose that after a fixed number N of noisy questions, we query sets
using the noise-free questions until we find X∗. The loss function that arises naturally
in this situation is the expected number of noise-free questions until X∗ is found.

Given a posterior pN resulting from the first stage of noisy questions, the optimal
way in which to ask the noise-free questions is to first sort the available sets about which
noise-free questions can be asked, in decreasing order of their probability of containing
X∗ under pN . Then, query these sets in this order until X∗ is found. Observing that
X∗ is not in a particular set alters the probability of the other sets, but does not change
the order of these probabilities. Thus it is sufficient to ask the noise-free questions in
an order that depends only upon pN , and no subsequent information.

We give below in Theorem 4 an explicit expression for the expected number of
noise-free questions required after the dyadic policy completes. Before giving this

14 B. Jedynak, P.I. Frazier, and R. Sznitman

expression in Theorem 4, we have the following preliminary result. In both this result
and Theorem 4, we assume the dyadic policy, a uniform p0, and a binary symmetric
channel with noise parameter ε.

Proposition 2. For each k ∈ {0, . . . , 2N−1}, let Mk be the number of noisy questions
An whose answer has indicated X∗ ∈ AN−1,k, either via AN−1,k ⊆ An and Yn = 1, or
AN−1,k (I \An and Yn = 0. Then, the density of AN−1,k under pN is

|I|−12N (1− ε)MkεN−Mk .

Furthermore, for each m ∈ {0, . . . , N}, the number of k with Mk = m is deterministic,
and is equal to

(
N
m

)
.

Proof. In the proof, we refer to AN−1,k as Bk. During noisy questioning, each time
an answer indicates X∗ ∈ Bk, we multiply the posterior density on Bk by 2(1− ε), and
each time an answer indicates X∗ /∈ Bk we multiply by 2ε. Since the prior density was
|I|−1, the posterior density on Bk after all N measurements is |I|−12N (1−ε)MkεN−Mk .

For each k ∈ {0, . . . , 2N−1}, let bkn = II{Bk ⊆ An}, and define the binary sequence
bk = (bk1, . . . , bkN). By construction of the sets Bk under the dyadic policy, each bk is
unique. Since there are 2N possible binary sequences of N bits, and 2N sets Bk, the
mapping between Bk and bk is a bijection.

Consider a sequence of answers to noisy questions, Y1, . . . , YN . For each bk define
a subset Dk = {n ∈ {1, . . . , N} : bkn = Yn}. Each bk defines a unique subset Dk.
Since there are 2N subsets and 2N sequences bk, each subset D ⊆ {1, . . . , N} is equal
to some Dk. Thus, the mapping between bk and Dk is a bijection.

Because Mk = |Dk|, the number of k with Mk = m is equal to the number of subsets
D ⊆ {1, . . . , N} of size m. This number is exactly

(
N
m

)
.

Proposition 2 shows that the number of sets AN−1,k with any given posterior density
|I|−12N (1 − ε)mεN−m is deterministic. Fig. 3(a) shows this posterior probability
distribution, after sorting the sets according to their density, for N = 5 and ε = 0.3.
The expectation under pN of the number of noise-free questions required to find
X∗ depends only upon this sorted posterior probability density, and is thus also
deterministic. We now give an expression for this expectation in Theorem 4.

Theorem 4. In each interval AN−1,k for k = 0, . . . , 2N − 1, assume that there are
` disjoint equally sized sets about which we can ask noise-free questions. Then the
expectation under pN of the number of noise-free questions required to find X∗ is

N∑
m=0

(
N

m

)
(1− ε)mεN−m

[(
N
m

)
+ 1/`

2
+

N∑
m′=m+1

(
N

m′

)]
`. (22)

Proof. First, if we have a collection of disjoint subsets C1, . . . , CK , each with prob-
ability 1/K of containing X∗, and we query each subset in order of increasing index
until we find X∗, then we ask k questions when X∗ ∈ Ck and the expected number
of questions asked is

∑K
k=1 kP{X∗ ∈ Ck} =

∑K
k=1 k/K = (K + 1)/2. Under pN ,

Proposition 2 shows that X∗ has probability(
N

m

)
(1− ε)mεN−m (23)

