
Yelp, Monday December 16, 2013

Information Filtering for arXiv.org
Bandits,
Exploration vs. Exploitation,
& the Cold Start Problem

Peter Frazier
School of Operations Research & Information Engineering
Cornell University

with Xiaoting Zhao, PhD student, School of ORIE, Cornell
Support provided by the National Science Foundation, award IIS-142251, IIS-1247696

We are interested in

information filtering

✤ Our goal: design an algorithm that
can learn which items are relevant,
and forward only these items to the
user.

Information
Filtering
Algorithm

Items

Discard

Forward

User

✤ We face a sequence of time-sensitive items (emails, blog posts, news articles).

✤ A human is interested in some of these items.

✤ But, the stream is too voluminous for her to look at all of them.

We are interested in

information filtering

Information
Filtering
Algorithm

Items

Discard

Forward

User

✤ If we had lots of historical data, we could train a machine learning
classifier to predict which items would be relevant to this user.

✤ But what if we are doing information filtering for a new user?

✤ Research Question: How can we
quickly learn user preferences,
without forwarding too many
irrelevant items?

We are interested in

exploration vs. exploitation
in information filtering
✤ More generally, suppose there is an

item type with little historical data
from this user.

✤ This can arise because:

✤ this is a new user;

✤ the item mix is changing;

✤ the information filtering alg. has
not forwarded items of this
type.

✤ We may EXPLORE, i.e., forward a few items of this type, to better learn this type’s relevance.

✤ But, we may want to EXPLOIT what little training data we have, which may suggest this
item type is irrelevant.

✤ What should we do?

Information
Filtering
Algorithm

Items

Discard

Forward

User

We develop an information filtering algorithm
that trades exploration vs. exploitation

Information
Filtering
Algorithm

Items

Discard

Forward

User-provided
Relevance
Feedback

✤ We use an optimal learning approach, which relies on Bayesian
statistics and dynamic programming.

We develop an information filtering algorithm
that trades exploration vs. exploitation

Information
Filtering
Algorithm

Items

Discard

Forward

User-provided
Relevance
Feedback

✤ We focus on the value of the information in the user’s relevance
feedback.

We are motivated by an information
filtering system we are building for arxiv.org

✤ arXiv.org is an electronic repository of
scientific papers hosted by Cornell.

✤ Papers are in physics, math, CS,
statistics, finance, and biology.

✤ arXiv currently has ≈800,000 articles,
and 16 million unique users accessing
the site each month.

The arXiv is an important
repository of scientific articles

✤ In several research areas
in physics, the arXiv’s
impact factor is higher
than that of any journal.

Our goal is to improve
daily & weekly new-article feeds

✤ Many physicists visit the arXiv every
day to browse the list of new papers,
to stay aware of the latest research.

✤ There are lots of new papers (roughly
80 new papers / day in astrophysics.)

✤ Problem 1: Browsing this many papers
is a lot of work for researchers.

✤ Problem 2: Researchers still miss
important developments.

Our goal is to improve
daily & weekly new-article feeds

Information
Filtering
Algorithm

Items

Discard

Forward

User-provided
Relevance
Feedback

Our goal is to improve
daily & weekly new-article feeds

We also want to understand
exploration vs. exploitation in information retrieval

✤ In this talk, we focus on the simplest of several models we have
developed.

✤ The simplicity of the model makes clear the essential insights of our
analysis into the exploration vs. exploitation tradeoff.

✤ However, building a system that provides value to users requires a
number of tweaks to this simple model.

✤ We will discuss these tweaks briefly at the end of the talk.

Literature Review

✤ Exploration vs. exploitation has been studied extensively in the context of
the multi-armed bandit problem:

✤ Bayesian treatments: [Gittins & Jones, 1974; Whittle 1980] ...

✤ non-Bayesian treatments: [Auer, Cesa-Bianchi, Freund, Schapire, 1995;
Auer, Cesa-Bianchi & Fischer, 2002] ...

✤ Exploration vs. exploitation has also been studied in reinforcement
learning [Kaelbling et al., 1998, Sutton and Barto, 1998].

