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CONSISTENCY OF SEQUENTIAL BAYESIAN SAMPLING
POLICIES∗

PETER I. FRAZIER† AND WARREN B. POWELL‡

Abstract. We consider Bayesian information collection, in which a measurement policy collects
information to support a future decision. This framework includes ranking and selection, continuous
global optimization, and many other problems in sequential experimental design. We give a sufficient
condition under which measurement policies sample each measurement type infinitely often, ensuring
consistency, i.e., that a globally optimal future decision is found in the limit. This condition is useful
for verifying consistency of adaptive sequential sampling policies that do not do forced random
exploration, making consistency difficult to verify by other means. We demonstrate the use of this
sufficient condition by showing consistency of two previously proposed ranking and selection policies:
optimal computing budget allocation (OCBA) for linear loss, and the knowledge-gradient policy with
independent normal priors. Consistency of the knowledge-gradient policy was shown previously, while
the consistency result for OCBA is new.
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1. Introduction. We consider the general class of sequential Bayesian informa-
tion collection problems. This class of problems is distinguished by the assumption of
a prior distribution on some underlying and unknown truth, the opportunity to adap-
tively perform a sequence of measurements whose results are observed with noise,
a single “implementation decision” made after all measurements are complete, and
a loss assessed at the final time depending on this implementation decision and the
underlying truth. Our goal when studying such problems is to design a measurement
strategy that will best allow making a good implementation decision and, by doing
so, minimize the expected loss.

Sequential Bayesian information collection problems appear in a broad collection
of applications, including ranking and selection for simulation optimization [10], global
optimization [11], combinatorial optimization [31], medical diagnosis [25], oil explo-
ration [3], computer vision [30], and drug dosage-response estimation [13]. Reviews
of this class of problems may be found in [15, 14].

Within the framework of sequential Bayesian information collection, a measure-
ment strategy or policy is a rule for selecting which type of measurement to make
at each point in time. This selection may depend on the data collected so far. If
a measurement policy uses each measurement type infinitely often, then under mild
conditions it learns the underlying truth perfectly in the large-sample limit. Moreover,
in this large-sample limit, it drives the expected loss of the implementation decision
made after all the measurements are complete to zero. We use the word “consistent”
to describe such measurement policies that learn the truth perfectly in the limit.
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If a measurement policy is known to use each measurement type infinitely often,
then conditions for consistency are well understood. In particular, if the space in which
the truth lies has finitely many dimensions, as we assume here, then consistency follows
immediately. Previous work on consistency has focused on those problems where it is
easy to verify that each measurement type is used infinitely often. For example, when
there is only a single measurement type, it follows trivially that this lone measurement
type is used infinitely often. Consistency in this case is very well studied in the
statistics literature; see, e.g., [12] for a very general result showing consistency on an
almost sure set of truths, and for a more recent review, see [18]. Another example
is of those problems in which the policy is forced to occasionally sample at random
among the measurement types. If this forced exploration is sufficiently frequent, it
follows easily that each measurement type is used infinitely often. The reinforcement
learning community has studied this case in the context of sampling-based methods
for solving Markov decision processes; see, e.g., [2].

For many sequential sampling policies, however, it can be difficult to ascertain
whether each measurement type is sampled infinitely often. In particular, when the
next measurement type is chosen adaptively as a deterministic function of the (ran-
dom) data collected so far, then a policy can fall into situations where it becomes
stuck using a strict subset of the measurement types, thus failing to be consistent.

In this article, we provide an easy-to-check sufficient condition for consistency, or
equivalently, that each measurement type is sampled infinitely often. We demonstrate
the use of this sufficient condition by then showing consistency of two measurement
policies for ranking and selection proposed previously in the literature: the optimal
computing budget allocation (OCBA) policy for linear loss proposed in [22], and the
(R1, . . . , R1) policy from [21]. The consistency result for OCBA for linear loss is
new, while consistency for the (R1, . . . , R1) policy was shown previously in [16]. The
new proof presented here is simpler than the one in [16] and demonstrates how the
sufficient conditions can be used to more easily check consistency.

Although the class of sequential Bayesian information collection problems is broad,
we stress here the assumed distinctness of measurement and implementation decisions.
In particular, we assume that all rewards are collected at the final time as a function
only of the implementation decision, and depend only indirectly on measurements.
This excludes a large class of problems such as multiarmed bandit problems (see, e.g.,
[19, 1, 27]), in which actions provide both information and a direct cost or reward.
It also excludes reinforcement learning in real environments (as opposed to simulated
or laboratory environments) in which all actions provide direct costs or rewards.

As stated, most previous work on consistency of sequential sampling policies has
focused on either forced-exploration- or single-measurement-type cases. While we be-
lieve this work is the first to provide general sufficient conditions for verifying whether
a sequential sampling policy with finitely many measurement types uses each mea-
surement type infinitely often, there is previous work showing consistency in specific
information collection problems of specific policies that do not do forced random
exploration. Within Bayesian global optimization, consistency has been considered
under several prior probability distributions. It is well known that a sufficient condi-
tion for such convergence is that the measurement points are dense in the function’s
domain [32], and much effort has been expended to show that this condition is met by
specific algorithms. The algorithms considered are generally one-step optimal Bayes-
ian algorithms such as the expected improvement (EI) algorithm and the P-algorithm
(see, e.g., [29]). Consistency of the P-algorithm for Wiener process priors in one
dimension has been known since [26], and convergence for a more general class of
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Gaussian process priors, again in one dimension, was shown in [6]. Consistency of the
EI algorithm was shown for a 1-dimensional Wiener process prior in [34], and for a
general class of Gaussian process priors in multiple dimensions in [33]. Locatelli [28]
provides a prior under which the EI algorithm is not consistent, and he shows how
this prior may be altered to guarantee convergence.

Within the context of ranking and selection, [16] and [17] show consistency for
the knowledge-gradient policy for the ranking and selection problem with linear loss
and independent normally distributed rewards, with [16] showing it for the case of an
independent normal prior and [17] showing it for the more general case of a multi-
variate normal prior. These papers use the term “asymptotic optimality” instead of
“consistency” because asymptotically minimal expected loss implies that the subop-
timality gap between a policy that converges to the optimum and a Bayes optimal
policy shrinks to zero as the measurement budget increases to infinity. This use of
the term asymptotic optimality should not be confused with asymptotically optimal
rates of convergence, as studied, for example, in [20].

We begin in sections 2 and 3 with a general description of the sequential Bayesian
information collection problem and some preliminary results. Then, in section 4, we
present the main result, which is a sufficient condition for consistency of a measure-
ment policy. In section 5 we apply this result to a ranking and selection problem
with normally distributed rewards and known variance, showing consistency of two
sequential sampling policies: OCBA for linear loss from [22], and the (R1, . . . , R1)
policy from [21] (analyzed more fully under the name “knowledge-gradient policy”
in [16]). We conclude in section 6. Proofs not included in the main text may be found
in the appendix.

2. Problem description. We are interested in whether a particular sequential
sampling policy induces consistency. We first give an informal description of the
problem here, and then give a more formal description in terms of exponential families
in the following subsections.

We suppose that there is some unknown parameter θ whose identity we would like
to learn by making a sequence of measurements X1, X2, . . . , XT with corresponding
observations Y1, . . . , YT . Here, each Xt is chosen from a finite set of measurement
types X , and the observation Yt has a density y �→ p(y;x, θ) that depends on x and θ.
The method by which we choose the next measurement type Xt+1 given the data
(X1, Y1), . . . , (Xt, Yt) collected so far is called the measurement policy. Beginning with
a prior distribution on θ, a sequence of posterior distributions Qt on θ results from
these measurements. After all the measurements are complete at time T , an imple-
mentation decision i is chosen and a loss R(θ; i) is realized. We assume that the Bayes
optimal implementation decision is chosen, which has expected loss mini ET [R(θ; i)],
where ET is the expectation under the posterior at time T . We call a measurement
policy consistent if this achieved expected loss shrinks to a minimal value as T → ∞.