Twenty Questions with Noise 15

of being in a subset AN−1,k with Mk = m, because there are
(
N
m

)
such intervals, each

has size 2−N |I|, and each has density |I|−12N (1−ε)mεN−m. Then, because the number
of noise-free questions available in each AN−1,k is `, the expected number of noise-free
questions, conditioned on X∗ being in a subset AN−1,k with Mk = m, is(

N
m

)
`+ 1

2
+

N∑
m′=m+1

(
N

m′

)
`. (24)

Here, the first term is the number of questions asked in subsets with Mk = m, and the
second term is the number asked in subsets with Mk > m, which had a strictly higher
density pN (x) and were queried earlier. Combining (23) and (24) and summing over k
shows the result.

Using Theorem 4, we consider the effect of varying N . Suppose the sets about
which noise-free questions may be asked are pixels in an image, as in the example in
Sec. 6. Take I = [0, 1] and suppose each pixel is of size 2−L and occupies a region
[k2−L, (k + 1)2−L] for some k = 0, . . . , 2L. If sets AN−1,k must contain an integer
numbers of pixels, then we may naturally consider any N between 0 and L. For any
such N , the number of pixels ` in a subset AN−1,k is ` = 2L−N . In this setting, the
expected number of noise-free questions asked as a function of N is shown in Fig. 3(b)
for L = 16 and ε = 0.3. The figure shows a dramatic decrease in the expected number
of noise-free questions as the number of noisy questions N increases.

1 7 17 27 32

sorted subsets

po
st

er
io

r
de

ns
ity

0.
00

0.
05

0.
10

0.
15

(a)

●

●

●

●

●
●

●
●

●
●

●
●

● ● ● ● ●

0 5 10 15

0
10

00
0

20
00

0
30

00
0

noisy questions (N)

E
[#

 n
oi

se
−

fr
ee

 q
ue

st
io

ns
]

(b)

Figure 3: (a) The posterior density pN for the binary symmetric channel with the dyadic
policy, with subsets AN−1,k sorted in order of decreasing posterior density pN (x), and N = 5.
(b) The expected number of noise-free questions as a function of N , for a fixed collection of
216 subsets about which noise-free questions may be asked. In both panels, ε = 0.3.

5. Optimal Policies in 2 Dimensions with Entropy Loss

We now consider the case d = 2, in which X∗ is a two-dimensional random variable,
X∗ = (X∗1 , X

∗
2), with joint density p0. To minimize the expected entropy E[H(pN)] of

the two-dimensional posterior distribution on X∗ at time N , Theorem 2 from Section 3
shows it is optimal to use any policy satisfying pn(An) = u∗.

16 B. Jedynak, P.I. Frazier, and R. Sznitman

While the objective function E[H(pN)] is natural in d = 1 dimension, it has a
drawback in d = 2 and higher dimensions. This is well illustrated using an example.
Assume that X∗1 and X∗2 are independent and uniformly distributed over intervals of
lengths s1 and s2 respectively. Then H(p) = log(s1s2). In this case, H(p) can be
arbitrarily small even if the entropy of one of the marginal densities remains large, e.g.
s2 = 1.

This leads us to consider objective functions without this drawback. For example, we
might wish to solve infπ E

π [max (H1(pN), H2(pN))] whereH1(pN) = H(
∫
pN (· , u2) du2)

and H2(pN) = H(
∫
pN (u1, ·) du1) are the entropies of the marginals. However,

solving this problem directly seems out of reach. Instead, we focus on reducing
Eπ[max (H1(pN), H2(pN))] at an asymptotically optimal rate by solving

V (p) = inf
π

lim inf
N→∞

1

N
Eπ[max (H1(pN), H2(pN)) |p0 = p]. (25)

We use the lim inf to include policies for which the limit might not exist. Throughout
this section, we assume that both H1(p0) and H2(p0) are finite.

