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How it works: an illustration

Suppose
e x is a parameter of a simulator

e h(x) is simulator’s prediction under z
e y is our observed data

We want to solve

min(h(z) — )2
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Standard BO
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Figure: Evaluations of (h(x) — )2
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Figure: GP posterior on (h(z) — y)?
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Our approach
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Our problem

We consider problems of the form

max f (),
where
f(x) = g(h(x))
and

e h: X CR?— R™ is a time-consuming-to-evaluate
black-box

e g:R™ — R (and its gradient) are known in closed
form and fast-to-evaluate
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Composite functions arise
naturally in practice
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Example: Hyperparameter tuning of classification

algorithms

g(h(x)) = — Zl hj(x),
]:
where h; is the classification error on the j-th class.
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Example: Calibration of an oil reservoir simulator

g(h(z)) = — Zl(hj(l') —y)%
iz
where y is a vector of observed data.
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Example: Optimization of posteriors with expensive
likelihoods

logp(x | y) =log L(y | x) +logm(x).
likelihood prior

Very often, L(y | x) o< g(y | h(x)), where g is known
in closed form and h(x) is a vector of parameters
governing properties of the data's distribution.

E.g., for a Gaussian likelihood,

9(y | h(z)) o< —||h(z) — yll5.
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Our contribution

1. A statistical approach for modeling f that greatly
improves over the standard BO approach

2. An efficient way to optimize EIl under this new
statistical model
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Our approach

« Model h using a multi-output Gaussian
process instead of f directly

« This implies a (non-Gaussian) posterior on

f(z) = g(h(z))

 To decide where to sample next: compute
and optimize the expected improvement
acquisition function under this new posterior
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Background: Expected Improvement (El)

The most widely used acquisition function in standard
BO is:

BlL(2) = B, [{f(2) = £i}7]
where
e fr is the best observed value so far

e [E, is the conditional expectation under the
posterior after n evaluations
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Background: Expected Improvement (El)

The most widely used acquisition function in standard
Bayesian optimization is:

EL,(z) = B, [{f(2) = f;}7],

When f(z) is Gaussian, El and its derivative have a
closed form which make it easy to optimize.
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Expected Improvement for Composite Functions

Our acquisition function is Expected Improvement for
Composite Functions (EI-CF):

EI-CF,(z) = E, [{g(h(x)) - f;}ﬂ 7

where h is a GP, making h(x) Gaussian.
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Challenge: maximizing EI-CF is hard

Expected Improvement for Composite Functions
(EI-CF):

EL-CF,(z) = B, [{g(h(z)) = fi}'],
where h is a GP, making h(x) Gaussian.

Challenge:

e When h is a GP and g is nonlinear, f(z) = g(h(z))
is not Gaussian

e El no longer has a closed form, making it hard to
optimize
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Calculating EI-CF

To estimate EI-CF,,(z), repeat the following N times:

1. Sample h(x) from the Gaussian process posterior
2. Calculate the improvement {g(h(x)) — fi}+
Then average the results.
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Challenge: maximizing EI-CF is hard

* Naive optimization method: Maximize EI-CF
directly, e.g., using a genetic algorithm

e Problem: this will be really slow because we don't
have gradients and the evaluations are noisy
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A better way to maximize EI-CF

1. Reparametrization trick
2. Evaluate using Monte Carlo

3. Optimize using a novel gradient estimator
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Reparametrization trick

hz) L pn(z) + Co(z)Z,

where

e 1, and K, are the posterior mean and covariance
functions of h

o C,(z) is the Cholesky factor of K, (z,x)

e / is a m-variate standard normal random vector
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Reparametrization trick

h(z) £ jin(z) + Cp(z)Z,
where

e 1, and K, are the posterior mean and covariance
functions of h

o C,(z) is the Cholesky factor of K, (z,x)

e / is a m-variate standard normal random vector

Thus,

ELCF, () = E [{g((x) + Cu(2)2) — £}'].
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Evaluate using Monte Carlo

EL-CF, () ~ i S {guala) + Cu(@)20) — 2},
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Gradient of EI-CF

Lemma.

Under mild regularity conditions, EI-CF,, is
differentiable almost everywhere and its gradient,
when it exists, is given by

VEL-CF,(z) = By, [a(z, 2)],

{0, if g(pn(7) + Co(2)Z) < f7.
Vg(pn(z) + Cy(z)Z), otherwise.
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Our improved method for maximizing EI-CF

To get a stochastic gradient, i.e., an unbiased
estimate of V,EI-CF, (x):

1. Sample a standard normal random vector Z
2. Return v, (z, Z)
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Our improved method for maximizing EI-CF

To get a stochastic gradient, i.e., an unbiased
estimate of V,EI-CF, (x):

1. Sample a standard normal random vector Z
2. Return v, (z, Z)

We use these stochastic gradients within multi-start

stochastic gradient ascent to efficiently maximize
EI-CF,,.
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Computational complexity of posterior inference

When outputs of i are modeled independently, the
complexity of exact posterior inference is O(mn?)
(with a precomputation of complexity O(mn?)).

Recent advances on fast approximate GP prediction
allow a O(m) computational complexity.
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Asymptotic consistency

Theorem.
If g is continuous and under additional suitable regularity

conditions, EI-CF is asymptotically consistent, i.e., it finds the
true global optimum as the number of evaluations goes to infinity.
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Numerical experiments

Radl Astudillo ra598@cornell.edu Bayesian Optimization of Composite Functions 34/44



GP-generated test problems

Problem X g

a 0,1]" g(h(z)) = =55 1 (h(a) —y;)* 5
b 0,1  g(h(z)) = =37  exp(hy(z)) 4
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Langermann test problem

f(x) = g(h(z)) where
h](l') = Z({Ez - Aij)7 j = 1, ce 57

i=1
and

g(h(x)) = - ; ¢j exp(—h;(w)/m) cos(mh; (x)).

Langermann Function
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5d Rosenbrock test problem

d—1

flz)=— Z 100(zj41 — x§)2 + (x; — 1)?

=1

Adapted to our framework by taking d = 5 and

hj(l') :ZL'j_H—[E?, j: 1,...,4,

hj+4(x):xj—1, jzl,...,4,

and
g(h(x)) = = 37 100k (2)? + hyea(e)®.
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5d Rosenbrock test problem
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Environmental model test problem

e Models a chemical accident that has caused a
pollutant to spill at two locations

e Given 12 measurements at different geospatial
locations, invert the 4 parameters of this simulator

e We solve
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Environmental model test problem
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Conclusion and future work

« Exploiting composite objective functions can
substantially improve the performance of BO

o Develop efficient implementatios of other
acquisitions in this setting

« Some of them would allow noisy and
decoupled evaluations
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Check out our paper

Astudillo, R. and P. I. Frazier. Bayesian Optimization of
Composite Functions. To appear in Proceedings of the
International Conference on Machine Learning, 2019.
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Code

e Check out our code:
https://github.com/RaulAstudillo06/BOCF

e Coming to Cornell-MOE:
https://github.com/wujian16/Cornell-MOE

o (Cornell-MOE is now easier to install for python 2
or 3 via https://anaconda.org/frazierlab)
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https://github.com/RaulAstudillo06/BOCF
https://github.com/wujian16/Cornell-MOE
https://anaconda.org/frazierlab

Thanks!
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