2.1. Sampling model. We begin by supposing we have an observation space
Y ⊆ R

d′
, a parameter space Θ ⊆ R

d, and a finite set X of measurement types. We also
adopt a probability measure Q0 on (Θ,B(Θ)), which is our Bayesian prior, quantifying
our beliefs on which underlying truths are most likely. Here B(Θ) denotes the Borel
σ-algebra on Θ, and similarly for sets other than Θ. We use the notation M(Θ) to
denote the space of probability measures on Θ.

Corresponding to each ϑ ∈ Θ and x ∈ X is a probability measure P ( · ;x, ϑ) on
the observation space (Y,B(Y)) governing the likelihoods of our observations. We
assume that this probability measure has a density p( · ;x, ϑ) : Y �→ R+ with respect



CONSISTENCY OF SEQUENTIAL SAMPLING POLICIES 715

to some σ-finite measure ν( · ;x) on (Y,B(Y)) given by

(1) p(y;x, ϑ) = exp
(
α(ϑ;x)T γ(y;x)− ζ(ϑ;x)

)
,

where T denotes matrix transposition, α : Rd × X �→ R
l′ and γ : Y × X �→ R

l′ are
given functions with l′ an integer, and a normalizing function ζ : Rd × X �→ R is
defined by

ζ(ϑ;x) = log

∫
Y
exp(α(ϑ;x)T γ(y;x))ν(dy;x).

We further assume Θ =
{
ϑ ∈ R

d : |ζ(ϑ;x)| < ∞ ∀x}. This assumption is not
restrictive, since we may place all our prior’s probability mass on a proper subset
of Θ.

We now construct the overarching probability space (Ω,F ,P) on which we define
the random variables θ and (Xt, Yt)t≥1. We define a filtration (Ft) by letting Ft be
the σ-algebra generated by {(Xt′ , Yt′) | t′ ≤ t}, and we define P by requiring

P{θ ∈ A} = Q0(A) for A ∈ B(Θ),

P{Yt ∈ C | Xt, θ} = P (C;Xt, θ) for C ∈ B(Y).

We also require the Yt to be conditionally independent of the other random variables,
given θ and Xt, and the Xt to be conditionally independent of θ given Ft. We let
Pt = P { · | Ft} and Qt := Pt {θ ∈ · }, and we define Et to be the expectation with
respect to Pt. While θ is a random variable taking values in Θ, we write ϑ throughout
to indicate a generic element of Θ. Similarly, Xt and Yt are random variables, while
x and y are generic elements of X and Y, respectively.

The distributions Pt {Xt+1 ∈ · } are chosen by the experimenter and either may
be chosen to be concentrated on a single point in X or may be more general, allowing
randomized measurement decisions. We assume that the sequential sampling policy
depends only upon t and the information collected up to t on θ. That is, we assume
the existence of some measurable function Π : N×M(Θ)× B(X ) �→ [0, 1] giving

Pt {Xt+1 ∈ C} = Π(t, Qt, C) a.s.

This choice of Π is the choice of sequential experimental design or sampling pol-
icy and should be chosen to make the inference about θ as accurate as possible. This
construction may be understood by supposing that nature chooses and fixes θ accord-
ing to Q0 sight-unseen. The experimenter then conducts a sequence of experiments
indexed by t, choosing for each experiment an experiment type Xt based only on the
previous experiment types Xt′ and results Yt′ (where t′ < t) and possibly on some
external source of randomization, and then observes the result Yt whose distribution
is determined by Xt and θ. From these experiments we then infer the value of θ.

With these definitions, we have specified that the sampling distribution for each
measurement type in X comes from an exponential family, with the functions α and γ
and their dependence on the common parameter θ allowing the possibility for depen-
dence between the sampling distributions at each measurement type, with information
from samples of one measurement type allowing inference about the sampling distri-
butions for other measurement types.
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2.2. Loss function and consistency. The sampling model and posterior dis-
tribution from subsections 2.1 and 3.1, and the inference on θ that they support, exist
together with a loss function. The loss function quantifies a sampling policy’s per-
formance and defines an optimization problem over the space of potential sampling
policies.

Let I be a finite set of terminal or “implementation” decisions that could be
employed, and let R : Θ × I �→ R+ be a function that specifies the (nonnegative)
loss R(θ; i) incurred when taking implementation decision i while the true sampling
distribution is given by θ. We assume that ϑ �→ R(ϑ; i) is a measurable function for
each i, and that R(θ; i) is integrable under Q0 ∀i ∈ I.

Given this loss function and a fixed and finite number of samples T that we may
take, we define the expected loss of the sampling policy as E [mini∈I ET [R(θ; i)]].
Our concern is with the asymptotic expected loss of a policy, and so we define the
asymptotic risk of a policy as

lim
T→∞

E

[
min
i∈I

ET [R(θ; i)]

]
.

This limit exists because R is nonnegative, and Jensen’s inequality, together with
the tower property of conditional expectation, shows that E [mini∈I ET [R(θ; i)]] is
nondecreasing in T . We seek conditions on the sampling policy under which this
asymptotic loss is as small as possible.

The best asymptotic loss that we can achieve through sampling is to perfectly
learn the sampling distribution of each measurement type x ∈ X . Define Gx :=
P ( · ;x, θ), which is this sampling distribution under measurement type x. With this
in mind, we call the sampling policy consistent if

(2) lim
T→∞

E

[
min
i∈I

ET [R(θ; i)]

]
= E

[
min
i

E [R(θ; i) | Gx, x ∈ X ]
]
.

If knowing the sampling distribution for all x ∈ X completely determines θ, i.e., if
θ is identifiable, then the right-hand side of (2) is simply E [miniR(θ; i)], which is the
minimal loss achievable given perfect information about θ. Thus, we may think of the
consistency condition as indicating convergence to perfect knowledge and convergence
to a perfect implementation decision in the limit as our sampling policy is allowed
infinitely many measurements.

3. Preliminary results. In this section, we give a few additional definitions
and preliminary results based on the theory of exponential families, the value of
information, and the law of large numbers. These definitions and results will be used
in the main development in section 4.

3.1. Mean-value paramaterization of the posterior. In the Bayesian set-
ting, our belief about θ adjusted by our observations up to time t determines the
posterior distribution Qt. In our exponential family setting, this posterior distribu-
tion takes a convenient form. First, for each t ∈ N and x ∈ X define

Stx =
∑
t′≤t

1{Xt′=x}γ(Yt′ ;x), Ntx =
∑
t′≤t

1{Xt′=x}.

Also define larger random vectors containing them, St = [Stx]x∈X and Nt = [Ntx]x∈X .
Here, Stx takes values in R

l′, St in R
l′|X |, Ntx in R, and Nt in R

|X |. It will also be
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useful to define for each x ∈ X a random variable N∞,x :=
∑

t′1{Xt′=x} taking values
in N ∪ {∞}. With these definitions, we write the posterior density on θ as

dQt

dQ0
(ϑ) = exp

(∑
x∈X

[
α(ϑ;x)TStx − ζ(ϑ;x)Ntx

]− Γ(St, Nt)

)
,

where the normalizer Γ : Rl′|X | × R
|X | �→ R is defined by

Γ(s, n) := log

∫
Θ

exp

(∑
x∈X

α(ϑ;x)T sx − ζ(ϑ;x)nx

)
Q0(dϑ)

and has domain dom(Γ) =
{
(s, n) ∈ R

l′|X | × R
|X | : |Γ(s, n)| < ∞}. We assume that

dom(Γ) is open.
This is an exponential family for the posterior distribution on θ parameterized

by St and Nt. As written, the family has (l′ + 1)|X | parameters, but its rank l may
be smaller. (See [4] for a definition of the rank of an exponential family.) We now
reparameterize the family into its minimal-rank parameterization, and from there into
its mean-value parameterization. The mean-value parameterization is then used in
section 4.

