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Abstract

We analyze the robustness of a knowledge gradient (KG) policy for the multi-armed bandit
problem. The KG policy is based on a one-period look-ahead, which is known to underperform
in other learning problems when the marginal value of information is non-concave. We present
an adjustment that corrects for non-concavity and approximates a multi-step look-ahead, and
compare its performance to the unadjusted KG policy and other heuristics. We provide guidance
for determining when adjustment will improve performance, and when it is unnecessary. We
present evidence suggesting that KG is generally robust in the multi-armed bandit setting, which
argues in favour of KG as an alternative to index policies.
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1. INTRODUCTION

The multi-armed bandit problem is a classic problem in sequential analysis. Suppose there
are M independent reward processes whose means are stationary but unknown. We activate one
reward process at a time, and collect a random payoff. For example, the processes could be
the rewards obtained by playing different slot machines. In addition to its immediate value, the
payoff obtained by pulling the arm of a slot machine allows us to construct a better estimate
of the mean reward of that particular machine. The objective is to maximize the total reward
collected across N plays.

The bandit problem provides an elegant illustration of the exploration vs. exploitation dilemma.
When choosing between reward processes, we must strike a balance between choosing a process
about which we are uncertain to see whether it has a high reward (exploration), and choosing a
process that we believe to have a high reward (exploitation). This dilemma arises in numerous
application areas. Examples include:
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1. Clinical trials. We are testing experimental drug treatments on human patients. Each arm
represents the effectiveness of a particular treatment. We wish to find the most effective
treatment, while being mindful of the outcomes of individual trials. Much of the classic
work on bandit problems has been motivated by the problem of clinical trials [1, 2].

2. E-commerce. An online advertising system can choose one advertisement to display at a
given time. Each advertisement attracts a certain number of clicks, generating revenue for
the system. We wish to find the most profitable advertisement, while maximizing the total
value obtained across all advertisements tested. This application is considered in [3].

3. Energy portfolio selection. Certain new technologies have the potential to reduce green-
house gas emissions in residential households (e.g. improved ventilation, energy-efficient
appliances, solar panels). We can install a portfolio of several technologies into a res-
idential building to observe its effectiveness. We wish to find the most energy-efficient
portfolio, but we also would like to ensure a good outcome for every building that we refit.
This application is discussed in [4].

Many applications go beyond the standard multi-armed bandit setting, laid out in [5, 6]. How-
ever, the multi-armed bandit model provides a clean and elegant mathematical framework for
reasoning about the issue of exploration vs. exploitation, an issue that arises in every one of
the problems listed above. For this reason, the bandit setting provides insight into complicated
applications, and has attracted a great deal of attention in the literature.

A key advance in the bandit literature was the development of index policies. In every time
step, an index policy computes an index for every arm, then pulls the arm with the highest index.
The index of an arm depends on our estimate of the reward of that arm, but not on our estimates
of other rewards. Thus, an index policy decomposes the problem, and considers every arm sep-
arately, as if that arm were the only arm in the problem. Most well-known algorithms for bandit
problems are index policies, including interval estimation [7], upper confidence bounding [8, 9],
and the Gittins index policy of [1, 10]. In particular, the Gittins index policy is asymptotically
optimal as N → ∞ when the objective function is discounted. However, Gittins indices are
difficult to compute, giving rise to a body of work on approximating them [11, 12, 13].

A more recent approach is the method of knowledge gradients. Originally, this method was
developed by [14] for the ranking and selection problem, an offline learning problem where the
objective is simply to find the arm with the highest reward, not to maximize the total reward
collected over N time steps. The knowledge gradient (KG) algorithm was also studied by [15,
16, 17] in the context of ranking and selection. The KG method chooses the arm that is expected
to make the greatest improvement in our estimate of the best mean reward. In this way, KG looks
ahead one time step into the future and considers the way in which our estimates will change as
a result of pulling a particular arm. The algorithm is thus optimal for N = 1, since it computes
the value of a single pull exactly. In many offline settings, it is optimal as N → ∞ as well.