✤ Exploration vs. exploitation has also been studied in information
retrieval: [Zhang, Xu & Callan 2003; Agarwal, Chen & Elango 2009; Yue,
Broder, Kleinberg & Joachims 2009; Hofmann, Whitestone & Rijke 2012]

Outline

✤ Categorizing items

✤ Mathematical Model

✤ Extensions & Tweaks

Outline

✤ Categorizing items

✤ Mathematical Model

✤ Extensions & Tweaks

We use a pre-processing step that
divides items into categories

Information
Filtering
Algorithm

Categorizer

All Items

Category 1

Category k

Discard

Forward

User-provided
Relevance
Feedback

Discard

Forward

We use a pre-processing step that
divides items into categories

✤ Step 1: We use historical data to create a ratings matrix with older
items and users with lots of history.

✤ Step 2: We use a singular value decomposition to represent older
items as points in a low-dimensional space. Dimensions correspond
roughly to “topics”.

✤ Step 3: We use kmeans clustering on the low-dimensional space to
cluster older items.

✤ Step 4: We train a multi-class SVM to predict the cluster from item
features, e.g., the words in a paper, or the authors.

We use a pre-processing step that
divides items into categories

✤ Arxiv papers are also pre-labeled with categories: e.g., Artificial Intelligence;
Computation and Language; Computational Complexity; Computational Engineering, Finance, and Science;
Computational Geometry; Computer Science and Game Theory; Computer Vision and Pattern Recognition; ...

✤ We are also experimenting with a Bayesian methods for categorizing
documents into groups, designed to optimally support filtering.

✤ The specific method used to divide documents into groups is not
important for understanding the main ideas in this talk.

Outline

✤ Categorizing items

✤ Mathematical Model

✤ Extensions & Tweaks

Mathematical Model

✤ An item from category x is relevant to the user with probability θx.

✤ We begin with a Bayesian prior distribution on θx, which is
independent across x.

✤ Items arrive according to a Poisson process with rate λ.

✤ An item falls into category x with probability px. An item’s category is
observable. Thus, items from category x arrive according to a Poisson
process with rate λx= λpx.

✤ When each paper arrives, we decide whether to forward or discard.
For the nth item from category x, let Unx=1 if we forward it, and 0 if not.

✓
x

⇠ Beta(↵0x,�0x)

Mathematical Model

✤ When each item arrives, we decide whether to forward or discard.
For the nth item from category x, let Unx=1 if we forward it, and 0 if
not.

✤ If Unx=1, we then observe Ynx, which is 1 if the item was relevant to
the user, and 0 if not.

✤ We can then update our posterior distribution on θx, which will still
be Beta-distributed (details later),

Y
nx

|✓
nx

⇠ Bernoulli(✓
x

)

✓
x

|(Y
mx

: m  n, U
mx

= 1) ⇠ Beta(↵
nx

,�
nx

)

Mathematical Model

Information
Filtering
Algorithm

Categorizer

All Papers

Category 1

Category k

Discard

Forward

User-provided
Relevance
Feedback

Discard

Forward

Mathematical Model

Information
Filtering
Algorithm

Categorizer User-provided
Relevance
Feedback

Poisson(�)

Poisson(�1)

Poisson(�k)

Un1

Unk

Ynk

Yn1

Unk = 1

Un1 = 1

Mathematical Model

✤ To model the cost of the user’s time, we penalize ourselves with a cost
c for forwarding an item. [more on the choice of c later]

✤ We give ourselves a reward of 1 for showing a relevant item.

✤ Our net reward is Unx (Ynx-c).

✤ Our goal is to design an algorithm π that maximizes

E⇡

"
kX

x=1

N

xX

n=1

U
nx

(Y
nx

� c)

#

Mathematical Model

✤ Our goal is to solve:

✤ Here, Nx = sup{n : tnx ≤ T} is the number of items from category x
seen by the user, up to some random time horizon T, and tnx is the
arrival time of the nth item in category x. We construct T so that Nx is
geometric.