For further simplification, we assume that questions concern only one coordinate.
That is, the sets queried are either of type 1, An = B ×R where B is a finite union of
intervals of R, or alternatively of type 2, An = R × B. In each case, we assume that

the response passes through a memoryless noisy channel with densities f
(1)
0 and f

(1)
1

for questions of type 1, and f
(2)
0 and f

(2)
1 for questions of type 2. Let C1 and C2 be the

channel capacities for questions of type 1 and 2 respectively. We also assume that p0

is a product of its marginals. This guarantees that pn for all n > 0 remains a product
of its marginals and that only one marginal distribution is modified at each point in
time. This is shown by the following lemma.

Lemma 3. Assume pn(u1, u2) = p
(1)
n (u1) p

(2)
n (u2) and we choose a question of type 1

with An = B × R. Then, given Yn+1 = y,

pn+1(u1, u2) =
1

Z1

(
f

(1)
1 (y)1{u1∈B} + f

(1)
0 (y)1{u1 6∈B}

)
p(1)
n (u1) p(2)

n (u2),

where Z1 = f
(1)
1 (y) p

(1)
n (B) + f

(1)
0 (y)(1− p(1)

n (B)).
Similarly, if we choose a question of type 2 with An = R×B then

pn+1(u1, u2) =
1

Z2

(
f

(2)
1 (y)1{u2∈B} + f

(2)
0 (y)1{u2 6∈B}

)
p(2)
n (u2) p(1)

n (u1)

where Z2 = f
(2)
1 (y) p

(2)
n (B) + f

(2)
0 (y)(1− p(2)

n (B)).

Proof. The proof is straightforward using Bayes formula, and is similar to the proof
of Lemma 1 from the 1-dimensional case.

In the 2-dimensional setting, any policy can be understood as making two decisions
at each time n. The first decision is which coordinate to query, that is, whether to ask
a question of type 1 or type 2. Given this choice, the second decision is which question
of this type to ask, which corresponds to a finite union of intervals of R. As before,
these decisions may depend only upon the information gathered by time n, for which
the corresponding sigma-algebra is Fn. For N > 0, let SN be the number of questions

Twenty Questions with Noise 17

of type 1 answered by time N . That is, SN is the number of n ∈ {0, . . . , N − 1} such
that An is of the form An = B × R. We take S0 = 0.

We first present a lower bound on the expected decrease in the entropy of each
marginal posterior distribution.

Lemma 4. Under any valid policy π,

Eπ[H1(pn)] ≥ H1(p0)− C1E
π[Sn],

Eπ[H2(pn)] ≥ H2(p0)− C2(n− Eπ[Sn]).

Proof. Define M
(1)
n = H1(pn) + C1Sn and M

(2)
n = H2(pn) + C2(n − Sn). We will

show that M (1) and M (2) are sub-martingales. Focusing first on M (1), we calculate,

Eπ[M
(1)
n+1 | Fn] = Eπ[H1(pn+1) | Fn] + C1Sn+1

since Sn+1 is Fn-measurable. We consider two cases. First, if Sn+1 = Sn (which occurs
if An is of type 2) then H1(pn+1) = H1(pn) and the Fn-measurability of H1(pn) implies

Eπ[M
(1)
n+1 | Fn] = M

(1)
n . Second, if Sn+1 = Sn + 1 (which occurs if An is of type 1),

then Theorem 2 implies

Eπ[H1(pn+1) | Fn] ≥ H1(pn)− C1.

Hence,

Eπ[M
(1)
n+1 | Fn] ≥ C1(Sn + 1) +H1(pn)− C1 = M (1)

n ,

which shows that M
(1)
n is a sub-martingale. The proof is similar for M

(2)
n .

Now, becauseM
(1)
n is a sub-martingale, Eπ[M

(1)
n] ≥M (1)

0 , which implies Eπ[H1(pn)] ≥
H1(p0)− C1E

π[Sn]. Proceeding simlarly for M
(2)
n concludes the proof.

Consider the following policy, notated π∗. At step n, choose the type of question at
random, choosing type 1 with probability C2

C1+C2
and type 2 with probability C1

C1+C2
.

Then, in the dimension chosen, choose the subset to be queried according to the 1-
dimensional dyadic policy.

