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Science & technology relies 
on trial & error
✤ Edison	famously	used	trial	&	error:	

✤ ~100	materials	tested	developing	the	carbon	microphone.	
✤ ~6000	filaments	tested	developing	a	better	incandescent	bulb.	

✤ In	drug	discovery,	robots	often	screen	 
>	100,000	compounds.	

✤ New	polymers	and	other	biomaterials	are	often	
created	using	trial	&	error.  
[Typically	100s	of	materials	tried.]



Doing trial & error well  
is really important
✤ Many	good	projects	fail	because	trial	&	error	didn’t	pan	out	

✤ If	we	could	improve	trial	&	error:	
✤ More	technology	development	efforts	would	succeed	
✤ Scientists	could	take	on	more	ambitious	projects	
✤ Technological	development	would	get	faster



Genius is 1% inspiration, 
99% perspiration.

We want to improve  
trial & error

✤ Keys	to	doing	trial	&	error	well:	

✤ Make	intelligent	decisions	about	experiments	to	perform	[inspiration]	

✤ Do	lots	of	experiments	[perspiration]	

✤ Be	lucky
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Machine learning is often seen as a  
magic box that predicts things



Here’s how machine learning is 
typically used in materials discovery

1.Feed	in	peptides	(or	small	molecule,	polymers,	
alloys,	…)	synthesized	in	the	past	with	property	
measurements	(“Training	Data”)	
2.Machine	learning	predicts	properties	for	
unsynthesized	peptides	
3.Rank	peptides	by	predicted	desirability	
4.Test	the	top	10



False	positive	rate

The	machine	learning	algorithm	with	a	threshold	corresponding	to	the	red	dot	will	label:	
	 20%	of	non-active	peptides	as	active	[ideally,	this	would	be	0%]	
	 45%	of	active	peptides	as	active	[ideally,	this	would	be	100%]	

If	99.99%	of	peptides	are	not	active, 
we’ll	have	to	test	X	predicted-active	peptides	to	find	the	first	active	one.
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Challenge:  
Machine learning makes errors

The	machine	learning	algorithm	with	a	threshold	corresponding	to	the	red	dot	will	label:	
	 5%	of	non-active	peptides	as	active	[ideally,	this	would	be	0%]	
	 20%	of	active	peptides	as	active	[ideally,	this	would	be	100%]	

If	1	in	105	peptides	are	active, 
we’ll	have	to	test	>104	predicted-active	peptides	to	find	the	first	active	one.

Random	guesses
Mach.	Learning



http://blog.revolutionanalytics.com/2015/09/why-big-data-learning-curves.html

In	materials	discovery,	we	usually	have	only	a	little	training	data 
for	the	property	of	interest.	[Often	<	10,	<	100]

Challenge: Machine learning makes BIG errors 
when it only has a little training data

In	materials	discovery,	we	usually	have	only	a	little	training	data 
for	the	property	of	interest.	[Often	<	10,	<	100]



Solutions
• Include	physical	knowledge	into	the	machine	
learning	model	to	make	it	more	accurate	

• Get	more	training	data,	if	you	can		
• Build	fancier	machine	learning	methods	 
[usually	requires	more	training	data]	

• Use	machine	learning	in	an	intelligent	way
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Example:	
Recommendation	

Systems



Step	1:	Use	machine	learning	to	predict	books	Jack	
might	enjoy	reading
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What	happens	if	we	use	the	simple	strategy	of	going	
with	the	top	3	most	likely	to	be	enjoyed?
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What	happens	if	we	use	the	simple	strategy	of	going	
with	the	top	3	most	likely	to	be	enjoyed?

Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one

Probability	he’ll	like	this	
book,	if	he	doesn’t	either	
of	the	first	two
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The	
probability	
that	Jack	likes	
at	least	one	of	
these	books	is	
only 
1-.6*.9*.95=	48.7%



40%

Step	2:	Take	machine	learning’s	most	recommended	
book.