✤ An algorithm π is a rule for choosing each Unx based only on
previously observed feedback (Ymz : Umz=1, tmz < tnx),

sup
⇡

E⇡

"
kX

x=1

N

xX

n=1

U
nx

(Y
nx

� c)

#

Let’s first solve the problem for a
single category

Information
Filtering
Algorithm

Categorizer User-provided
Relevance
Feedback

Poisson(�1) Un1

Yn1

Un1 = 1

Let’s first solve the problem for a
single category

✤ For a given cluster x, let’s figure out how to maximize the reward
from just that cluster,

✤ When choosing Unx, it is sufficient to consider feedback only from
previous items in our category x, (Ymx : Umx=1, m<n)

sup
⇡

E⇡

"
N

xX

n=1

U
nx

(Y
nx

� c)

#

We use a standard Bayesian
statistical model

✤ We first find a few users with lots
of historical data in this cluster.

✤ We estimate θx for each of these
users, using their average
relevance feedback.

✤ We then make a histogram.

✤ Recall that we model θx~Beta(α0x,β0x).

✤ Here’s how we choose α0x and β0x.

Theta
Fr
eq
ue
nc
y

0.00 0.10 0.20 0.30

0
40

80

θx

We use a standard Bayesian
statistical model
✤ Recall that we model θx~Beta(α0x,β0x).

✤ Here’s how we choose α0x and β0x.

✤ We then fit a beta density to this
empirical distribution, using
maximum likelihood estimation.

✤ We set α0x and β0x to their values
from the fitted distribution.

✤ A beta distribution is analytically
convenient, and fits the data well.

Theta
Fr
eq
ue
nc
y

0.00 0.10 0.20 0.30

0
40

80

θx

We use a standard Bayesian
statistical model
✤ Recall that we model θx~Beta(α0x,β0x).

✤ Here’s how we choose α0x and β0x.

✤ We then fit a beta density to this
empirical distribution, using
maximum likelihood estimation.

✤ We set α0x and β0x to their values
from the fitted distribution.

✤ A beta distribution is analytically
convenient, and fits the data well.

0.00 0.10 0.20 0.30

0
5

15
Theta

D
en
si
ty

θx

We use a standard Bayesian
statistical model
✤ After observing our data, we update

our prior to obtain a posterior
distribution using Bayes rule.

✓
x

|(Y
mx

: m  n, U
mx

= 1)

⇠ Beta(↵
nx

,�
nx

)
✤ Here, αnx and βnx count the effective

numbers of relevant and irrelevant
items shown:
↵
nx

= ↵0x +
nX

m=1

U
mx

Y
mx

�
nx

= �0x +
nX

m=1

U
mx

(1� Y
mx

)

0.00 0.10 0.20 0.30

0
5

15
Theta

D
en
si
ty

θx

We use a standard Bayesian
statistical model
✤ After observing our data, we update

our prior to obtain a posterior
distribution using Bayes rule.

✓
x

|(Y
mx

: m  n, U
mx

= 1)

⇠ Beta(↵
nx

,�
nx

)
✤ Here, αnx and βnx count the effective

numbers of relevant and irrelevant
items shown:
↵
nx

= ↵0x +
nX

m=1

U
mx

Y
mx

�
nx

= �0x +
nX

m=1

U
mx

(1� Y
mx

)

0.00 0.10 0.20 0.30

0
5

15
Theta

D
en
si
ty

θx

We use a standard Bayesian
statistical model
✤ Our posterior is

✓
x

|(Y
mx

: m  n, U
mx

= 1)

⇠ Beta(↵
nx

,�
nx

)

✤ We can parameterize this posterior
with (μnx, αnx+βnx) where

0.00 0.10 0.20 0.30

0
5

15

Theta

D
en
si
ty

µ
nx

= E
n

[✓
x

] =
↵
nx

↵
nx

+ �
nx

●

●

0 40 80 120
0.
00

0.
10

0.
20

alpha+beta

m
u

●

θx

αnx+βnx

μnx

An algorithm partitions the space of
posteriors into “Forward” and “Discard”
✤ Here is one possible algorithm:

