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We are interested in

information filtering

✤ Our goal: design an algorithm that 
can learn which items are relevant, 
and forward only these items to the 
user. 
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✤ We face a sequence of time-sensitive items (emails, blog posts, news articles).

✤ A human is interested in some of these items.

✤ But, the stream is too voluminous for her to look at all of them.



We are interested in

information filtering
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✤ If we had lots of historical data, we could train a machine learning 
classifier to predict which items would be relevant to this user.

✤ But what if we are doing information filtering for a new user?

✤ Research Question: How can we 
quickly learn user preferences, 
without forwarding too many 
irrelevant items?



We are interested in

exploration vs. exploitation 
in information filtering
✤ More generally, suppose there is an 

item type with little historical data 
from this user.

✤ This can arise because: 

✤ this is a new user; 

✤ the item mix is changing;

✤ the information filtering alg. has 
not forwarded items of this 
type.

✤ We may EXPLORE, i.e., forward a few items of this type, to better learn this type’s relevance.

✤ But, we may want to EXPLOIT what little training data we have, which may suggest this 
item type is irrelevant.

✤ What should we do?
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We develop an information filtering algorithm 
that trades exploration vs. exploitation

Information 
Filtering 
Algorithm

Items

Discard

Forward

User-provided
Relevance
Feedback

✤ We use an optimal learning approach, which relies on Bayesian 
statistics and dynamic programming.



We develop an information filtering algorithm 
that trades exploration vs. exploitation

Information 
Filtering 
Algorithm

Items

Discard

Forward

User-provided
Relevance
Feedback

✤ We focus on the value of the information in the user’s relevance 
feedback.



We are motivated by an information 
filtering system we are building for arxiv.org

✤ arXiv.org is an electronic repository of 
scientific papers hosted by Cornell.

✤ Papers are in physics, math, CS, 
statistics, finance, and biology.

✤ arXiv currently has ≈800,000 articles, 
and 16 million unique users accessing 
the site each month.



The arXiv is an important 
repository of scientific articles

✤ In several research areas 
in physics, the arXiv’s 
impact factor is higher 
than that of any journal.



Our goal is to improve
daily & weekly new-article feeds

✤ Many physicists visit the arXiv every 
day to browse the list of new papers, 
to stay aware of the latest research.

✤ There are lots of new papers (roughly 
80 new papers / day in astrophysics.)

✤ Problem 1: Browsing this many papers 
is a lot of work for researchers.

✤ Problem 2: Researchers still miss 
important developments.



Our goal is to improve
daily & weekly new-article feeds
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Our goal is to improve
daily & weekly new-article feeds



We also want to understand 
exploration vs. exploitation in information retrieval

✤ In this talk, we focus on the simplest of several models we have 
developed.

✤ The simplicity of the model makes clear the essential insights of our 
analysis into the exploration vs. exploitation tradeoff.

✤ However, building a system that provides value to users requires a 
number of tweaks to this simple model.

✤ We will discuss these tweaks briefly at the end of the talk.



Literature Review

✤ Exploration vs. exploitation has been studied extensively in the context of 
the multi-armed bandit problem:

✤ Bayesian treatments: [Gittins & Jones, 1974; Whittle 1980] ...

✤ non-Bayesian treatments: [Auer, Cesa-Bianchi, Freund, Schapire, 1995; 
Auer, Cesa-Bianchi & Fischer, 2002] ...

✤ Exploration vs. exploitation has also been studied in reinforcement 
learning [Kaelbling et al., 1998, Sutton and Barto, 1998].

✤ Exploration vs. exploitation has also been studied in information 
retrieval: [Zhang, Xu & Callan 2003; Agarwal, Chen & Elango 2009; Yue, 
Broder, Kleinberg & Joachims 2009; Hofmann, Whitestone & Rijke 2012]
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✤ Mathematical Model
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We use a pre-processing step that 
divides items into categories
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We use a pre-processing step that 
divides items into categories

✤ Step 1: We use historical data to create a ratings matrix with older 
items and users with lots of history.

✤ Step 2: We use a singular value decomposition to represent older 
items as points in a low-dimensional space.  Dimensions correspond 
roughly to “topics”.

✤ Step 3: We use kmeans clustering on the low-dimensional space to 
cluster older items.

✤ Step 4: We train a multi-class SVM to predict the cluster from item 
features, e.g., the words in a paper, or the authors.



We use a pre-processing step that 
divides items into categories

✤ Arxiv papers are also pre-labeled with categories: e.g., Artificial Intelligence; 
Computation and Language; Computational Complexity; Computational Engineering, Finance, and Science; 
Computational Geometry; Computer Science and Game Theory; Computer Vision and Pattern Recognition; ...