Probability	he’ll	like	this	book



40%

Step	3:	Retrain	assuming	he	doesn’t	like	it

Probability	he’ll	like	this	book

50%

42%

37%

Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one
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Step	4:	Take	machine	learning’s	most	recommended	
book



40%Probability	he’ll	like	this	book

50%
Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one

We	are	already	up	to	a	probability	of	70%	  
he’ll	like	one	of	these	books	



40%Probability	he’ll	like	this	book

50%
Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one

Step	5:	Retrain	assuming	he	doesn’t	like	any	of	the	
previously	selected	books.		Take	the	best	one.

Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
either	of	the	first	two 20%

15%
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40%Probability	he’ll	like	this	book

50%
Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
the	first	one

By	providing	a	diverse	selection	of	books,	the	chance	
he’ll	like	at	least	one	is	1-.6*.5*.8=76%	(>	45%)

Probability	he’ll	like	this	
book,	if	he	doesn’t	like	
either	of	the	first	two 20%



We	does	not	try	to	make	every	pick	a	winner

• We	didn’t	design	the	
selection	so	that	he	
would	like	every	book	
selected.	

• We	designed	it	so	that	he	
would	like	at	least	one.	

• The	last	book	may	be	
unlikely	to	be	selected.		
It	is	designed	as	a	good	
backup,	not	a	good	first	
pick.



These ideas come from the 
literature on Bayesian optimization 
Bayesian	optimization	[Kushner	1964;	Mockus	1989;	Jones,	Schonlau,	Welch	
1998]	is	a	kind	of	sequential	Bayesian	experimental	design,	for	optimizing	
expensive-to-evaluate	functions	

In	Bayesian	optimization,	we:	
1. Build	a	Bayesian	machine	learning	model	of	the	objective,	based	on	

training	data	
2. Suggest	experiments	to	run	with	the	largest	value	of	information	[Howard	

1966]	

Bayesian	optimization	is	in	a	larger	class	of	“optimal	learning”	methods



Bayesian optimization isn’t the only way 
to improve trial & error in chemistry

• Classical	experimental	design	&	response	surface	methods	
• Chemoinformatics	&  
quantitative	structure	activity	relationship	(QSAR)	modeling	

• Simulations	of	chemical	systems	
• Combinatorial	chemistry	
• Robotics	for	high-throughput	screening



We have been developing better ways 
to use machine learning in materials and drug discovery 
in these problems

• Developing	orthogonal	protein	labels	

• Drug	development	for	Ewing’s	sarcoma	

• Finding	peptides	that	bind	specifically	to	metals	

• Developing	organic	semiconductors
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We are using Bayesian optimization 
to develop orthogonal protein labels

Eunice	Kim  
(UCSD)

Lori	Tallorin  
(UCSD)

Swagut	Sahu  
(UCSD)

Jialei	Wang 
(Cornell)

Nick	Kosa 
(UCSD)

Pu	Yang 
(Cornell)

Matt 
Thompson  
(UCSD/
Northwestern)

Mike	Gilson  
(UCSD)

Nathan	
Gianneschi  
(UCSD/
Northwestern)

Mike	Burkart 
(UCSD)



Our goal is to build a way to 
stick things to proteins
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Our goal is to build two orthogonal 
ways to stick things to proteins
•We work with 2 different PPTase enzymes: Sfp and AcpS
•We want to find:  

(1) an Sfp-specific peptide substrate labeled by Sfp but not by AcpS  
(2) an AcpS-specific peptide substrate labeled by AcpS but not by Sfp



Our goal is to build two orthogonal 
ways to stick things to proteins



• If	a	peptide	is	a	substrate	for	Sfp	and	not	AcpS,	we	say	it	is	an	“Sfp-specific	hit”	

• AcpS-specific	hits	are	defined	similarly	

• For	the	orthogonal	labeling	system	to	be	useful,	the	peptide	should	be	short 
(say,	8-12	amino	acids)	

• Otherwise	they	will	change	the	behavior	of	the	proteins	where	they	are	embedded

To make our orthogonal labeling system 
useful, we need the substrates to be short



It is hard to find short hits;  
Math makes it easier.
• If	a	peptide	allows	both	chemical	reactions	to	occur,	we	call	it	a	“hit”.	