μnx

αnx+ βnx

Forward

Discard

An algorithm partitions the space of
posteriors into “Forward” and “Discard”
✤ Here is one possible algorithm:

μnx

αnx+ βnx

Forward

Discard

An algorithm partitions the space of
posteriors into “Forward” and “Discard”
✤ Here is one possible algorithm:

μnx

αnx+ βnx

Forward

Discard

An algorithm partitions the space of
posteriors into “Forward” and “Discard”
✤ Here is one possible algorithm:

μnx

αnx+ βnx

Forward

Discard

An algorithm partitions the space of
posteriors into “Forward” and “Discard”
✤ Here is one possible algorithm:

μnx

αnx+ βnx

Forward

Discard

An algorithm partitions the space of
posteriors into “Forward” and “Discard”
✤ Here is one possible algorithm:

μnx

αnx+ βnx

Forward

Discard

An algorithm partitions the space of
posteriors into “Forward” and “Discard”
✤ Here is one possible algorithm:

μnx

αnx+ βnx

Forward

Discard

An algorithm partitions the space of
posteriors into “Forward” and “Discard”
✤ Here is one possible algorithm:

μnx

αnx+ βnx

Forward

Discard

An algorithm partitions the space of
posteriors into “Forward” and “Discard”
✤ Here is one possible algorithm:

μnx

αnx+ βnx

Forward

Discard

An algorithm partitions the space of
posteriors into “Forward” and “Discard”
✤ Here is another possible algorithm:

μnx

αnx+ βnx

Forward

Discard

An algorithm partitions the space of
posteriors into “Forward” and “Discard”
✤ Here is yet another possible algorithm:

μnx

αnx+ βnx

Forward

Discard

Discard

The myopic algorithm can be
expressed in this way.

✤ The expected immediate payoff
of forwarding is En[θx-c]= μnx-c

✤ The expected immediate payoff
of discarding is 0.

✤ The rule that maximizes
expected immediate reward is:

✤ Forward if μnx >c

✤ Discard if not.

μnx

αnx+ βnx

c

Forward

Discard

The myopic algorithm ignores the
value of exploring

✤ If our current posterior has:

✤ small αnx+ βnx

✤ μnx close to c

✤ then it might be worth
forwarding, just to learn
more about θx.

✤ If it turns out θx >c, we can
take advantage of this in
future forwarding
decisions.

0.00 0.10 0.20 0.30

0
5

15

Theta

D
en
si
ty μnx

αnx+ βnx

c

Forward

Discard

We can compute the optimal algorithm
through stochastic dynamic programming

✤ Let V(αnx,βnx) be the expected
future reward under the
optimal policy, given n
documents of history.

✤ V satisfies the dynamic
programming recursion:

αnx+ βnx

Forward, V(αnx,βnx)>0

Discard, V(αnx,βnx)=0

c

V(αnx,βnx)=P(Nx>n) max(0,μnx-c+En[V(αn+1,x,βn+1,x)])

μnx

The optimal algorithm trades
exploration vs. exploitation

✤ Theorem 1: There exists a
function μ*(α+β) such that it
is optimal to forward when
μnx ≥μ*(α+β) and to discard
otherwise.

✤ Theorem 2: μ*(α+β) has the
following properties:

✤ it is bounded above by c;
✤ it is increasing in α+β;
✤ it and goes to c as α+β→∞.

μnx

αnx+ βnx

c

μ*(αnx+βnx)

Forward, V(αnx,βnx)>0

Discard, V(αnx,βnx)=0

The optimal algorithm trades
exploration vs. exploitation

✤ When αnx+βnx is small, μ*(αnx+βnx) is
much less than c, and we favor
exploration.

✤ When αnx+βnx is big, μ*(αnx+βnx) is
close to c, and we favor
exploitation.

