Bayesian Optimization of Composite Functions

To appear at ICML 2019

Raúl Astudillo

Joint work with Peter I. Frazier
2nd Uber Science Symposium, May 3, 2019

How it works: an illustration

Suppose

- x is a parameter of a simulator
- $h(x)$ is simulator's prediction under x
- y is our observed data

We want to solve

$$
\min _{x}(h(x)-y)^{2} .
$$

Standard BO

Figure: Evaluations of $(h(x)-y)^{2}$

Figure: GP posterior on $(h(x)-y)^{2}$

Figure: GP posterior on $(h(x)-y)^{2}$

Our approach

(a) Evaluations of $h(x)-y$

(b) Evaluations of $(h(x)-y)^{2}$

(a) GP posterior on $h(x)-y$

(b) Implied posterior on $(h(x)-y)^{2}$

(a) GP posterior on $h(x)-y$

(b) Implied posterior on $(h(x)-y)^{2}$

Our problem

We consider problems of the form

$$
\max _{x \in \mathcal{X}} f(x)
$$

where

$$
f(x)=g(h(x))
$$

and

- $h: \mathcal{X} \subset \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ is a time-consuming-to-evaluate black-box
- $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ (and its gradient) are known in closed form and fast-to-evaluate

Composite functions arise naturally in practice

Example: Hyperparameter tuning of classification algorithms

$$
g(h(x))=-\sum_{j=1}^{m} h_{j}(x)
$$

where h_{j} is the classification error on the j-th class.

Example: Calibration of an oil reservoir simulator

$$
g(h(x))=-\sum_{j=1}^{m}\left(h_{j}(x)-y_{j}\right)^{2},
$$

where y is a vector of observed data.

Example: Optimization of posteriors with expensive likelihoods

$$
\log p(x \mid y)=\log \underbrace{L(y \mid x)}_{\text {likelihood }}+\log \underbrace{\pi(x)}_{\text {prior }} .
$$

Very often, $L(y \mid x) \propto g(y \mid h(x))$, where g is known in closed form and $h(x)$ is a vector of parameters governing properties of the data's distribution.
E.g., for a Gaussian likelihood,

$$
g(y \mid h(x)) \propto-\|h(x)-y\|_{2}^{2} .
$$

Related work

BO for sums of functions:

- Swersky, K., Snoek, J. and Adams, R. P. Multi-task bayesian optimization. In Advances in neural information processing systems (pp. 2004-2012). 2013.
- Toscano-Palmerin, S. and Frazier, P.I. Bayesian optimization with expensive integrands. arXiv preprint arXiv:1803.08661. 2018.
- Several others.

Constrained BO:

- Gardner, J.R., Kusner, M.J., Xu, Z.E., Weinberger, K.Q. and Cunningham, J.P. Bayesian Optimization with Inequality Constraints. In International Conference on Machine Learning (pp. 937-945). 2014.
- Several others.

Our contribution

1. A statistical approach for modeling f that greatly improves over the standard BO approach
2. An efficient way to optimize El under this new statistical model

Our approach

- Model h using a multi-output Gaussian process instead of f directly
- This implies a (non-Gaussian) posterior on $f(x)=g(h(x))$
- To decide where to sample next: compute and optimize the expected improvement acquisition function under this new posterior

Background: Expected Improvement (EI)

The most widely used acquisition function in standard BO is:

$$
\mathrm{EI}_{n}(x)=\mathbb{E}_{n}\left[\left\{f(x)-f_{n}^{*}\right\}^{+}\right]
$$

where

- f_{n}^{*} is the best observed value so far
- \mathbb{E}_{n} is the conditional expectation under the posterior after n evaluations

Background: Expected Improvement (EI)

The most widely used acquisition function in standard Bayesian optimization is:

$$
\mathrm{EI}_{n}(x)=\mathbb{E}_{n}\left[\left\{f(x)-f_{n}^{*}\right\}^{+}\right]
$$

When $f(x)$ is Gaussian, El and its derivative have a closed form which make it easy to optimize.

Expected Improvement for Composite Functions

Our acquisition function is Expected Improvement for Composite Functions (EI-CF):

$$
\mathrm{EI}^{-\mathrm{CF}_{n}(x)}=\mathbb{E}_{n}\left[\left\{g(h(x))-f_{n}^{*}\right\}^{+}\right],
$$

where h is a GP, making $h(x)$ Gaussian.

Challenge: maximizing EI-CF is hard

Expected Improvement for Composite Functions (El-CF):

$$
\operatorname{EI-CF}_{n}(x)=\mathbb{E}_{n}\left[\left\{g(h(x))-f_{n}^{*}\right\}^{+}\right],
$$

where h is a GP, making $h(x)$ Gaussian.

Challenge:

- When h is a GP and g is nonlinear, $f(x)=g(h(x))$ is not Gaussian
- El no longer has a closed form, making it hard to optimize

Calculating EI-CF

To estimate $E \operatorname{EI}-\mathrm{CF}_{n}(x)$, repeat the following N times:

1. Sample $h(x)$ from the Gaussian process posterior
2. Calculate the improvement $\left\{g(h(x))-f_{n}^{*}\right\}^{+}$

Then average the results.