We show below in Theorem 5 that π∗ is optimal for the objective function (25).
Before presenting this result, which is the main result of this section, we present an
intermediate result concerning the limiting behavior of π∗. This intermediate result is
essentially a strong law of large numbers for the objective function (25).

Lemma 5. Let

TN =
1

N
max(H1(pN), H2(pN)),

Under π∗, as N →∞,

TN → −
C1C2

C1 + C2
a.s. (26)

Moreover there is a constant K such that |TN | < K for all N .

Proof. Recall that SN is the number of questions of type 1 answered by time N ,
so SN/N → C2/(C1 + C2) a.s. The law of large numbers established in (20) for the
one-dimensional posterior shows H1(pN)/SN → −C1 a.s. Combining these two facts

18 B. Jedynak, P.I. Frazier, and R. Sznitman

shows H1(pN)/N → −C1C2/(C1 + C2) a.s. By a similar argument, H2(pN)/N →
−C1C2/(C1 + C2) a.s., which shows (26).

We now show the bound on |TN |. Using π∗, according to (19),

H1(pN) = H1(p0) +

N∑
n=1

Zn,

where Zn are independent bounded random variables and |Zn| ≤ |min(log(u), log(1−
u))| = β. As a consequence, for any N ≥ 1,∣∣∣∣H1(pN)

N

∣∣∣∣ ≤ |H1(p0)|+ β.

The same is true for H2(pN), which proves there is a constant K such that |TN | < K.

We now present the main result of this section.

Theorem 5. The policy π∗ is optimal with respect to (25). Moreover, the optimal
value is, for any p0 with H(p0) <∞,

V (p0) = − C1C2

C1 + C2
(27)

Proof. First we show that the value in (27) constitutes a lower bound for V (p0).
Second, we show (27) is an upper bound on V (p0) using the properties of the policy
π∗ presented in the Lemma 5.

V (p0) ≥ inf
π

lim inf
N→∞

1

N
max(Eπ[H1(pN)], (Eπ[H1(pN)])

≥ inf
π

lim inf
N→∞

1

N
max(H1(p0)− E[SN]C1, H2(p0)− (N − E[SN])C2)

= inf
0≤a≤1

max(−aC1,−(1− a)C2)

= − C1C2

C1 + C2

We obtain the first line using Jensen inequality, the second line using Lemma 4, the
third line by choosing a = lim infn→∞E[SN]/N and the fourth line by recalling that
C1 > 0 and C2 > 0.

Now, the other equality,

V (p0) ≤ lim inf
N→∞

Eπ
∗
[
max

(
H1(pN)

N
,
H2(pN)

N

)]
= Eπ

∗
[
max

(
lim inf
N→∞

H1(pN)

N
, lim inf
N→∞

H2(pN)

N

)]
= − C1C2

C1 + C2

The uniform bound on TN from Lemma 5 is sufficient to justify the exchange between
the limit and the expected value in going from the first to the second line.

Twenty Questions with Noise 19

We remark as an aside that in the case where C1 = C2, this policy is also optimal for
the value function (3) since it verifies (12).

We conclude this section by providing a central limit theorem for the objective under
this policy π∗.

Theorem 6. Under π∗,

lim
n→∞

1√
n

[
max(H1(pn), H2(pn)) +

C1C2

C1 + C2
n

]
D
=

max
(
σ1

√
C2Z1, σ2

√
C1Z2

)
√
C1 + C2

. (28)

Here, Z1 and Z2 are independent standard normal random variables, and σ2
i is the vari-

ance of the increment of Hi(pn+1)−Hi(pn) when measuring type i, whose distribution
is given by (18).

Proof. For i = 1, 2, let Sn,i be the number of questions of type i answered by time
n, so Sn,1 = Sn and Sn,2 = n − Sn. Let ts,i = inf{n : Sn,i = s} for s = 0, 1,
Then t0,i = 0 and {ts,i : s = 1, 2, . . .} are the times when questions of type i are
answered. Thus, each stochastic process {Hi(pts,i) : s = 0, 1, . . .} for i = 1, 2 has a
distribution identical to that of the entropy of the one-dimensional posterior under the
dyadic policy. In addition, the two stochastic processes are independent.