To write the family in minimal-rank form, we define linear functions β : Θ �→ R
l

and τ : Rl′|X | × R
|X | �→ R

l so that∑
x∈X

α(ϑ;x)T sx − ζ(ϑ;x)nx = β(ϑ)T τ(s, n) ∀ ϑ ∈ Θ, s ∈ R
l′|X |, n ∈ R

|X |.

If the original family was of full rank, then l = (l′ + 1)|X | and β(ϑ) is formed by
concatenating the vectors [α(ϑ;x),−ζ(ϑ;x)], x ∈ X , and τ(s, n) is formed by con-
catenating [sx, nx], x ∈ X . If not, and l < (l′ + 1)|X |, then β(ϑ) contains a subset of
l linearly independent rows from [α(ϑ;x),−ζ(ϑ;x)]x∈X , and τ(s, n) is a linear combi-
nation of [sx, nx]x∈X in which the linearly dependent rows have been removed. With
β and τ defined in this way,

(3)
dQt

dQ0
(ϑ) = exp

(
β(ϑ)T τ(St, Nt)− Λ(τ(St, Nt))

)
,

where Λ is defined by

Λ(τ) := log

∫
Θ

exp
(
β(ϑ)T τ

)
Q0(dϑ),

so that Λ(τ(St, Nt)) = Γ(St, Nt) and Λ has domain dom(Λ) =
{
τ ∈ R

l : |Λ(τ)| <
∞} = τ(dom(Γ)). Here, when we write τ(dom(Γ)), we mean the set constructed by
applying the function τ to each point in dom(Γ). We use similar notation below.

Our assumption that dom(Γ) is open, together with the linearity of τ , implies
that the natural parameter space dom(Λ) = τ(dom(Γ)) is open. We then recall
a fundamental result on exponential families (see, e.g., [4, Theorem 1.6.4]). The
openness of dom(Λ) implies that ∇Λ(τ(s, n)) = E [β(θ) | St = s, Nt = n] ∀ s, n ∈
dom(Γ), and ∇Λ is a bijection between the natural parameter space dom(Λ) and
K := ∇Λ(dom(Λ)). Thus we are free to parameterize our posterior at time t in terms
of

Kt := ∇Λ(τ(St, Nt)),
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which is a random variable taking values in K. This is called the mean-value param-
eterization. Since Kt completely determines the posterior distribution Qt on θ, our
policy’s sampling decision can then be written entirely in terms of Kt, and we write
Π(t, k, C) to indicate P {Xt+1 ∈ C | Kt = k}.

We also use the notation P
(k) for k ∈ K to denote the measure on (Θ,B(Θ))

uniquely determined by k. In particular, we then have Qt = P
(Kt). We also write

E
(k) to indicate the expectation taken under P(k).

The following lemma is needed later when we work with the asymptotic behavior
of the sampling policy, and it concerns the limit of the stochastic process (Kt)t∈N. It
uses the notation cl(K) to denote the closure of K in R

l.
Lemma 1. The limit K∞ := limt→∞ Kt exists almost surely, is integrable, and

takes values in cl(K).

3.2. The value of information. The sufficient conditions for consistency, in-
troduced in section 4, use a function g that quantifies the value of information that
could be obtained by learning one or more sampling distributions. The value of infor-
mation is a quantity that was first introduced by [23] and has been applied frequently
within decision theory.

The function g is defined for k ∈ K and C ⊆ X by

g(k;C) := min
i

E
(k) [R(θ; i)]− E

(k)
[
min
i

E
(k) [R(θ; i) | Gx, x ∈ C]

]
.

The quantity g(k;C) gives the expected incremental value of learning the true sam-
pling distribution of all measurement types x ∈ C when we already have the posterior
distribution given by k. Seen another way, g(k;C) is the incremental value of mea-
suring all x ∈ C an infinite number of times.

The nonnegativity of R implies that both outer expectations are nonnegative and
possibly equal to +∞, and that g is well defined when both expectations are finite.
To ensure g is well defined, we take its domain to be

dom(g) :=
{
k ∈ K : E(k) [R(θ; i)] < ∞ ∀i ∈ I

}
.

Then g(k;C) is well defined and finite for all k ∈ dom(g) because Jensen’s inequality
and the tower property of conditional expectation imply that

E
(k)
[
min
i

E
(k) [R(θ; i) | Gx, x ∈ C]

]
is bounded above by mini E

(k) [R(θ; i)]. This also shows that g(k;C) is nonnegative.
Additionally, fixing any i ∈ I and any t ∈ N, our assumption that R(θ; i) is

integrable under Q0 implies that ∞ > E [R(θ; i)] = E [E [R(θ; i) | Kt]], and hence
R(θ; i) is almost-surely integrable under Qt. Since this is true for each i ∈ I, we have
that Kt ∈ dom(g) almost surely.

The following lemma gives a relationship between the function g and consistency.
Lemma 2. The sampling policy Π is consistent iff limt→∞ g(Kt;X ) = 0 almost

surely.
We now make the following assumption on the structure of the sampling policy,

which may be interpreted in this way: if the expected loss cannot be reduced by
learning perfectly the result of any single measurement type, then there is also nothing
to be gained from learning perfectly the results of all the measurement types.
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Assumption 1. If (kt)t∈N is a sequence converging in cl(K) and satisfying
limt→∞ g(kt; {x}) = 0 ∀x ∈ X , then limt→∞ g(kt;X ) = 0.

If this assumption holds, then consistency is equivalent to the condition
limt→∞ g(Kt; {x}) = 0 almost surely for all x ∈ X . This assumption is not re-
strictive, since in cases for which it does not hold we may expand the set X of allowed
measurement types to a larger set X ′ ⊆ 2X for which it does hold. This is done by
considering a block of measurements of formerly distinct types as a new composite
measurement type. Nevertheless, for the discussion that follows, we must check that
our sampling model satisfies Assumption 1 and, if it does not, expand X until it does.

3.3. Law of large numbers. If we are able to establish that each measurement
type is sampled infinitely often, then the following pair of lemmas is sufficient to
prove consistency. They will allow us to concentrate in section 4 on showing that a
measurement policy does indeed sample each measurement type infinitely often.

The first lemma tells us that no further information is to be obtained about
R(θ; i) from Gx if we have already measured x infinitely often. It is essentially a
restatement of the strong law of large numbers and shares much with the Glivenko–
Cantelli theorem (see, e.g., [24]). The second lemma builds upon the first and tells us
that the incremental value g(Kt; {x}) of learning the sampling distribution of x goes
to zero if we measure x infinitely often.

Lemma 3. Let x ∈ X , i ∈ I. Then E∞ [R(θ; i) | Gx] = E∞ [R(θ; i)] almost surely
on {N∞,x = ∞}.

Lemma 4. Let x ∈ X . Then limt→∞ g(Kt; {x}) = 0 almost surely on {N∞,x <
∞}.

4. Sufficient conditions for consistency. In this section we present our main
result, which is a sufficient condition for consistency that can be applied to policies for
which it is difficult to verify whether they sample each measurement type infinitely
often. This sufficient condition is phrased in terms of sets Mx and M∗, which partition
posteriors according to which types of measurement have value, and sets Ak, which
partition measurements according to those that have value and those that do not.

