
Bayesian Optimization
for Materials Design and Drug Discovery

Peter Frazier
Associate Professor, Operations Research & Information Engineering, Cornell

Staff Data Scientist, Uber

Eunice	Kim  
(UCSD)

Lori	Tallorin  
(UCSD)

Swagut	Sahu  
(UCSD)

Jialei	Wang 
(Cornell)

Nick	Kosa 
(UCSD)

Pu	Yang 
(Cornell)

Matt	Thompson  
(UCSD/Northwestern)

Mike	Gilson  
(UCSD)

Nathan	Gianneschi  
(UCSD/Northwestern)

Mike	Burkart 
(UCSD)

Science & technology relies
on trial & error
✤ Edison	famously	used	trial	&	error:	

✤ ~100	materials	tested	developing	the	carbon	microphone.	
✤ ~6000	filaments	tested	developing	a	better	incandescent	bulb.	

✤ In	drug	discovery,	robots	often	screen	 
>	100,000	compounds.	

✤ New	polymers	and	other	biomaterials	are	often	
created	using	trial	&	error.  
[Typically	100s	of	materials	tried.]

Doing trial & error well  
is really important
✤ Many	good	projects	fail	because	trial	&	error	didn’t	pan	out	

✤ If	we	could	improve	trial	&	error:	
✤ More	technology	development	efforts	would	succeed	
✤ Scientists	could	take	on	more	ambitious	projects	
✤ Technological	development	would	get	faster

Genius is 1% inspiration, 
99% perspiration.

We want to improve  
trial & error

✤ Keys	to	doing	trial	&	error	well:	

✤ Make	intelligent	decisions	about	experiments	to	perform	[inspiration]	

✤ Do	lots	of	experiments	[perspiration]	

✤ Be	lucky

Genius is 1% inspiration, 
99% perspiration.

We want to improve  
trial & error

✤ Keys	to	doing	trial	&	error	well:	

✤ Make	intelligent	decisions	about	experiments	to	perform	[inspiration]	

✤ Do	lots	of	experiments	[perspiration]	

✤ Be	lucky

Machine learning is often seen as a  
magic box that predicts things

Here’s how machine learning is
typically used in materials discovery

1.Feed	in	peptides	(or	small	molecule,	polymers,	
alloys,	…)	synthesized	in	the	past	with	property	
measurements	(“Training	Data”)	
2.Machine	learning	predicts	properties	for	
unsynthesized	peptides	
3.Rank	peptides	by	predicted	desirability	
4.Test	the	top	10

False	positive	rate

The	machine	learning	algorithm	with	a	threshold	corresponding	to	the	red	dot	will	label:	
	 20%	of	non-active	peptides	as	active	[ideally,	this	would	be	0%]	
	 45%	of	active	peptides	as	active	[ideally,	this	would	be	100%]	

If	99.99%	of	peptides	are	not	active, 
we’ll	have	to	test	X	predicted-active	peptides	to	find	the	first	active	one.

Tr
ue

	p
os
iti
ve
	ra

te

Challenge:  
Machine learning makes errors

The	machine	learning	algorithm	with	a	threshold	corresponding	to	the	red	dot	will	label:	
	 5%	of	non-active	peptides	as	active	[ideally,	this	would	be	0%]	
	 20%	of	active	peptides	as	active	[ideally,	this	would	be	100%]	

If	1	in	105	peptides	are	active, 
we’ll	have	to	test	>104	predicted-active	peptides	to	find	the	first	active	one.