• Hits	are	rare:	about	1	in	105	among	shorter	peptides.	

• Testing	peptides	is	expensive	&	time-consuming: 
~1	week	from	an	experimentalist	&	expensive	capacity-limited	machine;	+	
material	costs		

• We	test	500	peptides	at	time.		500	is	much	smaller	than	105.	

• To	help	us,	we	have	some	known	hits,	obtained	from	natural	organisms.		
They	are	too	long	to	be	used	directly.



Here’s how we test peptides



We reduce the experimental effort 
required to find minimal substrates

✤ We provide a method for                                                                 
Peptide Optimization with Optimal Learning (POOL)

✤ POOL has 2 parts:  

1. Predict	which	peptides	are	“hits”, 
using	a	simple	machine	learning	method  

2. Use	these	predictions	in	an	intelligent	way 
to	recommend	a	set	of	recommend	to	test	next



We use Naive Bayes as our 
machine learning technique
✤ Naive	Bayes	is	a	statistical	model	often	used	for	text	classification 
(e.g.,	spam	filters).			

✤ It	is	called	“naive”	because	it	makes	an	independence	assumption.			
✤ Although	it	is	naive,	it	often	works	really	well.	

✤ We	apply	a	variant	of	Naive	Bayes	to	our	problem,	which	is	customized	to	
include	amino	acids’	location	within	the	peptide.



False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0 1

0
1

Naive Bayes is ok,  
but far from perfect

• This	graph	used	training	data	
from	~300	peptides  
(most	are	misses.)	

• True	positive	rate	=	%	of	hits	
predicted	to	be	hits.	

• False	positive	rate	=	%	of	
misses	predicted	to	be	hits.	

• Rates	were	estimated	via	
leave-one-out	cross-
validation.
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Given imperfect predictions,  
what should we test next?

• If	predictions	were	perfect,	we	
could	just	test	the	shortest	
peptide	predicted	to	be	a	hit.	

• Our	predictions	are	not	perfect.	

• How	should	we	decide	what	to	
test	next?



Ranking by probability of a hit 
does not work well

• One simple strategy is:
• Select those peptides with length < 12.
• Rank them by predicted probability of a hit
• Test the top 300.

• The tested peptides are very similar.  If the first tested peptide is not 
a hit, the other ones probably aren’t either.
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Ranking by probability of a hit 
does not work well
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Let’s do the experiment that maximizes 
the probability we reach our goal 

• Our goal is to find short hits.

• More specifically, our goal is:
• Find at least one hit of length b or shorter

• Let’s run an experiment that maximizes the probability of reaching 
this goal.



The best experiment is the solution to 
a combinatorial optimization problem

• This	can	be	formulated	as	this	combinatorial	optimization	problem:	

• Notation:	
• E	is	the	set	of	all	peptides.	
• S	is	the	set	of	peptides	to	test.	
• k	is	the	number	of	peptides	we	can	test	in	one	experiment. 

Typically,	k	is	between	200	and	500.	
• A	“short	hit”	is	a	hit	whose	length	is	less	than	b.



We can’t solve this exactly,  
so we approximate its solution  
using a greedy algorithm

• This	combinatorial	optimization	problem	is	very	challenging	: 
The	number	of	size-k	sets	of	length	b	peptides	is	20b	choose	k.  
If	b=14	and	k=500,	this	is	1019	choose	500.	

• Instead,	we	build	up	the	set	S	of	peptides	to	test	in	stages.	

• In	each	stage,	find	one	peptide	e	to	add	to	S	that	maximizes	the	probability	
of	reaching	our	goal:	

• Add	e	to	S	and	repeat,	until	S	has	k=500	peptides.



The greedy algorithm performs within 
63% of optimal

Let P*(S) = P(at least one short hit in S). 