The KG method was extended to the multi-armed bandit setting in [18, 19]. While the KG
method is suboptimal, it does not require the difficult calculations necessary to compute Gittins
indices, and can often outperform Gittins approximations in practice [4, 19]. However, the ro-
bustness of this approach remains an important topic for study. Because KG only considers the
value of pulling an arm one time, it is important to consider if there is some additional benefit in
looking ahead more than one time step. The work by [20] examines this question in the ranking
and selection problem, and finds that the KG method can underperform when the marginal value
of information is non-concave in the number of times an arm is pulled.

In this paper, we test the robustness of the KG method in the bandit setting. We consider
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an adjusted policy that approximates the value of information over multiple time steps. This
adjustment performs similarly to the original online KG policy of [18], but offers substantial
improvement in a restricted class of problems where N is large. Both adjusted and original
KG consistently outperform a number of leading index policies. Our results provide important
evidence in support of the viability of the KG approach as a robust alternative to index policies.

2. THE MULTI-ARMED BANDIT PROBLEM

Suppose that there are M arms or reward processes. Let µx be the unknown mean reward of
arm x. By pulling arm x, we receive a random reward µ̂x ∼ N

(
µx, λ

2
x

)
, where the measurement

noise λ2
x is a known constant. Though µx is unknown, we assume that µx ∼ N

(
µ0

x,
(
σ0

x

)2
)
. Thus,

our distribution of belief on µx is encoded by the pair
(
µ0

x, σ
0
x

)
. The random payoffs and mean

rewards of different arms are assumed to be independent.
We say that something occurs “at time n” if it happens after n arm pulls, but before the

(n + 1)st. Let xn ∈ {1, ...,M} be the (n + 1)st arm we pull. Then, µ̂n+1
xn is the random reward

collected as a result of the (n + 1)st pull. For each x, the time-n posterior distribution of belief on
µx is N

(
µn

x,
(
σn

x
)2
)
. If we measure xn at time n, the posterior distributions change as follows:

µn+1
x =

 (σn
x)−2

µn
x+λ−2

x µ̂n+1
x

(σn
x)−2+λ−2

x
x = xn

µn
x x , xn

(1)

Because the rewards are believed to be independent, only one set of beliefs is updated per time
step. The variance of our beliefs is updated as follows:

(
σn+1

x

)2
=


[(
σn

x
)−2

+ λ−2
x

]−1
x = xn(

σn
x
)2 x , xn

(2)

The derivation of these Bayesian updating equations is a simple application of Bayes’ rule, and
can be found in [21]. If we let µn =

{
µn

1, ..., µ
n
M

}
and σn =

{
σn

1, ..., σ
n
M

}
, then the knowledge state

sn = (µn, σn) parameterizes all of our beliefs, and (1-2) describe the evolution of sn into sn+1.
Observe that µn+1

x becomes known at time n + 1, but is random from the point of view at
time n. Suppose now that xn = xn+1 = ... = xn+m−1, that is, we pull the same arm m times,
starting at time n. It can be shown that the conditional distribution of µn+m

x given sn and given
xn = ... = xn+m−1 is N

(
µn

x, σ̃
n
x (m)2

)
, where

σ̃n
x (m)2 =

(
σn

x
)2 m(

λ2
x/ (σn

x)2
)

+ m
(3)

by the conditional variance formula. For more details, see [21]. We will find this fact useful in
our discussion of the KG policy.