✤ We are also experimenting with a Bayesian methods for categorizing 
documents into groups, designed to optimally support filtering.

✤ The specific method used to divide documents into groups is not 
important for understanding the main ideas in this talk.
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Mathematical Model

✤ An item from category x is relevant to the user with probability θx.

✤ We begin with a Bayesian prior distribution on θx, which is 
independent across x.

✤ Items arrive according to a Poisson process with rate λ.

✤ An item falls into category x with probability px.  An item’s category is 
observable.  Thus, items from category x arrive according to a Poisson 
process with rate λx= λpx.

✤ When each paper arrives, we decide whether to forward or discard.  
For the nth item from category x, let Unx=1 if we forward it, and 0 if not.
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Mathematical Model

✤ When each item arrives, we decide whether to forward or discard.  
For the nth item from category x, let Unx=1 if we forward it, and 0 if 
not.

✤ If  Unx=1, we then observe Ynx, which is 1 if the item was relevant to 
the user, and 0 if not.

✤ We can then update our posterior distribution on θx, which will still 
be Beta-distributed (details later),
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Mathematical Model
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Mathematical Model
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Mathematical Model

✤ To model the cost of the user’s time, we penalize ourselves with a cost 
c for forwarding an item. [more on the choice of c later]

✤ We give ourselves a reward of 1 for showing a relevant item.

✤ Our net reward is Unx (Ynx-c).

✤ Our goal is to design an algorithm π that maximizes
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Mathematical Model

✤ Our goal is to solve:

✤ Here, Nx = sup{n :  tnx ≤ T} is the number of items from category x 
seen by the user, up to some random time horizon T, and tnx is the 
arrival time of the nth item in category x.  We construct T so that Nx is 
geometric.

✤ An algorithm π is a rule for choosing each Unx based only on 
previously observed feedback (Ymz : Umz=1, tmz < tnx), 

sup
⇡

E⇡

"
kX

x=1

N

xX

n=1

U
nx

(Y
nx

� c)

#



Let’s first solve the problem for a 
single category
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Let’s first solve the problem for a 
single category

✤ For a given cluster x, let’s figure out how to maximize the reward 
from just that cluster,

✤ When choosing Unx, it is sufficient to consider feedback only from 
previous items in our category x, (Ymx : Umx=1, m<n)
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We use a standard Bayesian 
statistical model

✤ We first find a few users with lots 
of historical data in this cluster.

✤ We estimate θx for each of these 
users, using their average 
relevance feedback.

✤ We then make a histogram.

✤ Recall that we model θx~Beta(α0x,β0x).

✤ Here’s how we choose α0x and β0x.
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We use a standard Bayesian 
statistical model
✤ Recall that we model θx~Beta(α0x,β0x).

✤ Here’s how we choose α0x and β0x.

✤ We then fit a beta density to this 
empirical distribution, using 
maximum likelihood estimation.

✤ We set α0x and β0x to their values 
from the fitted distribution.

✤ A beta distribution is analytically 
convenient, and fits the data well.
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We use a standard Bayesian 
statistical model
✤ Recall that we model θx~Beta(α0x,β0x).

✤ Here’s how we choose α0x and β0x.

✤ We then fit a beta density to this 
empirical distribution, using 
maximum likelihood estimation.

✤ We set α0x and β0x to their values 
from the fitted distribution.

✤ A beta distribution is analytically 
convenient, and fits the data well.
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We use a standard Bayesian 
statistical model
✤ After observing our data, we update 

our prior to obtain a posterior 
distribution using Bayes rule.
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We use a standard Bayesian 
statistical model
✤ After observing our data, we update 

our prior to obtain a posterior 
distribution using Bayes rule.
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We use a standard Bayesian 
statistical model
✤ Our posterior is
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✤ We can parameterize this posterior 
with (μnx, αnx+βnx) where
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An algorithm partitions the space of 
posteriors into “Forward” and “Discard”
✤ Here is one possible algorithm:
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An algorithm partitions the space of 
posteriors into “Forward” and “Discard”
✤ Here is another possible algorithm:
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An algorithm partitions the space of 
posteriors into “Forward” and “Discard”
✤ Here is yet another possible algorithm:
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The myopic algorithm can be 
expressed in this way.

✤ The expected immediate payoff 
of forwarding is En[θx-c]= μnx-c

✤ The expected immediate payoff 
of discarding is 0.