We define M∗ and Mx, x ∈ X , as

Mx :=
{
k ∈ cl(K) : ∃(kt) ⊆ dom(g) converging to k with lim

t→∞ g(kt; {x}) = 0
}
,

M∗ :=
{
k ∈ cl(K) : ∀(kt) ⊆ dom(g) converging to k, lim

t→∞ g(kt; {x}) = 0 ∀x ∈ X
}
.

If, for each x ∈ X , the function k �→ g(k; {x}) is continuous and can be extended
continuously onto the closure cl(dom(g)) of its domain with a new range R+ ∪ {∞},
then these definitions may be simplified to

Mx = {k ∈ cl(dom(g)) : g(k; {x}) = 0} ,
M∗ = {k ∈ cl(dom(g)) : g(k; {x}) = 0 ∀x ∈ X} .

If Assumption 1 also holds, then we have M∗ = {k ∈ cl(dom(g)) : g(k;X ) = 0}.
In this case, the set Mx is the set of knowledge states in which sampling x will

not improve the expected loss. This includes knowledge states in which the sampling
distribution of x is already known. The set M∗ is the set of knowledge states in which
further sampling (of any type) has no value. This is the set to which we would like
our sampling policy to push us, since it is the set in which we have learned as much as
possible. The sets Mx \M∗ are the “x-sticking sets” in which measurements of type
x do not have value but other measurements do.
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( t2)2 

M* M2 

M1 

Kt 

( t1)2 

Fig. 1. 2-dimensional projection of K for the ranking and selection problem. The dimensions
pictured are the posterior variances σ2

t1 and σ2
t2. The vertical axis is M1, where σ2

t1 = 0 and the
first alternative’s sampling mean is known. Similarly, the horizontal axis is M2. Their intersection
is M∗. Dashed lines give open regions around M1 and M2 in which stuck alternatives are not
measured, and the dots Kt are a sequence of knowledge states converging to M∗.

For each k ∈ cl(K), we define Ak := {x ∈ X : k ∈ Mx} to be the set of mea-
surements that are stuck when we are in knowledge state k. To avoid sticking, a
sampling policy should avoid measuring x when in such states. In fact, to guarantee
consistency, a policy need do only a little more. It need only maintain an open region
around these sticking sets in which it avoids measuring the stuck alternatives. This
is the essential content of Theorem 1 below.

The open regions required by Theorem 1 are illustrated in Figure 1, where we
picture the knowledge state that results from a ranking and selection problem with
two alternatives, samples from which are normally distributed with unknown mean
and known variance. This problem is discussed in greater detail in section 5. In
it, if we take an independent normally distributed prior distribution on these two
unknown means, then the posterior distribution on each alternative is parameterized
by its mean and variance, causing knowledge states to have four dimensions.

In the figure, we picture two of these four dimensions: the variances of our be-
lief about each of the two unknown means. When the variance of belief about an
unknown mean is zero, then that mean is known perfectly, and so the sticking set
for an alternative is this set of points. These are pictured as solid lines along the
vertical axis for alternative 2 and along the horizontal axis for alternative 1. The
point at the origin is M∗, and is where both alternatives are known perfectly. To
ensure consistency by Theorem 1, a sampling policy needs an open region around the
vertical axis, excluding the origin, in which it measures only alternative 2, and an
open region around the horizontal axis, excluding the origin, in which it measures
only alternative 1. If these conditions are met, then the sequence of knowledge states
Kt will converge to the origin, attaining consistency.

In this example, we see the necessity of the open regions around the sticking sets.
The variance of our belief about an alternative’s unknown mean is always strictly
positive after finitely many measurements and can only approach 0 in the limit. Thus,
a policy can never reachM1 orM2 with finitely many measurements but can only come
arbitrarily close. If a policy merely guarantees that it never measures alternative 1
when in M1, but measures 1 in all other knowledge states, then its knowledge state
may converge to a point outside M∗, and the policy may not be consistent.

We now state the theorem.



CONSISTENCY OF SEQUENTIAL SAMPLING POLICIES 721

Theorem 1. Suppose that the sampling model satisfies Assumption 1, and let K̃
be a measurable subset of the closure cl(K) of K such that the event{

Kt ∈ K̃ ∀t ∈ N ∪ {∞}
}

is almost sure. If each k ∈ K̃ \M∗ has an open neighborhood U in cl(K) satisfying

(4) lim sup
t→∞

sup
k′∈U∩˜K∩K

Π(t, k′, Ak) < 1,

then the sampling policy given by Π is consistent.
In the next sections we apply this theorem to the ranking and selection problem,

showing consistency of two previously proposed policies. Both of these policies, as
well as many other policies for which it is difficult to verify that they measure each
measurement type infinitely often, are stationary and nonrandomized. By this, we
mean that Π does not depend on t and that Π(t, k, ·) is a point mass on one particular
measurement type, call it XΠ(k), for each k. XΠ(k) is the measurement type used
when the current belief is k. Under these conditions, Theorem 1 simplifies to the
following corollary.

Corollary 1. Suppose the sampling policy given by Π is stationary and nonran-

domized, Assumption 1 is met, and K̃ is defined as in Theorem 1. If each k ∈ K̃ \M∗
has an open neighborhood U in cl(K) such that XΠ(k′) /∈ Ak for each k′ ∈ U ∩K̃ ∩K,
then the policy is consistent.

5. Application to ranking and selection. We apply Theorem 1 from the
previous section to the normal ranking and selection problem, using it to show con-
vergence of a policy previously proposed in the literature. In the ranking and selection
problem, we have a collection of alternatives from which we would like to choose the
one that is best in some sense. One may make a series of measurements before mak-
ing the final selection. We suppose that measurements of an alternative are normally
distributed, and the best alternative is the one with the largest mean.

This problem is formulated as follows. We call the set of alternatives I and its
cardinality |I| = d > 1. Then we take Θ = R

d, and samples of alternative i ∈ I
are normally distributed with mean θi and known precision λi > 0. We suppose
that measurements are taken in batches of some fixed integer size B ≥ 1. We allow
B = 1, which corresponds to taking the measurements one at a time. The possible
measurement types are then X = IB, with

∑B
b=1 1{xb=i} being the number of samples

that measurement type x takes from alternative i. We also have Y = R
B, with yb being

an observation of alternative xb. We take the linear loss function given by

(5) R(ϑ; i) = max
j∈I

ϑj − ϑi.

The sampling density with respect to the Lebesgue measure is

p(y;x, ϑ) =
B∏

b=1

√
λxb

2π
exp

(
−1

2
λxb

(yb − ϑxb
)2
)
.

To put this in the form of (1), we take α(ϑ;x) = (ϑx1λx1 , . . . , ϑxb
λxb

), γ(y;x) = y,

ζ(ϑ;x) =
∑B

b=1 ϑ
2
xb
λxb

/2, and ν(dy;x) =
∏B

b=1

√
λxb

2π exp(− 1
2λxb

y2xb
)dy. Then the

density of the posterior is given by (3) with

β(ϑ) =

[
ϑiλi,−1

2
ϑ2
i λi

]
i∈I

, τ(St, Nt) =
[
S̃ti, Ñti

]
i∈I

,
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where S̃ti =
∑

t′≤t

∑B
b=1 1{Xt′b=i}Yt′b =

∑
x∈X Stx

∑B
b=1 1{xb=i} is the sum of all ob-

servations of alternative i and Ñti =
∑

t′≤t

∑B
b=1 1{Xt′b=i} =

∑
x∈X Ntx

∑B
b=1 1{xb=i}

is the number of times we have observed alternative i.

We suppose that the prior Q0 on θ is a multivariate normal distribution with
independent components and with θi having mean μ̂0i and variance σ2

0i > 0. With
this assumption, the posterior Qt is again normal with independent components, but
now the mean and variance of θi, which we denote μ̂ti and σ2

ti, respectively, are given
by

μ̂ti =

(
μ̂0i

λiσ2
0i

+ S̃ti

)/(
1

λiσ2
0i

+ Ñti

)
, σ2

ti =

(
1

λi

)/(
1

λiσ2
0i

+ Ñti

)
.