It remains to define the objective function. Suppose that we are allowed to pull N arms.
Our goal is to choose x0, ..., xN−1 to maximize the total expected reward that we collect. To
allow ourselves to make decisions adaptively as our beliefs evolve, we define a policy π to be
a sequence of decision rules Xπ,0, ..., Xπ,N−1. Each decision rule Xπ,n is a function mapping the
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knowledge state sn to an element of the set {1, ...,M}, thus telling us which arm to pull at time n,
based on the knowledge state sn. Our objective can be stated as

sup
π

IEπ
N−1∑
n=0

µXπ,n(sn), (4)

where IEπ is an expectation over the outcomes of all arm pulls, given that they are chosen in
accordance with the policy π. Some studies of bandit problems restate (4) in terms of minimizing
the expectation of the “regret” maxx µx − µXπ,n(sn) added up over all n.

3. USING KNOWLEDGE GRADIENTS IN BANDIT PROBLEMS

The online KG policy set forth in [18, 19] chooses an arm at time n using the decision rule

XKG,n (sn) = arg max
x
µn

x + (N − n − 1) IEn
x

(
max

x′
µn+1

x′ −max
x′

µn
x′

)
, (5)

where IEn
x is an expectation given xn = x and sn. The difference inside this expectation is the

improvement that our time-(n + 1) estimate maxx′ µ
n+1
x′ of the best reward makes over our time-n

estimate maxx′ µ
n
x′ . The closed-form solution of this expectation follows from the next result.

Lemma 1. Define

νn,m
x = IEn

(
max

x′
µn+m

x′ | x
n = ... = xn+m−1 = x

)
−max

x′
µn

x′

to be the expected improvement made by pulling arm x exactly m times in a row, starting at time
n. Then,

νn,m
x = σ̃n

x (m) f

−
∣∣∣µn

x −maxx′,x µ
n
x′
∣∣∣

σ̃n
x (m)

 (6)

where f (z) = zΦ (z) + φ (z) and Φ, φ are the standard Gaussian cdf and pdf.

This result can be shown using the analysis of [15], with σ̃n
x (m) replacing σ̃n

x (1) throughout.
Using Lemma 1, we can easily write the KG decision rule as

XKG,n (sn) = arg max
x
µn

x + (N − n − 1) νn,1
x . (7)

The online KG policy approximates the value of pulling an arm x with the sum of the immediate
expected reward, µn

x, and an “exploration bonus,” (N − n − 1)νn,1
x . The quantity νn,1

x represents
the extra benefit per time period obtained from pulling x. From (6), it is clear that KG is not an
index policy, because νn,1

x depends on maxx′,x µ
n
x′ as well as on µn

x. Note that [18, 19] use N − n
instead of N − n − 1 when writing (5) and (7), because they allow one last pull at time N.

In some situations, the online KG policy suffers from a problem in that the quantity νn,1
x

undervalues the true per-time-period value of the knowledge gained by pulling x. The KG factor
νn,1

x is computed under the assumption that no future observations will be made, but in fact
observations will be made in the future. Furthermore, the value of one piece of information
often depends critically on what other information can be collected [22, 23, 24]. Several pieces
of information can have little or no value on their own, but when combined together can have
substantial value. In our case, the value νn,m

x of m pulls is not concave in m.
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To illustrate the issue, consider a simple problem with two arms, with arm 0 having known
value 0. Our prior on the value of arm 1 is N (−1, 25). The measurement noise has variance
λ2 = 104 and the horizon is N = 105. The online KG factor for arm 0 is 0. For the unknown
arm, applying (6) yields ν0,1

1 = 1.7 × 10−6, a very small number. As a result, the KG policy pulls
the known arm. Since pulling the known arm does not provide any information and leaves the
posterior equal to the prior, the online KG policy always pulls arm 0, getting a total reward of 0.

Although the value ν0,1
1 of a single pull of the unknown arm is miniscule, the value of 10

measurements, ν0,10
1 = 0.037 is reasonably large. Compare the KG policy to the simplistic policy

that pulls the unknown arm 10 times, then pulls the arm that appears to be the best until the end
of the horizon. This simplistic policy has expected value 10µ0

1 + (N − 10)ν0,10
1 = 3690, much

greater than the KG policy’s value of 0. This poor performance is caused by non-concavity in
the value of information, but it can be fixed by the adjustment described in the next section.