The central limit theorem established in (21) shows

lim
s→∞

Hi(pts,i) + sCi√
s

D
= σiZi,

where each Zi is a standard normal random variable and Z1 is independent of Z2.
From the definition of ts,i,

lim
s→∞

Hi(pts,i) + sCi√
s

D
= lim
n→∞

Hi(pn) + Sn,iCi√
Sn,i

Let j = 1 when i = 2, and j = 2 when i = 1. Then limn→∞ Sn,i/n = Cj/(C1 + C2)
a.s. and

lim
n→∞

Hi(pn) + Sn,iCi√
Sn,i

D
= lim
n→∞

Hi(pn) + n C1C2

C1+C2√
n

√
C1 + C2

Cj
.

These three facts imply,

lim
n→∞

Hi(pn) + n C1C2

C1+C2√
n

D
=

√
Cj

C1 + C2
σiZi.

This shows the expression (28) for the limit.

6. LATEX Character Localization

In this section we present an application of the dyadic policy to a well-established
problem in computer vision: object localization. While the probabilistic bisection
policy has already been applied in computer vision, see [10, 27], the dyadic policy has
not, and we feel that it offers considerable promise in this application area.

20 B. Jedynak, P.I. Frazier, and R. Sznitman

Figure 4: From left to right: Example of an image containing the character “T”. Examples
of subset-based questions. In each image, we show the queried region by the gray area,
respectively A1

2, A2
2 and A3

1.

In the object localization problem, we are given an image and a known object, and
must output parameters that describe the pose of the object in the image. In the sim-
plest case, the pose is defined by a single pixel, but more complex cases can include, e.g.
a rotation angle, a scale factor or a bounding box. Machine learning techniques have led
to the development of classifiers that, given a specific pose, provide accurate answers
to the binary question “Is the object in this pose?” In our model, we assume these
classifiers act as oracles, i.e., are perfect, even though they may occasionally classify
incorrectly in practice. Classifiers such as Support Vector Machines [28] and boosting
[26] are combined with discriminant features, e.g. [18], to provide the most accurate
algorithms, [30, 29]. To find the object’s pose within an image, classifiers are evaluated
at nearly every possible pose, which is computationally costly. We demonstrate that
using the dyadic policy rather than this brute force approach considerably reduces this
computational cost. Although a detailed comparison would be beyond the scope of the
illustrative example we present here, the branch and bound algorithm used in [17] is
an alternative methodology for reducing computational cost in object localization.

6.1. LATEX Character Images, Noisy Queries, and Model Estimation

The task we consider is localizing a specific LATEX character in a binary image. In
this setting, an image is a binary matrix I ∈ {0, 1}m×m, where the image has m rows
and m columns. A LATEX character is another smaller binary image J ∈ {0, 1}j×j ,
where j < m. We present experiments where the character of interest, or pattern, is
the letter “T”. We assume that the pattern is always present in the image, and fully
visible (i.e. not occluded by other objects or only partially visible in the image).The
goal is to find the location X∗ = (X∗1 , X

∗
2) of the pixel at the upper left corner of the

pattern within the image.

We generated 1000 images, each of size 256 × 256 pixels. Each image has a black
background (i.e. pixel values of zero), and contains a single fully visible “T” at a
random location in the image. This “T” is a binary image of size 32 × 32 pixels (see
Fig. 4(a)). Noise is added to the image by flipping each pixel value independently
with probability 0.1. We then randomly assign each image into one of two sets of
approximately equal size: one for training and the other for testing. The training set is
used to learn the noise model as described below, and the testing set is used to evaluate
the performance of the algorithm.

In this task, querying a set A corresponds to asking whether the upper left corner
of the “T” resides in this set. We use a simple image-processing technique to provide

Twenty Questions with Noise 21

a noisy answer to this question. The technique we use is chosen for its simplicity,
and other more complex image-processing techniques might produce more informative
responses, improving the overall performance of the algorithm.