With this, we compute Kt as Kt = Et [β(θ)] =
[
μ̂tiλi,−λi(μ̂

2
ti + σ2

ti)/2
]
i∈I , andK and its closure are given by

K =
{[

uiλi,−λi(u
2
i + vi)/2

]
i∈I : u ∈ R

d, v ∈ R
d
++

}
,

cl(K) =
{[

uiλi,−λi(u
2
i + vi)/2

]
i∈I : u ∈ R

d, v ∈ R
d
+

}
,

with R++ being the set of strictly positive real numbers.

We may recover μ̂ti and σ2
ti from Kt, and, more generally, recover the mean and

variance of θi under P
(k) from any k ∈ K. To do so, we define functions μ̂i : cl(K) �→ R

and σ2
i : cl(K) �→ R+ by

μ̂i(k) = ki1/λi, σ2
i (k) = −(ki1/λi)

2 − 2ki2/λi.

Then μ̂ti = μ̂i(Kt), and σ2
ti = σ2

i (Kt). Note that we define μ̂i and σ2
i on cl(K) rather

than on just K.

5.1. Analysis of the sampling model. We now discuss the continuity of the
function g in this sampling model and describe the sets Mx and M∗.

For C ⊆ X , define IC =
{
i ∈ I :

∑
x∈C

∑B
b=1 1{xb=i} > 0

}
, and, for k ∈ cl(K),

define I(k) = {i ∈ I : σ2
i (k) = 0

}
. For k ∈ cl(K)\K, let P(k) denote the measure on Θ

under which μi is independent of (μj)j �=i and is distributed according to μi = μ̂i(k)
almost surely if σ2

i (k) = 0, or μi ∼ Normal(μ̂i(k), σ
2
i (k)) if σ

2
i (k) > 0. This definition

of P(k) for k /∈ K is a natural extension to the earlier definition for k ∈ K because
we can see by checking convergence on elementary sets that if (kt) ⊆ cl(K) converges
to k∗ in cl(K), then P

(kt) converges weakly to P
(k∗). Let E(k) denote the expectation

under P(k).

We now have the following pair of lemmas. In the first lemma, and elsewhere
throughout this work, max over the empty set is understood to be −∞, and min over
the empty set is understood to be +∞.

Lemma 5. dom(g) = K, and, for each C ⊆ X , k �→ g(k;C) is continuous on
dom(g) and can be extended continuously onto cl(dom(g)) = cl(K) by

(6) g(k;C) = E
(k)

[
max

(
max
i∈IC

μi,max
i/∈IC

μ̂i(k)

)]
−max

i∈I
μ̂i(k).

Lemma 6. For k ∈ cl(dom(g)) and C ⊆ X , g(k;C) = 0 iff IC ⊆ I(k).
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These lemmas allow us to write the sets Mx and M∗ as

Mx = {k ∈ cl(dom(g)) : g(k; {x}) = 0} =
{
k ∈ cl(K) : I{x} ⊆ I(k)}

=
{
k ∈ cl(K) : σ2

i (k) = 0 ∀i ∈ I{x}
}
,

M∗ =
{
k ∈ cl(K) : σ2

i (k) = 0 ∀i ∈ I}.
We can also conclude that the sampling model satisfies Assumption 1, since if k ∈
cl(K) has g(k; {x}) = 0 ∀x ∈ X , then σ2

i (k) = 0 ∀i ∈ I, and I(k) = I = IX , implying
through Lemma 6 that g(k;X ) = 0.

5.2. The knowledge-gradient policy. In this section we prove consistency
of the so-called (R1, . . . , R1) policy, first introduced in [21] as one of a large num-
ber of policies for ranking and selection, and analyzed more fully under the name
“knowledge-gradient (KG) policy” in [16]. Throughout this section we will call this
policy the KG policy. The consistency of this policy was established in [16] in a
framework specific to that policy. The new proof presented here is simpler than that
in [16] because it uses Theorem 1 and helps to demonstrate how Theorem 1 can be
applied to prove consistency of a variety of measurement policies.

The KG policy is defined by considering what the incremental value would be of
taking a single sample from alternative x and then stopping. This myopic value of
information is called the KG-factor and written νKG

x (k) when the current knowledge
state is k, and in the normal ranking and selection problem considered here it can be
explicitly calculated for k ∈ cl(K) as

νKG
x (k) =

⎧⎨⎩σ̃x(k)f

(
− |μ̂x(k)−maxi�=x μ̂i(k)|

/
σ̃x(k)

)
if σ2

x(k) > 0,

0 if σ2
x(k) = 0,

where σ̃x(k) =
√
λxσ2

x(k)/(
1

σ2
x(k)

+ λx), and f(z) = zΦ(z)+ϕ(z), with Φ the standard

normal cumulative distribution function and ϕ the standard normal probability den-
sity function. The KG policy calculates the KG-factor νKG

x (Kt) for each alternative x,
and then samples the alternative with the largest KG-factor, thus satisfying

(7) Xt ∈ argmax
x

νKG
x (Kt).

Ties may be broken at random, or according to some fixed ordering on the alter-
natives (e.g., smallest index). In the second case, the KG policy is stationary and
nonrandomized. The way in which ties are broken does not affect consistency.

Theorem 2. The KG policy defined by (7) is consistent.

Proof. Let K̃ = cl(K), and choose any k ∈ K̃ \M∗. Define the set U for this k as

U :=

{
k′ ∈ cl(K) : min

x/∈Ak

νKG
x (k′) > max

x∈Ak

νKG
x (k′)

}
.

We now check the conditions of Theorem 1. When Ak is empty, U = cl(K), and
the conditions of the theorem (U is open, k ∈ U , and the condition in (4)) are met
trivially. Consider the case when Ak is not empty.

First, the function k′ �→ νKG
x (k′) is continuous with domain cl(K), which implies

that U is open in cl(K). Second, Ak =
{
x : σ2

x(k) = 0
}
, and so the two facts νx(k) = 0

when σ2
x(k) = 0 and νx(k) > 0 when σ2

x(k) > 0 together imply that k ∈ U . Third, for



724 PETER I. FRAZIER AND WARREN B. POWELL

any k′ ∈ U , minx/∈Ak
νKG
x (k′) > maxx∈Ak

νKG
x (k′). Since k /∈ M∗ implies Ak �= X ,

there is at least one x /∈ Ak whose KG-factor νKG
x (k′) is strictly larger than the KG-

factor of each alternative in Ak. This implies that the KG policy does not measure an
alternative in Ak, and Π(t, k′, Ak) = 0 for each t. This, together with U ⊆ cl(K) = K,
implies that the condition in (4) is met. This shows that the KG policy meets the
conditions of Theorem 1 and thus is consistent.

5.3. The OCBA for linear loss policy. We now show consistency of the
optimal computing budget allocation (OCBA) for linear loss, which is a ranking and
selection policy that operates within this known-variance normal sampling model and
was first proposed by [22]. This policy is the product of a line of research on OCBA
policies beginning with [7, 8, 9].

OCBA for linear loss is derived by first supposing that the current batch of B
samples to be taken will be the last, and then choosing a measurement allocation that
approximates the measurement allocation that would be optimal were this single-batch
assumption true. The policy bases its measurement decisions upon an approximation
to the reduction in expected linear loss achieved by a batch of measurements. It is
described fully in Algorithm 1.