4. ADJUSTING THE KNOWLEDGE GRADIENT POLICY

We propose an adjusted version of KG, referred to as KG(*). The policy is derived by con-
sidering the value obtained by pulling an arm x several times, then afterward selecting the arm
with the largest posterior mean and pulling it until the end of the horizon. This derivation is
analogous to the logic used to adjust KG for ranking and selection in [20, 25].

Let µn
∗ = maxx µ

n
x for notational convenience. Suppose that we pull arm x exactly m times in

a row. Then, the expected value of the reward obtained is

mµn
x + (N − n − m)(νn,m

x + µn
∗) (8)

where mµn
x is the immediate expected reward obtained from the first m samples, all from arm x,

and (N−n−m)(νn,m
x +µn

∗) is the expected reward obtained by pulling (until the end of the horizon)
the arm estimated to be the best by these first m pulls. In this quantity, N −n−m is the number of
pulls that will remain, νn,m

x is the expected increment of µn+m
∗ over µn

∗ due to the m observations
of arm x, and νn,m

x + µn
∗ is the expected value of µn+m

∗ .
Compare (8) to the reward obtained without learning by simply pulling the arm with the best

mean at time n until the end of the horizon. This reward is (N − n)µn
∗. Subtracting this from (8)

and dividing by m gives the average incremental reward over the m pulls of arm x as

µn
x − µ

n
∗ +

1
m

(N − n − m) νn,m
x . (9)

The KG(*) policy finds, for each arm x, the number of pulls m∗(x) that maximizes (9),

m∗(x) = arg max
m=1,...,N−n

µn
x − µ

n
∗ +

1
m

(N − n − m) νn,m
x . (10)

We assign to arm x the resulting maximal reward (a measure of the value of pulling arm x at time
n) and choose the arm for which this value is largest. Thus, the KG(*) policy is given by

xn ∈ arg max
x

max
m=1,...,N−n

µn
x − µ

n
∗ +

1
m

(N − n − m) νn,m
x . (11)

The KG(*) policy can be viewed as a generalization of KG with m set to m∗(x) rather than
1. By using m = 1, the KG policy ignores the sometimes extreme non-concavity of the value



I.O. Ryzhov et al. / Procedia Computer Science 00 (2010) 1–10 6

(a) First actions taken by KG(*) and KG. (b) Incremental value of KG(*) over KG.

Figure 1: Performance of KG(*) vs. KG in a two-arm bandit problem where one arm is perfectly known to have value 0,
and the other arm has an unknown value with a N (−1, 1) prior.

of information. The value of one pull can be as low as 10−300, while the value of 10 pulls
can be on the order of 10−1. When this occurs, the KG policy is unable to observe the larger
values possible by pulling an arm multiple times. To illustrate the differences between the KG
and KG(*) policies, we consider the example from above, where one arm has known value
0, and our prior on the other arm is N (−1, 1), but we vary the horizon and the measurement
variance. Figure 1(a) shows the decisions of the two different policies in the first time step,
where “exploit” means pulling the known arm (it has higher mean) and “explore” means pulling
the unknown arm. Figure 1(b) shows the difference in expected performance between the two
policies, as calculated using Monte Carlo simulation with 1000 independent samples for each
variance-horizon point evaluated. The points evaluated were {1, e, . . . , e10}2.

When the horizon is small compared to the noise variance (the “KG and KG(*) exploit”
region of Figure 1(a)), learning has less value, and both policies exploit, achieving an objective
value of 0 (since the known arm has value 0). In such situations, the KG(*) adjustment is not
needed, and the original KG policy works just as well.