✤ The rule that maximizes 
expected immediate reward is:

✤ Forward if μnx >c

✤ Discard if not. 
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The myopic algorithm ignores the 
value of exploring

✤ If our current posterior has:

✤ small αnx+ βnx

✤ μnx close to c

✤ then it might be worth 
forwarding, just to learn 
more about θx.

✤ If it turns out θx >c, we can 
take advantage of this in 
future forwarding 
decisions.
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We can compute the optimal algorithm 
through stochastic dynamic programming

✤ Let V(αnx,βnx) be the expected 
future reward under the 
optimal policy, given n 
documents of history.

✤ V satisfies the dynamic 
programming recursion:

αnx+ βnx

Forward, V(αnx,βnx)>0

Discard, V(αnx,βnx)=0

c

V(αnx,βnx)=P(Nx>n) max(0,μnx-c+En[V(αn+1,x,βn+1,x)])

μnx



The optimal algorithm trades 
exploration vs. exploitation

✤ Theorem 1: There exists a 
function μ*(α+β) such that it 
is optimal to forward when 
μnx ≥μ*(α+β) and to discard 
otherwise.

✤ Theorem 2: μ*(α+β) has the 
following properties:

✤ it is bounded above by c;
✤ it is increasing in α+β;
✤ it and goes to c as α+β→∞.
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The optimal algorithm trades 
exploration vs. exploitation

✤ When αnx+βnx is small, μ*(αnx+βnx) is 
much less than c, and we favor 
exploration.

✤ When αnx+βnx is big, μ*(αnx+βnx) is 
close to c, and we favor 
exploitation.
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Optimal outperforms myopic 
(with simulated users)
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Optimal outperforms myopic 
(in backtesting with historical data)

time

E[reward]

Category= hep-th (theoretical 
high-energy physics)

Optimal=with exploration
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Combining single-category solutions 
solves the multi-category problem
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✤ We know the optimal forwarding/discarding strategy for a single 
category.

✤ To deal with multiple categories, simply apply this strategy 
independently to each individual category.

✤ The value of this optimal multi-category strategy is the sum of the 
values of the optimal single-category strategies:

Combining single-category solutions 
solves the multi-category problem
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Extension #1: 
Periodic review

✤ In the arxiv, users do not respond instantaneously.  Instead they visit 
arxiv periodically (once per day) to read papers.

✤ We allow papers to accumulate in a queue until the user arrives.

✤ When the user arrives, we decide which papers to forward/discard.

✤ The analysis is still tractable using stochastic dynamic programming.



Extension #2: 
Unknown costs
✤ In reality, we do not know the cost c for each forwarded document.

✤ To address this, we:

✤ Compute c* for each paper, which is the largest cost c such that we would be 
willing to forward this paper.

✤ We present papers in a ranked list in decreasing order of c*.

✤ Optimality analysis:

✤ If we model the user as knowing his own c, and looking at all papers with c*>c,  then this algorithm is optimal.

✤ If we model the user as looking at the top n papers in the list each time, this algorithm is not optimal in general, but we can 
obtain tractable upper and lower bounds.

✤ If n=1, this algorithm is optimal, and is equivalent to the Gittins index policy for multi-armed bandits.



Extension #3: 
Time-varying user preferences

✤ User preferences change over time.

✤ Our Bayesian statistical model may be extended to allow θx to change 
over time.

✤ The analysis is still tractable.



Extension #4: 
Correlated prior distributions

✤ Our model assumed an independent prior on θx.

✤ In the data, a user’s strong interest in one category (e.g., theoretical high-energy 

physics) may make a strong interest in another category more likely (e.g., 

experimental high-energy physics). 

✤ We can model this with a correlated prior on θx.

✤ The dynamic program is no longer tractable, but we can compute 
μ*(αnx+βnx) using independence, but update our posterior using a 
correlated prior.



Conclusion

✤ We have presented a mathematical model that captures the 
exploration vs. exploitation tradeoff in information filtering.

✤ If the posterior mean is just a bit below c, and the number of samples 
is low, the optimal algorithm forwards, while the myopic algorithm 
does not.

✤ We are deploying an algorithm based on this analysis to my.arxiv.org 



Thanks to my collaborators!

✤ This project is part of a larger collaboration on 
recommender systems for the arxiv, with faculty & 
students in CS, Operations Research, and Information 
Science at Cornell, Princeton, & Rutgers.

✤ Paul Ginsparg, Thorsten Joachims, Xiaoting Zhao, 
Darlin Alberto, Karthik Raman, Ziyu Fan, Akilesh 
Potti (Cornell)

✤ Paul Kantor & Vladimir Menkov (Rutgers)

✤ Dave Blei & Laurent Charlin (Princeton)



Thanks for your attention!

✤ Any questions?