Algorithm 1. OCBA for linear loss.
Require: Input knowledge state k ∈ cl(K) satisfying |argmaxi μ̂i(k)| = 1, the batch

size B, and an integer parameter m dividing B.
1: Choose i∗ ∈ argmaxi μ̂i(k). This choice is unique by assumption.
2: For i ∈ I \ {i∗}, define

δi := μ̂i∗(k)− μ̂i(k), σ̃i,i∗ :=
√
σ2
i (k) + (B/m+ 1/σ2

i∗(k))
−1,

σ̃i :=
√
σ2
i (k) + σ2

i∗(k), σ̃i∗,i :=
√
σ2
i∗(k) + (B/m+ 1/σ2

i (k))
−1,

with σ̃i,i∗ = σi(k) if σi∗(k) = 0, and σ̃i∗,i = σi∗(k) if σi(k) = 0.
3: Define

Di(k) :=

{
σ̃i∗,if(δi/σ̃i∗,i)− σ̃if(δi/σ̃i) if i �= i∗,∑

i�=i∗ σ̃i,i∗f(δi/σ̃i,i∗)− σ̃if(δi/σ̃i) if i = i∗,

where f(z) := ϕ(z)+zΦ(z), ϕ is the normal probability density function, and Φ is
the normal cumulative distribution function. For any δ ∈ R, we take 0 · f(δ/0) =
limσ→0 σf(δ/σ) = 0.

4: Define S(m) := {i ∈ I : Di(k) is among the m lowest values}.
5: Allocate B/m samples to each alternative in S(m), and no samples to other

alternatives.

Algorithm 1 assumes of its input that |argmaxi μ̂i(k)| = 1. When using the
OCBA for linear loss policy as described in [22], one usually begins with a nonin-
formative prior, then takes a fixed number of measurements from each alternative
to obtain an informative posterior belief, and only afterward uses the OCBA pol-
icy. The belief after the fixed first stage will almost surely satisfy this assumption
|argmaxi μ̂i(k)| = 1, as will all subsequent beliefs. In such a setting, our consistency
result may then be understood as beginning where sampling under OCBA for linear
loss begins—immediately after the first stage completes—and Theorem 3 below shows
that OCBA for linear loss is consistent under the belief held at this time.
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Theorem 3. Suppose that |argmaxi μ̂0i| = 1. Then the OCBA for linear loss
defined in Algorithm 1 is consistent for the sampling model and loss function in sec-
tion 5.

Proof. Let K̃ = {k ∈ cl(K) : |argmaxi μ̂i(k)| = 1}. The assumed uniqueness of

argmaxi μ̂0i implies Kt ∈ K̃ almost surely for each t ∈ N, and this together with the

fact that P{μi = μj , i �= j} = 0 implies K∞ ∈ K̃ almost surely.

Now choose k̃ ∈ K̃ \M∗, let i∗ ∈ argmaxi μ̂i(k̃), and define U by

U :=

{
k ∈ cl(K) : μ̂i∗(k) > max

i�=i∗
μ̂i(k), min

i∈I(k̃)
Di(k) > max

i/∈I(k̃)
Di(k)

}
.

We first note that if i ∈ I(k̃), then σ2
i (k̃) = 0, implying Di(k̃) = 0. Also, if i /∈

I(k̃), then σ2
i (k̃) > 0, implying Di(k̃) < 0. Thus mini∈I(k̃) Di(k̃) > maxi/∈I(k̃) Di(k̃),

including in the cases I(k̃) = ∅ and I(k̃) = X . Thus k̃ ∈ U .

Second, for each k ∈ U ∩ K̃ ∩ K, mini∈I(k̃) Di(k) > maxi/∈I(k̃) Di(k) implies that

the OCBA for linear loss policy assigns at least B/m measurements to an alternative
outside I(k̃). Since Ak̃ consists of those measurement types allocating all B samples

within I(k̃), we have XΠ(k) /∈ Ak̃.
Third, since both Di and μ̂i are continuous for each i ∈ I, U is open in cl(K).

Thus the conditions of Corollary 1 are met, and consistency follows.

6. Conclusion. We have presented a powerful and general sufficient condition
for consistency of a sequential sampling policy. We have demonstrated the applica-
bility of this sufficient condition by using it to show consistency of two policies for
ranking and selection: OCBA for linear loss and (R1, . . . , R1). Although consistency
by itself is no guarantee that a policy performs well in practice, lack of consistency
is a dangerous signal suggesting that a policy may perform extremely poorly in some
cases. For this reason, it is our hope that the work we present here may be used
to more easily check whether a policy under consideration is consistent, offering a
warning to those using inconsistent policies, and reassurance to those using consistent
policies.

Appendix.
Proof of Lemma 1. The random variable β(θ) is integrable under Q0 and hence

under P because the measure Q0 is in the exponential family with natural parameter
τ(S0, N0) = 0 ∈ dom(Λ), and the openness of dom(Λ) implies that the moment
generating function of β(θ) under Q0, which is exp(Ψ( · )), is finite in an open ball
around 0 in R

l.
The integrability of β(θ), together with the fact Kt = Et [β(θ)], implies that

(Kt)t∈N is a uniformly integrable martingale. By [24, Theorem 6.21], (Kt)t∈N con-
verges almost surely to an integrable random variable. This random variable is K∞.
It takes values in cl(K) because each Kt takes values in K.

Proof of Lemma 2. For each T ∈ N, the inner expectation on the right-hand side
of (2) satisfies E [R(θ; i) | Gx, x ∈ X ] = ET [R(θ; i) | Gx, x ∈ X ] since (Xt, Yt)t≤T

is conditionally independent of R(θ; i) given Gx, x ∈ X . Using this and the tower
property of conditional expectation, the right-hand side of (2) can be rewritten as
E [ET [mini∈I ET [R(θ; i) | Gx, x ∈ X ]]]. Thus, consistency holds iff

lim
T→∞

E

[
min
i

ET [R(θ; i)]− ET

[
min
i

ET [R(θ; i) | Gx, x ∈ X ]
]]

= 0,
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which is true iff g(KT ;X ) = mini ET [R(θ; i)] − ET [mini ET [R(θ; i) | Gx, x ∈ X ]]
converges almost surely to 0, where we use the fact that applying Jensen’s inequal-
ity and the tower property to ET [mini ET [R(θ; i) | Gx, x ∈ X ]] shows g(KT ;X ) is
nonnegative.

Proof of Lemma 3. Fix x ∈ X and i ∈ I, and let Ωx denote the event {N∞,x = ∞}.
Let C denote a countable separating class for Y. Then, any measure on Y is completely
determined by the values it takes on the elements of C, and σ {Gx} =

∨
C∈C σ {Gx(C)},

where Gx(C) = P (C;x, θ).
Thus, E∞ [R(θ; i) | Gx] may be written as f((Xt, Yt)t∈N, (Gx(C))C∈C) for some

measurable function f : (X × Y)N × [0, 1]C �→ R. For each C ∈ C define

ĜC :=

{
0 if

∑
t∈N

1{Xt=x} = 0,

limt→∞
(∑

t′≤t 1{Xt′=x}1{Yt′∈C}
)/

Ntx otherwise.

This random variable is F∞-measurable, and the event
{
ĜC = Gx(C) ∀C ∈ C} is

almost sure on Ωx by the strong law of large numbers and the countability of C. Thus,
E∞ [R(θ; i) | Gx] = f((Xt, Yt)t∈N, (Gx(C))C∈C) = f((Xt, Yt)t∈N, (ĜC)C∈C)

almost surely on Ωx, and E∞ [R(θ; i)1Ωx | Gx] = f((Xt, Yt)t∈N, (ĜC)C∈C)1Ωx almost
surely, where we use the fact that 1Ωx ∈ F∞.

Finally, by the tower property and the F∞-measurability of 1Ωx ,

E∞ [R(θ; i)1Ωx ] = E∞ [E∞ [R(θ; i)1Ωx | Gx]] = E∞
[
f((Xt, Yt)t∈N, (ĜC)C∈C)1Ωx

]
= f((Xt, Yt)t∈N, (ĜC)C∈C)1Ωx = E∞ [R(θ; i)1Ωx | Gx] .