When the horizon is large compared to the noise variance (the “KG and KG(*) explore” re-
gion of Figure 1(a)), learning has a great deal of value, and both policies explore on the first
measurement (the region at the bottom right of Figure 1(a)). Their resulting difference in value
is relatively small, with the adjustment bringing only a slight advantage to KG(*). In such situ-
ations, the KG(*) adjustment may provide some benefit, but this should be weighed against the
added complexity of the policy.

It is in the intermediate region, where the horizon and noise variance are large and compara-
bly sized (the “KG exploits, KG(*) explores” region of Figure 1(a)), that the KG(*) adjustment
provides value. In this region, unadjusted KG underestimates the value of learning because of the
non-concavity of the value of information, and exploits as a result, receiving an expected value
of 0. In contrast, the KG(*) adjustment compensates for the lack of concavity and explores. In
some cases (10 ≤ λ2 ≤ 100 and N ≥ 20, 000) the KG(*) adjustment obtains an expected reward
of more than 1, 000, while without the adjustment the reward is 0. Thus, when the measurement
noise is large and the horizon is large enough that exploration may still provide significant value,
it is advisable to use KG(*).
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5. COMPUTATIONAL EXPERIMENTS

To compare two policies π1 and π2, we take the difference

Cπ1,π2 =

N∑
n=0

µXπ1 ,n(sn) − µXπ2 ,n(sn) (12)

of the true mean rewards obtained by running each policy, given the same set of starting data. In
order to do this, it is necessary for the true means to be known. Thus, two policies can only be
compared in a simulation study, where we can generate a set of truths µ, and then test how well
the policies are able to discover those truths.

We generated a set of 100 experimental problems according to the procedure used in the
empirical study [26]. Each problem has M = 100, with σ0

x = 10 for all x, and every µ0
x sampled

from the distribution N (0, 100). The measurement noise was taken to be λ2
x = 100 for all x,

and the time horizon was chosen to be N = 50. For each problem, we ran each policy under
consideration on 104 sample paths. In every sample path, a new truth was generated from the

prior distributionN
(
µ0

x,
(
σ0

x

)2
)

at the beginning of the time horizon. Thus, we were able to obtain

estimates of the objective value IEπ ∑N−1
n=0 µXπ,n(sn) of each policy π.

In addition to KG(*) and KG, we ran five well-known index policies, briefly described below.
Gittins indices (Gitt). We used the approximation of Gittins indices from [13], given by

XGitt,n (sn) ≈ arg max
x
µn

x + λx
√
− log γ · b̃

− (
σn

x
)2

λ2
x log γ


where γ is a discount factor and

b̃ (s) =


s
√

2
s ≤ 1

7

e−0.02645(log s)2
+0.89106 log s−0.4873 1

7 < s ≤ 100
√

s
(
2 log s − log log s − log 16π

) 1
2 s > 100.

We considered undiscounted problems, so γ was treated as a tunable parameter (set to 0.9).
Interval estimation (IE). The interval estimation policy of [7] is given by XIE,n (sn) = arg maxx µ

n
x+

z · σn
x, where z is a tunable parameter. We found that z = 1.5 worked well for the problems we

generated. When tuned properly, IE gave the best performance aside from the KG variants, but
proved to be highly sensitive to the choice of z.

Upper confidence bound (UCB). The UCB policy of [9] is given by

XUCB,n (sn) = µn
x +

√
2

Nn
x

g
(

Nn
x

N

)
where Nn

x is the number of times we have pulled arm x up to and including time n, and

g (t) = log
1
t
−

1
2

log log
1
t
−

1
2

log 16π.

It has been shown by [8, 9] that the number of times that any suboptimal arm is pulled under this
policy is O

(
log N

)
.

Epsilon-greedy (Eps). The epsilon-greedy policy (see e.g. [27]) chooses an arm at random
with probability 1

n and pulls the arm given by arg maxx µ
n
x the rest of the time.