Random	guesses
Mach.	Learning

http://blog.revolutionanalytics.com/2015/09/why-big-data-learning-curves.html

In	materials	discovery,	we	usually	have	only	a	little	training	data 
for	the	property	of	interest.	[Often	<	10,	<	100]

Challenge: Machine learning makes BIG errors 
when it only has a little training data

In	materials	discovery,	we	usually	have	only	a	little	training	data 
for	the	property	of	interest.	[Often	<	10,	<	100]

Solutions
• Include	physical	knowledge	into	the	machine	
learning	model	to	make	it	more	accurate	

• Get	more	training	data,	if	you	can		
• Build	fancier	machine	learning	methods	 
[usually	requires	more	training	data]	

• Use	machine	learning	in	an	intelligent	way

Solutions
• Include	physical	knowledge	into	the	machine	
learning	model	to	make	it	more	accurate	

• Get	more	training	data,	if	you	can		
• Build	fancier	machine	learning	methods	 
[usually	requires	more	training	data]	

• Use	machine	learning	in	an	intelligent	way

Example:	
Recommendation	

Systems

Step	1:	Use	machine	learning	to	predict	books	Jack	
might	enjoy	reading

40%

38%

35%

30%

40%

38%

35%

30%

What	happens	if	we	use	the	simple	strategy	of	going	
with	the	top	3	most	likely	to	be	enjoyed?

40%

10%

5%

What	happens	if	we	use	the	simple	strategy	of	going	
with	the	top	3	most	likely	to	be	enjoyed?

Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one

Probability	he’ll	like	this	
book,	if	he	doesn’t	either	
of	the	first	two

40%

10%

5%

The	
probability	
that	Jack	likes	
at	least	one	of	
these	books	is	
only 
1-.6*.9*.95=	48.7%

40%

Step	2:	Take	machine	learning’s	most	recommended	
book.

Probability	he’ll	like	this	book

40%

Step	3:	Retrain	assuming	he	doesn’t	like	it

Probability	he’ll	like	this	book

50%

42%

37%

Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one

40%Probability	he’ll	like	this	book

50%
Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one

Step	4:	Take	machine	learning’s	most	recommended	
book

40%Probability	he’ll	like	this	book

50%
Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one

We	are	already	up	to	a	probability	of	70%	  
he’ll	like	one	of	these	books	

40%Probability	he’ll	like	this	book

50%
Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one

Step	5:	Retrain	assuming	he	doesn’t	like	any	of	the	
previously	selected	books.		Take	the	best	one.

Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
either	of	the	first	two 20%

15%

40%Probability	he’ll	like	this	book

50%
Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one

Step	5:	Retrain	assuming	he	doesn’t	like	any	of	the	
previously	selected	books.		Take	the	best	one.

Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
either	of	the	first	two 20%

40%Probability	he’ll	like	this	book

50%
Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one

By	providing	a	diverse	selection	of	books,	the	chance	
he’ll	like	at	least	one	is	1-.6*.5*.8=76%	(>	45%)

Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
either	of	the	first	two 20%

We	does	not	try	to	make	every	pick	a	winner

• We	didn’t	design	the	
selection	so	that	he	
would	like	every	book	
selected.	

• We	designed	it	so	that	he	
would	like	at	least	one.	

• The	last	book	may	be	
unlikely	to	be	selected.		
It	is	designed	as	a	good	
backup,	not	a	good	first	
pick.

These ideas come from the
literature on Bayesian optimization
Bayesian	optimization	[Kushner	1964;	Mockus	1989;	Jones,	Schonlau,	Welch	
1998]	is	a	kind	of	sequential	Bayesian	experimental	design,	for	optimizing	
expensive-to-evaluate	functions	

In	Bayesian	optimization,	we:	
1. Build	a	Bayesian	machine	learning	model	of	the	objective,	based	on	

training	data	
2. Suggest	experiments	to	run	with	the	largest	value	of	information	[Howard	

1966]	

Bayesian	optimization	is	in	a	larger	class	of	“optimal	learning”	methods

Bayesian optimization isn’t the only way
to improve trial & error in chemistry

• Classical	experimental	design	&	response	surface	methods	
• Chemoinformatics	&  
quantitative	structure	activity	relationship	(QSAR)	modeling	

• Simulations	of	chemical	systems	
• Combinatorial	chemistry	
• Robotics	for	high-throughput	screening

We have been developing better ways 
to use machine learning in materials and drug discovery 
in these problems

• Developing	orthogonal	protein	labels	

• Drug	development	for	Ewing’s	sarcoma	

• Finding	peptides	that	bind	specifically	to	metals	

• Developing	organic	semiconductors

We have been developing better ways 
to use machine learning in materials and drug discovery 
in these problems

• Developing	orthogonal	protein	labels.	