Proof of Lemma 4. Fix x ∈ X , and define the event Ωx = {N∞,x = ∞}. Now,
fix i ∈ I and consider the sequence of conditional expectations (Et [R(θ; i) | Gx])t∈N.
Since R(θ; i) is integrable, this is a uniformly integrable martingale with respect to
the filtration (Ft ∨ σ {Gx})t∈N and converges almost surely and in L1 to the inte-
grable random variable E∞ [R(θ; i) | Gx] (see, e.g., [24, Theorem 6.21]). Similarly,
(Et [R(θ; i)])t∈N is a uniformly integrable martingale with respect to the filtration
(Ft)t∈N and converges almost surely and in L1 to the integrable random variable
E∞ [R(θ; i)].

By Lemma 3, E∞ [R(θ; i) | Gx]1Ωx = E∞ [R(θ; i)]1Ωx . For each t ∈ N ∪ {∞} de-

fine two random variables, Rt := mini∈I Et [R(θ; i)] and R̃t := mini∈I Et [R(θ; i) | Gx].

Since I is a finite set, Rt → R∞ almost surely and in L1, R̃t → R̃∞ almost surely
and in L1, and R∞1Ωx = R̃∞1Ωx almost surely.

We now show that EtR̃t converges in L1 to E∞R̃∞. We begin by using the
triangle inequality to bound limt E

[|EtR̃t−E∞R̃∞|] above by limt E
[|EtR̃t−EtR̃∞|]+

limt E
[|EtE∞R̃∞−E∞R̃∞|]. We show that this upper bound is zero. We rewrite the

first term and bound it above via Jensen’s inequality to obtain

lim
t

E

[∣∣∣EtR̃t − EtR̃∞
∣∣∣] = lim

t
E

[∣∣∣Et

[
R̃t − R̃∞

]∣∣∣] ≤ lim
t

E

[∣∣∣R̃t − R̃∞
∣∣∣] = 0,

which is zero since R̃t converges to R̃∞ in L1. Examining the second term, R̃∞ is

an integrable random variable, so (EtR̃∞)t∈N is a uniformly integrable martingale

converging in L1 to E∞R̃∞. This shows that the second term is also zero, implying
that limt E

[|EtR̃t − E∞R̃∞|] = 0, and EtR̃t converges in L1 to E∞R̃∞.
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Conditioning on Ft∨σ {Gx} and using Jensen’s inequality with the tower property

shows that Et

[
Et+1R̃t+1

] ≤ EtR̃t, and so (EtR̃t)t∈N is a supermartingale. Since it
is nonnegative, it converges almost surely, and this convergence must be to the same
random variable E∞R̃∞ to which L1 convergence is shown above. This implies that
(EtR̃t)1Ωx converges almost surely to

(
E∞R̃∞

)
1Ωx = E∞

[
R̃∞1Ωx

]
= E∞ [R∞1Ωx ] =

R∞1Ωx .

Also converging almost surely to R∞1Ωx is (Rt1Ωx)t∈N, and since both (EtR̃t)1Ωx

and Rt1Ωx converge almost surely to the same random variable, we have that

g(Kt; {x})1Ωx =
(−Rt + EtR̃t

)
1Ωx converges to zero almost surely. This shows

that (Ω \ Ωx) ∪ {limt g(Kt; {x}) = 0} is almost sure, completing the proof.
Proof of Theorem 1. Define four events,

Ω1 :=
{
Kt ∈ K̃ ∀t ∈ N ∪ {∞}

}
, Ω2 :=

{
K∞ = lim

t
Kt exists

}
,

Ω3 :=
⋂
x∈X

[
{N∞,x < ∞} ∪

{
lim
t

g(Kt; {x}) = 0
}]

,

Ω4 :=
⋂

A⊆2X

[{∑
t∈N

Π(t,Kt, A) < ∞
}

∪
{∑

t∈N

1{Xt+1∈A} = ∞
}]

.

Each of these events is almost sure: Ω1 is almost sure by the assumption of the
theorem; Ω2 is almost sure by Lemma 1; Ω3 is almost sure by Lemma 3; and Ω4 is
almost sure by the extended Borel–Cantelli lemma (see, e.g., [24, Corollary 6.20]),
since

{∑
t∈N

1{Xt+1∈A} = ∞} is almost sure on
{∑

t∈N
Pt {Xt+1 ∈ A} = ∞} and

Pt {Xt+1 ∈ A} = Π(t,Kt, A) almost surely. We then define their intersection Ω0 :=
Ω1 ∩Ω2 ∩ Ω3 ∩Ω4 and note that it too is almost sure.

Choose ω ∈ Ω0 and suppose for contradiction that K∞(ω) /∈ M∗. Since ω ∈ Ω1

implies K∞(ω) ∈ K̃, (4) implies K∞(ω) has an open neighborhood U such that
lim supt ct < 1, where ct := supk′∈U∩ ˜K∩K Π(t, k′, AK∞(ω)).

Since limt Kt(ω) = K∞(ω), there exists a t′ ∈ N such that Kt(ω) ∈ U ∀t > t′.
Furthermore, for all t > t′ the finiteness of t, together with ω ∈ Ω1, implies Kt(ω) ∈
U ∩ K̃ ∩ K. Thus∑

t∈N

Π(t,Kt(ω),X \AK∞(ω)) ≥
∑
t>t′

Π(t,Kt(ω),X \AK∞(ω)) ≥
∑
t>t′

(1− ct) = ∞,

where the final equality with infinity is due to lim supt ct < 1.
Since ω ∈ Ω4, this implies

∑
t∈N

1{Xt+1(ω)/∈AK∞(ω)} = ∞. In particular, since X is

finite, there must exist some x /∈ AK∞(ω) satisfying
∑

t∈N
1{Xt+1(ω)=x} = ∞. Finally,

ω ∈ Ω3 implies limt g(Kt(ω); {x}) = 0, implying that K∞(ω) ∈ Mx, and x ∈ AK∞(ω).
This contradicts x /∈ AK∞(ω).

This contradiction shows that K∞(ω) ∈ M∗ ∀ω ∈ Ω0, implying limt g(Kt; {x}) =
0 almost surely for all x ∈ X . This, together with Assumption 1 and Lemma 2,
implies consistency.

Proof of Lemma 5. Since μi is P
(k) integrable for each k ∈ K, the inequality

R(θ; i) = maxj μj − μi ≤
∑

j |μj | shows that R(θ; i) is also P
(k) integrable for each

k ∈ K, and dom(g) = K.
We now prove the statement about continuity of g. For k ∈ dom(g) and C ⊆ X ,

g(k;C) = min
i

E
(k) [R(θ; i)]− E

(k)
[
min
i

E
(k) [R(θ; i) | (μj , λj), j ∈ IC ]

]
.
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Noting the P
(k) integrability of maxj′ μj′ , and the two relations mini E

(k) [R(θ; i)] =
E
(k) [maxj′ μj′ ] − maxi μ̂i(k) and E

(k)
[
mini E

(k) [R(θ; i) | (μj , λj), j ∈ IC ]
]

=

E
(k) [maxj′ μj′ ]− E

(k)
[
maxi E

(k) [μi | (μj , λj), j ∈ IC ]
]
, we have

g(k;C) = E
(k)
[
max

i
E
(k) [μi | (μj , λj), j ∈ IC ]

]
−max

i
μ̂i(k)

= E
(k)

[
max

(
max
i∈IC

μi,max
i/∈IC

μ̂i(k)

)]
−max

i∈I
μ̂i(k).(8)

This expression agrees with (6) for k ∈ dom(g), and so it remains only to show that
(6) is continuous on cl(dom(g)).