In describing this technique, we first observe that all the images are of size 256×256
pixels and so any pixel coordinate can be represented in base 2 using two 8-bit strings,
or octets. For example, the pixel with column-row location (32,14) is represented by
(00100000, 00001110). We define 16 sets of pixels. Let Ai1, i = 1 . . . , 8 be the set
of pixels whose column pixel coordinate has a 1 for its ith bit. Similarly, let Ai2,
i = 1, . . . , 8 be the set of pixels whose row pixel coordinate has a 1 for its ith bit.
Fig. 4 (b-d) show the sets A1

1, A
2
1 and A3

2, respectively. For any given image I and set
Aij , we define the response

y(Aij) =
∑
x∈Aij

I(x)−
∑
x 6∈Aij

I(x) (29)

where I(x) ∈ {0, 1} is the binary image’s value at pixel x. The motivation for using
the response defined by (29) is that y(Aij) is more likely to be large when Aij contains
the “T”.

Although the response y(Aij) is entirely determined by the image I and the location
of the “T” within it, our algorithm models the response using a noise model of the
form (1). For simplicity, we assume that both the density f1 of y(A) when A contains
the “T”, and the density f0 of y(A) when A does not contain the “T”, are normal
with respective distributions N(µ, σ2) and N(−µ, σ2). The training set is used to
estimate these parameters, leading to µ = 64.76 and σ = 105.7. Because the model is
symmetric, u∗ = 0.5. The channel capacity is estimated with Monte Carlo integration
to be C = 0.23.

6.2. Prior, Posterior, and Algorithm

We let X∗ = (X∗1 , X
∗
2), X∗1 ∈ [0, 255] and X∗2 ∈ [0, 255], with p0 uniform over the

domain of X∗. Since the sets Aij constrain only one coordinate, the posterior over X∗

is a product distribution as was discussed in Sec. 5. The posterior for each coordinate
j = 1, 2 was computed in Lemma 3. We now specialize to the model at hand using the
notation ∝ to define equality up to a term that does not depend on xj .

p
(j)
8 (xj) ∝

8∏
i=1

(f1(yij)1xj∈Aij + f0(yij)1xj 6∈Aij)

log p
(j)
8 (xj) ∝

∑
i:xj∈Aij

log
f1(yij)

f0(yij)
∝

∑
i:xj∈Aij

yij

The algorithm has two phases: (i) the noisy query phase; and (ii) the noise-free
query phase. The noisy query phase comes first, and uses the dyadic policy to obtain
a posterior distribution on X∗. The implementation of this noisy query phase is
facilitated by the non-adaptive nature of the dyadic policy’s questions, which allows us
to compute the answers to the questions all at once. The noise-free query phase then
uses the posterior resulting from the first phase, together with a sequence of size-limited
noise-free questions, to determine the exact location of X∗.

22 B. Jedynak, P.I. Frazier, and R. Sznitman

Figure 5: Pixel Reordering: (top) Example images from the test set. (bottom) Corresponding
`-images. Dark regions indicate pixels more likely to contain the character, while light regions
are less likely.

Noisy Query Phase: Given an image I, we begin by computing y(Aij) = yij , for each
j = 1, 2, and i = 1, . . . , 8. We then compute `(x) for each pixel x, which is proportional
to the logarithm of the posterior density at x,

`(x) =
∑
i:x∈Ai1

yi1 +
∑
i:x∈Ai2

yi2.

Fig. 5(top) shows example images from our test set, while (bottom) shows the corre-
sponding `-images, in which the value of `(x) is plotted for each pixel. Dark regions of
the `-image indicate pixels with large `(x), which are more likely to contain the “T”.

Noise-free Query Phase: We sort the pixels in decreasing order of `(x). We then
sequentially perform noise-free evaluations at each pixel x in this order until the true
pixel location X∗ is found. To perform a noise-free evaluation at a given pixel, we
compare the “T” pattern with the 32× 32 pixel square from the image with upper left
corner at x to see if they match. When X∗ is found, we stop and record the number
of noise-free evaluations performed.