• Drug	development	for	Ewing’s	sarcoma.	

• Finding	peptides	that	bind	specifically	to	metals.	

• Developing	organic	semiconductors.

We are using Bayesian optimization
to develop orthogonal protein labels

Eunice	Kim  
(UCSD)

Lori	Tallorin  
(UCSD)

Swagut	Sahu  
(UCSD)

Jialei	Wang 
(Cornell)

Nick	Kosa 
(UCSD)

Pu	Yang 
(Cornell)

Matt 
Thompson  
(UCSD/
Northwestern)

Mike	Gilson  
(UCSD)

Nathan	
Gianneschi  
(UCSD/
Northwestern)

Mike	Burkart 
(UCSD)

Our goal is to build a way to
stick things to proteins

Our goal is to build a way to stick
things to proteins

arbitrary	label,	e.g.,	red	dye	
(anything	attached	to	pin)

XXXSXXXXXXXXX

N

S

NH

NH

O
P
O
P

O
O

O

O

O
O
O

O O
O N

OP
O

O
OH

OH

N

N
N

NH2

OH

XXXSXXXXXXXXX

N

S

NH

NH

O
P
O

O
O

O

O

O
O

OH

OH

PPTase	enzyme	
(person	sticking	pin	into	pincushion)

Peptide 
substrate 
(pincushion),	  
can	be	embedded	in	large	protein 
(person	wearing	the	pincushion)

Phosphopantetheine 
(pin)

arbitrary	label,	e.g.,	red	dye	
(anything	attached	to	pin)

XXXSXXXXXXXXX

N

S

NH

NH

O
P
O
P

O
O

O

O

O
O
O

O O
O N

OP
O

O
OH

OH

N

N
N

NH2

OH

XXXSXXXXXXXXX

N

S

NH

NH

O
P
O

O
O

O

O

O
O

OH

OH

PPTase	enzyme	
(person	sticking	pin	into	pincushion)

Peptide 
substrate 
(pincushion),	  
can	be	embedded	in	large	protein 
(person	wearing	the	pincushion)

Phosphopantetheine 
(pin)

Our goal is to build two orthogonal
ways to stick things to proteins
•We work with 2 different PPTase enzymes: Sfp and AcpS
•We want to find:  

(1) an Sfp-specific peptide substrate labeled by Sfp but not by AcpS  
(2) an AcpS-specific peptide substrate labeled by AcpS but not by Sfp

Our goal is to build two orthogonal
ways to stick things to proteins

• If	a	peptide	is	a	substrate	for	Sfp	and	not	AcpS,	we	say	it	is	an	“Sfp-specific	hit”	

• AcpS-specific	hits	are	defined	similarly	

• For	the	orthogonal	labeling	system	to	be	useful,	the	peptide	should	be	short 
(say,	8-12	amino	acids)	

• Otherwise	they	will	change	the	behavior	of	the	proteins	where	they	are	embedded

To make our orthogonal labeling system
useful, we need the substrates to be short

It is hard to find short hits;  
Math makes it easier.
• If	a	peptide	allows	both	chemical	reactions	to	occur,	we	call	it	a	“hit”.	

• Hits	are	rare:	about	1	in	105	among	shorter	peptides.	

• Testing	peptides	is	expensive	&	time-consuming: 
~1	week	from	an	experimentalist	&	expensive	capacity-limited	machine;	+	
material	costs		

• We	test	500	peptides	at	time.		500	is	much	smaller	than	105.	

• To	help	us,	we	have	some	known	hits,	obtained	from	natural	organisms.		
They	are	too	long	to	be	used	directly.