Pure exploitation (Exp). The pure exploitation policy is given by XExp,n (sn) = arg maxx µ
n
x.
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Figure 2: Histograms showing the performance of KG(*) relative to other policies across 100 test problems.

5.1. Comparison of KG(*) to KG

Table 1 gives the mean values of (12) across 100 problems with KG(*) as π1 and the other
policies as π2. The standard errors of these values are also given in the table. Figure 2 shows
the distribution of the sampled values of (12). Each histogram is labeled with the two policies
being compared, and indicates how often KG(*) outperformed the competition. Bars to the right
of zero indicate problems where KG(*) outperformed another policy, and bars to the left of zero
indicate the opposite. We see that KG(*) consistently outperforms all the index policies in the
comparison. Only interval estimation is ever able to outperform KG(*). However, this only
occurs 30% of the time, and only one of those times is statistically significant. KG(*) always
outperforms the other four index policies by a statistically significant margin.

By contrast, KG(*) achieves only a small improvement over regular KG. On 93 problems,
the difference between KG(*) and KG is not statistically significant. Essentially, the two policies
are comparable. For the given set of problems, we do not derive much additional benefit from
looking out more than one step when we make decisions. Most of the valuable information can
be gleaned by a one-period look-ahead. In the language of Section 4, these problems fall into
the large region where KG is robust, and the adjustment adds only incremental value. However,
there are other problem settings (related to high values of λ2

x and N) for which the adjustment
adds more significant improvement.

KG(*) vs. KG Gitt IE UCB Eps Exp
Mean 0.0906 54.7003 4.5986 1522.7409 526.3927 375.1965
SE 6.8715 7.4696 6.9800 25.0439 9.3499 9.7285

Table 1: Means and standard errors for the experiments.
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(a) (b)

Figure 3: Effect of (a) the measurement noise λ2 and (b) the time horizon N on the performance of KG(*) and other
policies.

5.2. Effect of measurement noise and time horizon on the comparison
We considered the effect of the measurement noise λ2

x and the time horizon N on the perfor-
mance of KG(*) relative to KG. Larger measurement noise means that a single arm pull reveals
less useful information; the value of information tends to be heavily non-concave in this case.
We examined the performance of KG(*), KG and the two best-performing index policies on one
problem chosen at random from our set. In Figure 3(a), the measurement noise λ2

x is varied in the

same way across all x relative to the magnitude of
(
σ0

)2
= 100. In Figure 3(b), the time horizon

N is varied, while the measurement noise is fixed at the baseline value of λ2 = 100.
Predictably, the suboptimality of each policy increases in each case. Either the measurements

are less accurate, or we have more room to make mistakes. What is interesting, however, is
that for large enough noise, the suboptimality no longer seems to depend on the policy. The
KG(*) policy maintains a slight advantage over other policies for λ2 ≥ 100, but this difference
is not statistically significant. However, for N large enough, KG(*) pulls ahead of KG, and
this difference only increases with the time horizon. This confirms the insight of our small
example from Figure 1(a), where KG(*) only brings about an improvement for a fixed value of
the variance once N passes a certain point.

6. CONCLUSION

We have analyzed the robustness of a one-period look-ahead policy in multi-armed bandit
problems. Our main question was whether a one-period look-ahead is able to collect enough
information to make good decisions. We tested this by comparing a one-period look-ahead to an
adjusted policy that approximates a multi-step look-ahead. In a large data set, the adjusted policy
has a slight advantage over the one-period look-ahead on average. However, the difference can
become more compelling in special cases where the time horizon is large enough.

In many settings, most of the useful information that we can collect about an arm is contained
in the very next time we pull that arm. Because the KG policy considers our beliefs about all arms
when computing the value of one pull, the KG logic is able to capture much of the complexity of
the problem. The KG policy often does not need to be adjusted to handle multiple measurements,
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but adjustment may improve performance if the time horizon is large. We conclude that a one-
period look-ahead policy is a robust approach to finite-horizon bandit problems.
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