6.3. Results

We validated the algorithm above by evaluating it on the test set described in
Sec. 6.1. To do this, we ran the algorithm on each image and recorded the number
of noise-free evaluations required to locate the target character. The results described
below (i) demonstrate that the dyadic policy significantly reduces the number of noise-
free evaluations required to locate the “T” character, and (ii) allows us to visualize the
results summarized in (12), (20) and (21) within the context of this application.

Recall that each image has 256 × 256 = 65, 536 pixels. Over 500 test images,
the mean, median and standard deviation of the number of noise-free evaluations are
2021.5, 647 and 4066.9, respectively. This corresponds to a speed-up factor of 15 over
an exhaustive (and typical) search policy. Fig. 6(a) shows the sample distribution of

Twenty Questions with Noise 23

(a) (b)

Figure 6: Noise-free evaluations and convergence in entropy. (a) The distribution of number
of noise-free evaluations needed to locate the target character. (b) Plot of H(pn)/n as a
function of n. Each line corresponds to one image, with H(pn)/n plotted over n = 1, . . . , 16.
H(pn)/n converges to 1-C.

the number of noise-free evaluations. We also computed the entropy of the posterior
distribution after the 16 noisy questions are answered. According to (12), E[H(p16)] =
H(p0) − 16C = 16 − 16(.23) = 12.32, which is in agreement with the empirically
observed value E[H(p16)] = 12.3 (with standard deviation 0.716). We also visualized
the convergence of the entropy for each image, as predicted by the law of large numbers

in (20). In Fig. 6(b), we plot H(pn)
n , n = 0, . . . , 16, for each image in our test set. The

empirical variance at n = 16 is very small. Finally, according to (21), the distribution of
H(pn)−(H(p0)−nC)√

n
should be approximately normal. Fig. 7(a) shows the histogram and

(b) a normal Q-Q plot, demonstrating close agreement with the normal distribution.

7. Conclusion

We have considered the problem of 20 questions with noisy responses, which arises
in stochastic search, stochastic optimization, computer vision, and other application
areas. By considering the entropy as our objective function, we obtained sufficient
conditions for Bayes optimality, which we then used to show optimality of two specific
policies: probabilistic bisection and the dyadic policy. This probabilistic bisection
policy generalizes a previously studied policy, while we believe that the dyadic policy
has not been previously considered.

The dyadic policy asks a deterministic set of question, despite being optimal among
fully sequential policies. This lends it to applications that allow multiple questions
to be asked simultaneously. The structure of this policy also lends itself to further
analysis. We provided a law of large numbers, a central limit theorem, and an analysis
of the number of noise-free questions required after noisy questioning ceases. We
also showed that a generalized version of the dyadic policy is asymptotically optimal
in two dimensions for a more robust version of the entropy loss function. We then
demonstrated the use of this policy on an example problem from computer vision.

A number of interesting and practically important questions present themselves for
future work. First, our optimality results assume the entropy as the objective, but in

24 B. Jedynak, P.I. Frazier, and R. Sznitman

(a) (b)

Figure 7: Central Limit Theorem: (a) Distribution of H(pn)−(H(p0)−nC)√
n

, with mean -0.01.

The distribution is close to Gaussian as the Q-Q plot (b) shows.

many applications other objectives are more natural, e.g., the expected number of noise-
free questions as in Section 4.3, or mean-squared error. Second, our results assume that
noise is added by a memoryless transmission channel. In many applications, however,
the structure of the noise depends upon the questions asked, which calls for generalizing
the results herein to this more complex style of noise dependence. We feel that these
and other questions will be fruitful areas for further study.

References

[1] Ben-Or, M. and Hassidim, A. (2008). The Bayesian Learner is Optimal for
Noisy Binary Search. In 2008 49th Annual IEEE Symposium on Foundations of
Computer Science. IEEE. pp. 221–230.

[2] Berry, D. and Fristedt, B. (1985). Bandit Problems: Sequential Allocation
of Experiments. Chapman & Hall, London.

[3] Blum, J. (1954). Multidimensional stochastic approximation methods. The
Annals of Mathematical Statistics 25, 737–744.

[4] Burnashev, M. V. and Zigangirov, K. S. (1974). An interval estimation
problem for controlled observations. Problemy Peredachi Informatsii 10, 51–61.
(originally in Russian).