Here’s how we test peptides

We reduce the experimental effort
required to find minimal substrates

✤ We provide a method for
Peptide Optimization with Optimal Learning (POOL)

✤ POOL has 2 parts:  

1. Predict	which	peptides	are	“hits”, 
using	a	simple	machine	learning	method  

2. Use	these	predictions	in	an	intelligent	way 
to	recommend	a	set	of	recommend	to	test	next

We use Naive Bayes as our
machine learning technique
✤ Naive	Bayes	is	a	statistical	model	often	used	for	text	classification 
(e.g.,	spam	filters).			

✤ It	is	called	“naive”	because	it	makes	an	independence	assumption.			
✤ Although	it	is	naive,	it	often	works	really	well.	

✤ We	apply	a	variant	of	Naive	Bayes	to	our	problem,	which	is	customized	to	
include	amino	acids’	location	within	the	peptide.

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0 1

0
1

Naive Bayes is ok,  
but far from perfect

• This	graph	used	training	data	
from	~300	peptides  
(most	are	misses.)	

• True	positive	rate	=	%	of	hits	
predicted	to	be	hits.	

• False	positive	rate	=	%	of	
misses	predicted	to	be	hits.	

• Rates	were	estimated	via	
leave-one-out	cross-
validation.

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0 1

0
1

Given imperfect predictions,  
what should we test next?

• If	predictions	were	perfect,	we	
could	just	test	the	shortest	
peptide	predicted	to	be	a	hit.	

• Our	predictions	are	not	perfect.	

• How	should	we	decide	what	to	
test	next?

Ranking by probability of a hit
does not work well

• One simple strategy is:
• Select those peptides with length < 12.
• Rank them by predicted probability of a hit
• Test the top 300.

• The tested peptides are very similar. If the first tested peptide is not
a hit, the other ones probably aren’t either.

Peptides TestedPr
ob

ab
ilit

y
of

 a
 s

ho
rt

hi
t

0 20 40 60 80

0.
0

1.
0

Ranking by
prob. of a hit

Mutating
known hits

Plot obtained via a
simulation experiment

Ranking by probability of a hit 
does not work well

Peptides TestedPr
ob

ab
ilit

y
of

 a
 s

ho
rt

hi
t

0 20 40 60 80

0.
0

1.
0

Ranking by
prob. of a hit

Mutating
known hits

POOL

POOL works better

Plot obtained via a
simulation experiment

Let’s do the experiment that maximizes
the probability we reach our goal

• Our goal is to find short hits.

• More specifically, our goal is:
• Find at least one hit of length b or shorter

• Let’s run an experiment that maximizes the probability of reaching
this goal.

The best experiment is the solution to
a combinatorial optimization problem

• This	can	be	formulated	as	this	combinatorial	optimization	problem:	

• Notation:	
• E	is	the	set	of	all	peptides.	
• S	is	the	set	of	peptides	to	test.	
• k	is	the	number	of	peptides	we	can	test	in	one	experiment. 

Typically,	k	is	between	200	and	500.	
• A	“short	hit”	is	a	hit	whose	length	is	less	than	b.

We can’t solve this exactly,  
so we approximate its solution  
using a greedy algorithm

• This	combinatorial	optimization	problem	is	very	challenging	: 
The	number	of	size-k	sets	of	length	b	peptides	is	20b	choose	k.  
If	b=14	and	k=500,	this	is	1019	choose	500.	

• Instead,	we	build	up	the	set	S	of	peptides	to	test	in	stages.	

• In	each	stage,	find	one	peptide	e	to	add	to	S	that	maximizes	the	probability	
of	reaching	our	goal:	

• Add	e	to	S	and	repeat,	until	S	has	k=500	peptides.

The greedy algorithm performs within
63% of optimal

Let P*(S) = P(at least one short hit in S).

We can implement the greedy
algorithm efficiently
• The	greedy	optimization	step	is	equivalent	to	

• We	can	compute	this	probability	by	treating	all	peptides	in	S	as	misses,	
and	re-training	our	model	

• Naive	Bayes	allows	solving	the	above	optimization	problem	separately	
for	each	position	in	the	peptide,	making	it	fast	to	solve

Here is the intuition why 
this approach works better 
than “rank by prob. hit”
• Finding	the	the	single	peptide	to	add	that	maximizes	the	probability	of	
reaching	our	goal:	

• Is	equivalent	to:	

• Compare	this	to	the	“rank	by	prob.	hit”	approach

POOL works better because its
peptides are more diverse

• Peptides	added	using	the	value	of	information	approach	tend	to	be	
different	from	those	already	in	S.	