We can implement the greedy 
algorithm efficiently
• The	greedy	optimization	step	is	equivalent	to	

• We	can	compute	this	probability	by	treating	all	peptides	in	S	as	misses,	
and	re-training	our	model	

• Naive	Bayes	allows	solving	the	above	optimization	problem	separately	
for	each	position	in	the	peptide,	making	it	fast	to	solve



Here is the intuition why 
this approach works better 
than “rank by prob. hit”  
• Finding	the	the	single	peptide	to	add	that	maximizes	the	probability	of	
reaching	our	goal:	

• Is	equivalent	to:	

• Compare	this	to	the	“rank	by	prob.	hit”	approach



POOL works better because its 
peptides are more diverse

• Peptides	added	using	the	value	of	information	approach	tend	to	be	
different	from	those	already	in	S.	

• Its	recommendations	are	more	diverse.
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POOL’s recommendations are more diverse



AcpS-specific hit  
(w/ control)

Sfp-specific hit  
(w/ control)



Conclusion

• We have developed an optimal learning method for finding 
minimal peptide substrates.

• This method has found hits shorter than the shortest previously 
known.

• This approach can be applied to other kinds of problems.

• This approach aims to:
•Reduce the experimental effort required to reach a goal.
•Increase the chance of achieving a goal within a given experimental budget.



Thank you!



Appendix



We use Naive Bayes

✤ We assume that reality is characterized by a pair of latent matrices, 
called           and            , where columns of each matrix correspond to 
different positions within the peptide, and rows correspond to 
different types of amino acids.

✤ These latent matrices are unknown, but can be estimated from data.

✤ We further suppose that, for a peptide x,

✤ Here, x is a peptide, xi is the type of the amino acid at position i, y(x) 
indicates whether x is a hit (1) or not (0), and P(hit) and P(miss) are 
prior estimates of the fraction of hits and misses in the population.



We use Bayesian Naive Bayes

✤ We put independent Dirichlet prior distributions on each column of 
the latent matrices           and            .

✤ Our choices for the parameters of this prior are based on a biological 
understanding of the problem, discussions with our collaborators, 
and cross validation.

✤ Given training data x1,...,xn , y(x1),...,y(xn), the posterior on the θ’s is 
also Dirichlet, and independent across i and j.

✤ To estimate the posterior probability of a hit, we can sample the θ’s 
from the posterior, or calculate a single MAP estimate.  The MAP 
estimate ignores uncertainty, but can be computed analytically.



Using VOI to optimize  
P(≥1 short hit)  
has a shortcoming 

✤ Under our Naïve Bayes model, it is usually possible to increase 
P(hit) by increasing the peptide’s length.

✤ Thus, the experiments that maximize P(≥1 short hit) tend to have 
length b-1.

✤ However, a hit strictly shorter than b-1 would be even better.

✤ To allow us to find such strictly shorter peptides, we might consider 
an alternate goal: expected improvement.



✤ Let f(x) be the length of peptide x.

✤                                                  is the length of the shortest hit found.

✤ Define the expected improvement for testing S as:

✤ An S that maximizes EI(S) could contain peptides shorter than b-1.

Optimizing expected 
improvement would fix this



Efficiently optimizing expected 
improvement is ongoing work
✤ Solving                                         exactly is very challenging.

✤ EI(S) is also a monotone submodular function, and so the greedy 
algorithm also has an approximation guarantee.

✤ However, actually finding the single peptide to add that maximizes 
the expected improvement is itself extremely difficult.

✤ We are currently using an integer program to do this, but results are 
pending.



We are greedily optimizing P(≥1 short hit) with 
one tweak to make real recommendations 

✤ We have used the following 
approach in recommending 
experiments to our collaborators.

✤ We pre-select a random sequence of 
lengths a1,...,ak strictly less than b, 
and require that the nth peptide 
selected has length less than an.

✤ We then apply the greedy probability 
of improvement algorithm.

✤ This improves expected 
improvement, without hurting P(≥1 
short hit).

Expected improvement as a function of |S|, 
estimated via Monte Carlo.
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We have found novel short 
peptides using this method
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