[5] Castro, R. and Nowak, R. (2008). Active learning and sampling. Foundations
and Applications of Sensor Management 177–200.

[6] Cover, T. M. and Thomas, J. A. (1991). Elements of information theory.
Wiley-Interscience, New York, NY, USA.

[7] DeGroot, M. H. (1970). Optimal Statistical Decisions. McGraw Hill, New York.

[8] Dynkin, E. and Yushkevich, A. (1979). Controlled Markov Processes.
Springer, New York.

Twenty Questions with Noise 25

[9] Frazier, P., Powell, W. and Dayanik, S. (2008). A knowledge gradient
policy for sequential information collection. SIAM Journal on Control and
Optimization 47, 2410–2439.

[10] Geman, D. and Jedynak, B. (1996). An active testing model for tracking
roads in satellite images. IEEE Transactions on Pattern Analysis and Machine
Intelligence 18, 1–14.

[11] Gittins, J. (1989). Multi-Armed Bandit Allocation Indices. John Wiley and
Sons, New York.

[12] Horstein, M. (1963). Sequential decoding using noiseless feedback. IEEE
Transactions on Information Theory 9, 136–143.

[13] Horstein, M. (2002). Sequential transmission using noiseless feedback. IEEE
Transactions on Information Theory 9, 136–143.

[14] Karp, R. and Kleinberg, R. (2007). Noisy binary search and its applications.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, Philadelphia. pp. 881–890.

[15] Kushner, H. J. and Yin, G. G. (1997). Stochastic Approximation Algorithms
and Applications. Springer-Verlag, New York.

[16] Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation
rules. Advances in Applied Mathematics 6, 4–22.

[17] Lampert, C. H., Blaschko, M. B. and Hofmann, T. (2009). Efficient
subwindow search: A branch and bound framework for object localization. IEEE
Transactions on Pattern Analysis and Machine Intelligence 31, 2129–2142.

[18] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision 60, 91–110.

[19] Nowak, R. (2008). Generalized binary search. In 2008 46th Annual Allerton
Conference on Communication, Control, and Computing. pp. 568–574.

[20] Nowak, R. (2009). Noisy generalized binary search. Advances in neural
information processing systems 22, 1366–1374.

[21] Pelc, A. (2002). Searching games with errors: fifty years of coping with liars.
Theoretical Computer Science 270, 71–109.

[22] Polyak, B. (1990). New method of stochastic approximation type. Automation
and Remote Control 51, 937–946.

[23] Robbins, H. (1952). Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society 58, 527–535.

[24] Robbins, H. and Monro, S. (1951). A stochastic approximation method.
Annals of Mathematical Statistics 22, 400–407.

26 B. Jedynak, P.I. Frazier, and R. Sznitman

[25] Ruppert, D. (1988). Efficient estimators from a slowly convergent Robbins-
Monro procedure. Technical Report 781. School of Operations Research and
Industrial Engineering, Cornell University.

[26] Schapire, R. E. (1990). The strength of weak learnability. Machine Learning
5, 197–227–227.

[27] Sznitman, R. and Jedynak, B. (2010). Active testing for face detection and
localization. IEEE Transactions on Pattern Analysis and Machine Intelligence
32, 1914–1920.

[28] Vapnik, V. N. (1995). The nature of statistical learning theory. Springer-Verlag
New York, Inc., New York, NY, USA.

[29] Vedaldi, A., Gulshan, V., Varma, M. and Zisserman, A. (2009). Multiple
kernels for object detection. In Proceedings of the International Conference on
Computer Vision (ICCV).

[30] Viola, P. and Jones, M. J. (2004). Robust real-time face detection.
International Journal of Computer Vision 57, 137–154.

[31] Waeber, R., Frazier, P. I. and Henderson, S. G. (2011). Optimal Entropic
Bisection Search in a Noisy Environment. Technical report. Cornell University.

[32] Whittle, P. (1981). Arm-acquiring bandits. The Annals of Probability 9, 284–
292.

[33] Whittle, P. (1988). Restless bandits: Activity allocation in a changing world.
Journal of Applied Probability 287–298.