Let f(θ, k) = max(maxi∈IC μi,maxi/∈IC
μ̂i(k)). Since k �→ μ̂i(k) is continuous

and finite on cl(dom(g)), to show continuity of (6) it is sufficient to show continuity
of k �→ E

(k) [f(θ, k)] on cl(K). To this end, let (kt) ⊆ cl(dom(g)) be a sequence
converging to k∗ ∈ cl(dom(g)). We show limt E

(kt) [f(θ, kt)] = E
(k∗) [f(θ, k∗)] through

Lebesgue’s dominated convergence theorem together with the identity

(9) E
(k) [f(θ, k)] =

∫
R+

P
(k) {f(θ, k) > u} − P

(k) {f(θ, k) < −u} du.

The integrand in (9) is bounded above by P
(k) {|f(θ, k)| > u}, which in turn is

bounded above by

P
(k)

{
max

(
max
i∈IC

|μi|,max
i/∈IC

|μ̂i(k)|
)

> u

}
=1−

[ ∏
i∈IC

P
(k){|μi| ≤ u}

][ ∏
i/∈IC

1{|μ̂i(k)|≤u}

]

≤
{
1 if maxi |μ̂i(k)| ≥ u,

1−∏i∈IC
P
(k) {|μi| ≤ u} otherwise.

Construct k̃ so that μ̂i(k̃) = inft |μ̂i(kt)|, σ2
i (k̃) = supt σ

2
i (kt) and note that k̃ ∈ K̃.

For u > |μ̂i(k)|, P(k) {|μi| ≤ u} is decreasing in |μ̂i(k)| and increasing in σ2
i (k), so

for all u ≥ ū := maxi∈IC supt |μ̂i(kt)| we have

1−
∏
i∈IC

P
(kt) {|μi| ≤ u} ≤ 1−

∏
i∈IC

P
(k̃) {|μi| ≤ u} = P

(k̃)

{
max
i∈IC

|μi| > u

}
.

Thus, the integrand in (9) is dominated by 1{u<ū} + 1{u≥ū}P(k̃) {maxi∈IC |μi| >
u}, a function whose integral over R+ is given by

ū+

∫
[ū,∞)

P
(k̃)

{
max
i∈IC

|μi| > u

}
du ≤ ū+ E

(k̃)

[
max
i∈IC

|μi|
]
≤ ū+

∑
i∈IC

E
(k̃) [|μi|] ,

which is finite because k̄ ∈ K̃. Thus, by the dominated convergence theorem,

(10) lim
t

E
(kt) [f(θ, kt)] =

∫
R+

lim
t

P
(kt) {f(θ, kt) > u} − P

(kt) {f(θ, kt) < −u} du,

provided that the limit of the integrand exists for all but at most countably many u.
Note that there are at most countably many u ∈ R with P

(k∗) {|f(θ, k∗)| = u} > 0,
and choose any other u. We show limt P

(kt) {f(θ, kt) > u} = P
(k∗) {f(θ, k∗) > u}, and
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a similar argument may be used to show limt P
(kt) {f(θ, kt) < −u} = P

(k∗) {f(θ, k∗) <
−u}. By the triangle inequality, the quantity limt

∣∣P(kt) {f(θ, kt) > u}−P
(k∗) {f(θ, k∗)

> u}∣∣ is bounded above by the sum of limt

∣∣P(kt) {f(θ, k∗) > u}−P
(k∗) {f(θ, k∗) > u}∣∣

and limt

∣∣P(kt) {f(θ, kt) > u} − P
(kt) {f(θ, k∗) > u}∣∣.

Since P
(k∗) {f(θ, k∗) = u} = 0, P(kt) converges weakly to P

(k∗), and f is contin-
uous, {θ : f(θ, k∗) > 0} is an open set whose boundary has measure 0 under P

(k∗).
This implies limt |P(kt) {f(θ, k∗) > u}−P

(k∗) {f(θ, k∗) > u}| = 0 via the Portmanteau
theorem [5].

Now consider limt

∣∣P(kt) {f(θ, kt) > u} − P
(kt) {f(θ, k∗) > u}∣∣. Choose any

ε > 0 and let δ > 0 be small enough that P
(k∗) {|f(θ, k∗) − u| < δ} < ε and

P
(k∗) {|f(θ, k∗)− u| = δ} = 0.

Since f is uniformly continuous, there exists a δ′ > 0 such that, for all k ∈ K̃
satisfying ||k − k∗|| < δ′, we have |f(θ, k)− f(θ, k∗)| < δ. Here, || · || is the Euclidean
norm. Then, since limt kt = k∗, there exists a T such that ||kt − k∗|| < δ′ ∀t > T .
Then, for all t > T , when θ satisfies f(θ, k∗) > u+ δ, it also satisfies f(θ, kt) > u, and
when θ satisfies f(θ, k∗) < u− δ it also satisfies f(θ, kt) < u. Thus,

lim
t

|P(kt) {f(θ, kt) > u} − P
(kt) {f(θ, k∗) > u}| ≤ lim

t
P
(kt) {|f(θ, k∗)− u| < δ}.

Since P
(k∗) {|f(θ, k∗) − u| = δ} = 0, the limit limt P

(kt) {|f(θ, k∗) − u| < δ}
is equal to P

(k∗) {|f(θ, k∗) − u| < δ}, again by the Portmanteau theorem, and this
is strictly less than ε by assumption. Thus we have shown for every ε > 0 that
limt |P(kt) {f(θ, kt) > u} − P

(kt) {f(θ, k∗) > u}| < ε, and so this limit must equal 0.

We have shown that limt P
(kt) {f(θ, kt) > u} = P

(k∗) {f(θ, k∗) > u} for all but
countably many u. It can be shown similarly, for all but countably many u, that
limt P

(kt) {f(θ, kt) < −u} = P
(k∗) {f(θ, k∗) < −u}. Thus, by (10),

lim
t

E
(kt) [f(θ, kt)] =

∫
R+

P
(k∗) {f(θ, k∗) > u} − P

(k∗) {f(θ, k∗) < −u} du

= E
(k∗) [f(θ, k∗)] .

This shows the continuity of (6).

Proof of Lemma 6. First suppose IC ⊆ I(k). Then, maxi∈IC μi = maxi∈IC μ̂i(k)
almost surely under P(k), together with (6) from Lemma 5, implies that g(k;C) = 0.

Now suppose IC \ I(k) is nonempty, and let i′ be one of its elements. Then

(11) g(k;C) ≥ E
(k)

[
max

(
μi′ ,max

i�=i′
μ̂i(k)

)]
−max

i∈I
μ̂i(k),

where we use the tower property in (6) to introduce an inner expectation conditioned
on μi′ , then exchange it with the maximums using Jensen’s inequality, and remove it
using the tower property. We now consider two cases. If μ̂i′(k) ≤ maxi�=i′ μ̂i(k), then
maxi�=i′ μ̂i(k) = maxi∈I μ̂i(k), and we have through (11) that

g(k;C) ≥ P
(k)

{
μi′ > max

i�=i′
μ̂i(k) + 1

}
+max

i�=i′
μ̂i(k)−max

i∈I
μ̂i(k) > 0.

If μ̂i′(k) > maxi�=i′ μ̂i(k), then μ̂i′(k) = maxi∈I μ̂i(k), and we add and subtract μi′ to
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the term in the expectation in (11) to obtain

g(k;C) ≥ E
(k)

[
μi′ +max

(
0,−μi′ +max

i�=i′
μ̂i(k)

)]
−max

i∈I
μ̂i(k)

= E
(k)

[
max

(
0,−μi′ +max

i�=i′
μ̂i(k)

)]
≥ P

(k)

{
−μi′ +max

i�=i′
μ̂i(k) > 1

}
> 0.
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