Challenge: maximizing EI-CF is hard

- Naive optimization method: Maximize El-CF directly, e.g., using a genetic algorithm
- Problem: this will be really slow because we don't have gradients and the evaluations are noisy

A better way to maximize El-CF

1. Reparametrization trick
2. Evaluate using Monte Carlo
3. Optimize using a novel gradient estimator

Reparametrization trick

$$
h(x) \stackrel{d}{=} \mu_{n}(x)+C_{n}(x) Z,
$$

where

- μ_{n} and K_{n} are the posterior mean and covariance functions of h
- $C_{n}(x)$ is the Cholesky factor of $K_{n}(x, x)$
- Z is a m-variate standard normal random vector

Reparametrization trick

$$
h(x) \stackrel{d}{=} \mu_{n}(x)+C_{n}(x) Z,
$$

where

- μ_{n} and K_{n} are the posterior mean and covariance functions of h
- $C_{n}(x)$ is the Cholesky factor of $K_{n}(x, x)$
- Z is a m-variate standard normal random vector

Thus,

$$
\operatorname{EI-CF}_{n}(x)=\mathbb{E}\left[\left\{g\left(\mu_{n}(x)+C_{n}(z) Z\right)-f_{n}^{*}\right\}^{+}\right]
$$

Evaluate using Monte Carlo

where $Z^{(1)}, \ldots, Z^{(L)} \sim \mathcal{N}\left(0, I_{m}\right)$.

Gradient of El-CF

Lemma.

Under mild regularity conditions, EI-CF ${ }_{n}$ is differentiable almost everywhere and its gradient, when it exists, is given by

$$
\nabla \mathrm{EI}^{-\mathrm{CF}_{n}(x)=\mathbb{E}_{n}\left[\gamma_{n}(x, Z)\right], ~}
$$

where

$$
\gamma_{n}(x, Z)=\left\{\begin{array}{l}
0, \text { if } g\left(\mu_{n}(x)+C_{n}(x) Z\right) \leq f_{n}^{*} \\
\nabla g\left(\mu_{n}(x)+C_{n}(x) Z\right), \text { otherwise }
\end{array}\right.
$$

Our improved method for maximizing El-CF

To get a stochastic gradient, i.e., an unbiased estimate of $\nabla_{x}{\mathrm{EI}-\mathrm{CF}_{n}(x) \text { : }}^{2}$

1. Sample a standard normal random vector Z
2. Return $\gamma_{n}(x, Z)$

Our improved method for maximizing El-CF

To get a stochastic gradient, i.e., an unbiased estimate of $\nabla_{x} \mathrm{EI}^{2}-\mathrm{CF}_{n}(x)$:

1. Sample a standard normal random vector Z
2. Return $\gamma_{n}(x, Z)$

We use these stochastic gradients within multi-start stochastic gradient ascent to efficiently maximize EI-CF ${ }_{n}$.

Computational complexity of posterior inference

When outputs of h are modeled independently, the complexity of exact posterior inference is $\mathcal{O}\left(m n^{2}\right)$ (with a precomputation of complexity $\mathcal{O}\left(m n^{3}\right)$).

Recent advances on fast approximate GP prediction allow a $\mathcal{O}(m)$ computational complexity.

Asymptotic consistency

Theorem.

If g is continuous and under additional suitable regularity conditions, El-CF is asymptotically consistent, i.e., it finds the true global optimum as the number of evaluations goes to infinity.

Numerical experiments

GP-generated test problems

Problem	\mathcal{X}	g	m
a	$[0,1]^{4}$	$g(h(x))=-\sum_{j=1}^{5}\left(h_{j}(x)-y_{j}^{*}\right)^{2}$	5
b	$[0,1]^{3}$	$g(h(x))=-\sum_{j=1}^{4} \exp \left(h_{j}(x)\right)$	4

(a)

(b)

Langermann test problem

$$
f(x)=g(h(x)) \text { where }
$$

$$
h_{j}(x)=\sum_{i=1}^{d}\left(x_{i}-A_{i j}\right), j=1, \ldots 5
$$

and

$$
g(h(x))=-\sum_{j=1}^{5} c_{j} \exp \left(-h_{j}(x) / \pi\right) \cos \left(\pi h_{j}(x)\right)
$$

5d Rosenbrock test problem

$$
f(x)=-\sum_{j=1}^{d-1} 100\left(x_{j+1}-x_{j}^{2}\right)^{2}+\left(x_{j}-1\right)^{2}
$$

Adapted to our framework by taking $d=5$ and

$$
\begin{gathered}
h_{j}(x)=x_{j+1}-x_{j}^{2}, j=1, \ldots, 4 \\
h_{j+4}(x)=x_{j}-1, j=1, \ldots, 4
\end{gathered}
$$

and

$$
g(h(x))=-\sum_{j=1}^{4} 100 h_{j}(x)^{2}+h_{j+4}(x)^{2} .
$$

5d Rosenbrock test problem

Environmental model test problem

- Models a chemical accident that has caused a pollutant to spill at two locations
- Given 12 measurements at different geospatial locations, invert the 4 parameters of this simulator
- We solve

$$
\min _{x \in \mathcal{X}} \sum_{j=1}^{12}\left(s\left(\theta_{j} ; x^{*}\right)-s\left(\theta_{j} ; x\right)\right)^{2}
$$

Environmental model test problem

Conclusion and future work

- Exploiting composite objective functions can substantially improve the performance of BO
- Develop efficient implementatios of other acquisitions in this setting
- Some of them would allow noisy and decoupled evaluations

Check out our paper

Astudillo, R. and P. I. Frazier. Bayesian Optimization of Composite Functions. To appear in Proceedings of the International Conference on Machine Learning, 2019.

Code

- Check out our code: https://github.com/RaulAstudillo06/BOCF
- Coming to Cornell-MOE: https://github.com/wujian16/Cornell-MOE
- (Cornell-MOE is now easier to install for python 2 or 3 via https://anaconda.org/frazierlab)

Thanks!