• Its	recommendations	are	more	diverse.

Peptides TestedPr
ob

ab
ilit

y
of

 a
 s

ho
rt

hi
t

0 20 40 60 80

0.
0

1.
0

Ranking by prob. of a hit

POOL

POOL’s recommendations are more diverse

AcpS-specific hit  
(w/ control)

Sfp-specific hit  
(w/ control)

Conclusion

• We have developed an optimal learning method for finding
minimal peptide substrates.

• This method has found hits shorter than the shortest previously
known.

• This approach can be applied to other kinds of problems.

• This approach aims to:
•Reduce the experimental effort required to reach a goal.
•Increase the chance of achieving a goal within a given experimental budget.

Thank you!

Appendix

We use Naive Bayes

✤ We assume that reality is characterized by a pair of latent matrices,
called and , where columns of each matrix correspond to
different positions within the peptide, and rows correspond to
different types of amino acids.

✤ These latent matrices are unknown, but can be estimated from data.

✤ We further suppose that, for a peptide x,

✤ Here, x is a peptide, xi is the type of the amino acid at position i, y(x)
indicates whether x is a hit (1) or not (0), and P(hit) and P(miss) are
prior estimates of the fraction of hits and misses in the population.

We use Bayesian Naive Bayes

✤ We put independent Dirichlet prior distributions on each column of
the latent matrices and .

✤ Our choices for the parameters of this prior are based on a biological
understanding of the problem, discussions with our collaborators,
and cross validation.

✤ Given training data x1,...,xn , y(x1),...,y(xn), the posterior on the θ’s is
also Dirichlet, and independent across i and j.

✤ To estimate the posterior probability of a hit, we can sample the θ’s
from the posterior, or calculate a single MAP estimate. The MAP
estimate ignores uncertainty, but can be computed analytically.

Using VOI to optimize  
P(≥1 short hit)  
has a shortcoming

✤ Under our Naïve Bayes model, it is usually possible to increase
P(hit) by increasing the peptide’s length.

✤ Thus, the experiments that maximize P(≥1 short hit) tend to have
length b-1.

✤ However, a hit strictly shorter than b-1 would be even better.

✤ To allow us to find such strictly shorter peptides, we might consider
an alternate goal: expected improvement.

✤ Let f(x) be the length of peptide x.

✤ is the length of the shortest hit found.

✤ Define the expected improvement for testing S as:

✤ An S that maximizes EI(S) could contain peptides shorter than b-1.

Optimizing expected
improvement would fix this

Efficiently optimizing expected
improvement is ongoing work
✤ Solving exactly is very challenging.

✤ EI(S) is also a monotone submodular function, and so the greedy
algorithm also has an approximation guarantee.

✤ However, actually finding the single peptide to add that maximizes
the expected improvement is itself extremely difficult.

✤ We are currently using an integer program to do this, but results are
pending.

We are greedily optimizing P(≥1 short hit) with
one tweak to make real recommendations 

✤ We have used the following
approach in recommending
experiments to our collaborators.

✤ We pre-select a random sequence of
lengths a1,...,ak strictly less than b,
and require that the nth peptide
selected has length less than an.

✤ We then apply the greedy probability
of improvement algorithm.

✤ This improves expected
improvement, without hurting P(≥1
short hit).

Expected improvement as a function of |S|,
estimated via Monte Carlo.

Peptide Length

H

its

0 10 20 30 40

0
20

40

H

its

0 10 20 30 40

0
20

40
We have found novel short
peptides using this method

H

its

0 10 20 30 40

0
20

40

>40

>40

>40

Training Set
Length of shortest hit: 11

After 1 round of POOL
Length of shortest hit: 11

After 2 rounds of POOL
Length of shortest hit: 10