μnx

αnx+ βnx

c

μ*(αnx+βnx)

Forward, V(αnx,βnx)>0

Discard, V(αnx,βnx)=0

Optimal outperforms myopic
(with simulated users)

0 10 20 30 40 50

0
5

10
15

20

Items Presented

R
el

ev
an

t I
te

m
s

Pr
es

en
te

d

with exploration
no exploration

In these graphs,
“with exploration”=optimal

“no exploration”=myopic

no exploration
with exploration

Optimal outperforms myopic
(in backtesting with historical data)

time

E[reward]

Category= hep-th (theoretical
high-energy physics)

Optimal=with exploration
Myopic=no exploration
Random

Combining single-category solutions
solves the multi-category problem

Information
Filtering
Algorithm

Categorizer User-provided
Relevance
Feedback

Poisson(�)

Poisson(�1)

Poisson(�k)

Un1

Unk

Ynk

Yn1

Unk = 1

Un1 = 1

✤ We know the optimal forwarding/discarding strategy for a single
category.

✤ To deal with multiple categories, simply apply this strategy
independently to each individual category.

✤ The value of this optimal multi-category strategy is the sum of the
values of the optimal single-category strategies:

Combining single-category solutions
solves the multi-category problem

sup
⇡

E⇡

"
kX

x=1

N

xX

n=1

U
nx

(Y
nx

� c)

#
=

kX

x=1

sup
⇡

E⇡

"
N

xX

n=1

U
nx

(Y
nx

� c)

#

Outline

✤ Categorizing items

✤ Mathematical Model

✤ Extensions & Tweaks

Extension #1:
Periodic review

✤ In the arxiv, users do not respond instantaneously. Instead they visit
arxiv periodically (once per day) to read papers.

✤ We allow papers to accumulate in a queue until the user arrives.

✤ When the user arrives, we decide which papers to forward/discard.

✤ The analysis is still tractable using stochastic dynamic programming.

Extension #2:
Unknown costs
✤ In reality, we do not know the cost c for each forwarded document.

✤ To address this, we:

✤ Compute c* for each paper, which is the largest cost c such that we would be
willing to forward this paper.

✤ We present papers in a ranked list in decreasing order of c*.

✤ Optimality analysis:

✤ If we model the user as knowing his own c, and looking at all papers with c*>c, then this algorithm is optimal.

✤ If we model the user as looking at the top n papers in the list each time, this algorithm is not optimal in general, but we can
obtain tractable upper and lower bounds.

✤ If n=1, this algorithm is optimal, and is equivalent to the Gittins index policy for multi-armed bandits.

Extension #3:
Time-varying user preferences

✤ User preferences change over time.

✤ Our Bayesian statistical model may be extended to allow θx to change
over time.

✤ The analysis is still tractable.

Extension #4:
Correlated prior distributions

✤ Our model assumed an independent prior on θx.

✤ In the data, a user’s strong interest in one category (e.g., theoretical high-energy

physics) may make a strong interest in another category more likely (e.g.,

experimental high-energy physics).

✤ We can model this with a correlated prior on θx.

✤ The dynamic program is no longer tractable, but we can compute
μ*(αnx+βnx) using independence, but update our posterior using a
correlated prior.

Conclusion

✤ We have presented a mathematical model that captures the
exploration vs. exploitation tradeoff in information filtering.

✤ If the posterior mean is just a bit below c, and the number of samples
is low, the optimal algorithm forwards, while the myopic algorithm
does not.

✤ We are deploying an algorithm based on this analysis to my.arxiv.org

Thanks to my collaborators!

✤ This project is part of a larger collaboration on
recommender systems for the arxiv, with faculty &
students in CS, Operations Research, and Information
Science at Cornell, Princeton, & Rutgers.

✤ Paul Ginsparg, Thorsten Joachims, Xiaoting Zhao,
Darlin Alberto, Karthik Raman, Ziyu Fan, Akilesh
Potti (Cornell)

✤ Paul Kantor & Vladimir Menkov (Rutgers)

✤ Dave Blei & Laurent Charlin (Princeton)

Thanks for your attention!

✤ Any questions?

