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We are interested in

information filtering

✤ Our goal: design an algorithm that 
can learn which items are relevant, 
and forward only these items to the 
user. 
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✤ We face a sequence of time-sensitive items (emails, blog posts, news articles).

✤ A human is interested in some of these items.

✤ But, the stream is too voluminous for her to look at all of them.



We are interested in

information filtering
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✤ If we had lots of historical data, we could train a machine learning 
classifier to predict which items would be relevant to this user.

✤ But what if we are doing information filtering for a new user?

✤ Research Question: How can we 
quickly learn user preferences, 
without forwarding too many 
irrelevant items?



We are interested in

exploration vs. exploitation 
in information filtering
✤ More generally, suppose there is an 

item type with little historical data 
from this user.

✤ This can arise because: 

✤ this is a new user; 

✤ the item mix is changing;

✤ the information filtering alg. has 
not forwarded items of this 
type.

✤ We may EXPLORE, i.e., forward a few items of this type, to better learn this type’s relevance.

✤ But, we may want to EXPLOIT what little training data we have, which may suggest this 
item type is irrelevant.

✤ What should we do?
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We develop an information filtering algorithm 
that trades exploration vs. exploitation

Information 
Filtering 
Algorithm

Items

Discard

Forward

User-provided
Relevance
Feedback

✤ We use an optimal learning approach, which relies on Bayesian 
statistics and dynamic programming.



We develop an information filtering algorithm 
that trades exploration vs. exploitation
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✤ We focus on the value of the information in the user’s relevance 
feedback.



We are motivated by an information 
filtering system we are building for arxiv.org

✤ arXiv.org is an electronic repository of 
scientific papers hosted by Cornell.

✤ Papers are in physics, math, CS, 
statistics, finance, and biology.

✤ arXiv currently has ≈800,000 articles, 
and 16 million unique users accessing 
the site each month.



The arXiv is an important 
repository of scientific articles

✤ In several research areas 
in physics, the arXiv’s 
impact factor is higher 
than that of any journal.



Our goal is to improve
daily & weekly new-article feeds

✤ Many physicists visit the arXiv every 
day to browse the list of new papers, 
to stay aware of the latest research.

✤ There are lots of new papers (roughly 
80 new papers / day in astrophysics.)

✤ Problem 1: Browsing this many papers 
is a lot of work for researchers.

✤ Problem 2: Researchers still miss 
important developments.



Our goal is to improve
daily & weekly new-article feeds
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Our goal is to improve
daily & weekly new-article feeds



We also want to understand 
exploration vs. exploitation in information retrieval

✤ In this talk, we focus on the simplest of several models we have 
developed.

✤ The simplicity of the model makes clear the essential insights of our 
analysis into the exploration vs. exploitation tradeoff.

✤ However, building a system that provides value to users requires a 
number of tweaks to this simple model.

✤ We will discuss these tweaks briefly at the end of the talk.



Literature Review

✤ Exploration vs. exploitation has been studied extensively in the context of 
the multi-armed bandit problem:

✤ Bayesian treatments: [Gittins & Jones, 1974; Whittle 1980] ...

✤ non-Bayesian treatments: [Auer, Cesa-Bianchi, Freund, Schapire, 1995; 
Auer, Cesa-Bianchi & Fischer, 2002] ...

✤ Exploration vs. exploitation has also been studied in reinforcement 
learning [Kaelbling et al., 1998, Sutton and Barto, 1998].

✤ Exploration vs. exploitation has also been studied in information 
retrieval: [Zhang, Xu & Callan 2003; Agarwal, Chen & Elango 2009; Yue, 
Broder, Kleinberg & Joachims 2009; Hofmann, Whitestone & Rijke 2012]
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We use a pre-processing step that 
divides items into categories
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We use a pre-processing step that 
divides items into categories

✤ Step 1: We use historical data to create a ratings matrix with older 
items and users with lots of history.

✤ Step 2: We use a singular value decomposition to represent older 
items as points in a low-dimensional space.  Dimensions correspond 
roughly to “topics”.

✤ Step 3: We use kmeans clustering on the low-dimensional space to 
cluster older items.

✤ Step 4: We train a multi-class SVM to predict the cluster from item 
features, e.g., the words in a paper, or the authors.



We use a pre-processing step that 
divides items into categories

✤ Arxiv papers are also pre-labeled with categories: e.g., Artificial Intelligence; 
Computation and Language; Computational Complexity; Computational Engineering, Finance, and Science; 
Computational Geometry; Computer Science and Game Theory; Computer Vision and Pattern Recognition; ...

✤ We are also experimenting with a Bayesian methods for categorizing 
documents into groups, designed to optimally support filtering.

✤ The specific method used to divide documents into groups is not 
important for understanding the main ideas in this talk.
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Mathematical Model

✤ An item from category x is relevant to the user with probability θx.

✤ We begin with a Bayesian prior distribution on θx, which is 
independent across x.

✤ Items arrive according to a Poisson process with rate λ.

✤ An item falls into category x with probability px.  An item’s category is 
observable.  Thus, items from category x arrive according to a Poisson 
process with rate λx= λpx.

✤ When each paper arrives, we decide whether to forward or discard.  
For the nth item from category x, let Unx=1 if we forward it, and 0 if not.

✓
x

⇠ Beta(↵0x,�0x)



Mathematical Model

✤ When each item arrives, we decide whether to forward or discard.  
For the nth item from category x, let Unx=1 if we forward it, and 0 if 
not.

✤ If  Unx=1, we then observe Ynx, which is 1 if the item was relevant to 
the user, and 0 if not.

✤ We can then update our posterior distribution on θx, which will still 
be Beta-distributed (details later),
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Mathematical Model
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Mathematical Model
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Mathematical Model

✤ To model the cost of the user’s time, we penalize ourselves with a cost 
c for forwarding an item. [more on the choice of c later]

✤ We give ourselves a reward of 1 for showing a relevant item.

✤ Our net reward is Unx (Ynx-c).

✤ Our goal is to design an algorithm π that maximizes
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Mathematical Model

✤ Our goal is to solve:

✤ Here, Nx = sup{n :  tnx ≤ T} is the number of items from category x 
seen by the user, up to some random time horizon T, and tnx is the 
arrival time of the nth item in category x.  We construct T so that Nx is 
geometric.

✤ An algorithm π is a rule for choosing each Unx based only on 
previously observed feedback (Ymz : Umz=1, tmz < tnx), 
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Let’s first solve the problem for a 
single category
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Let’s first solve the problem for a 
single category

✤ For a given cluster x, let’s figure out how to maximize the reward 
from just that cluster,

✤ When choosing Unx, it is sufficient to consider feedback only from 
previous items in our category x, (Ymx : Umx=1, m<n)
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We use a standard Bayesian 
statistical model

✤ We first find a few users with lots 
of historical data in this cluster.

✤ We estimate θx for each of these 
users, using their average 
relevance feedback.

✤ We then make a histogram.

✤ Recall that we model θx~Beta(α0x,β0x).

✤ Here’s how we choose α0x and β0x.
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We use a standard Bayesian 
statistical model
✤ Recall that we model θx~Beta(α0x,β0x).

✤ Here’s how we choose α0x and β0x.

✤ We then fit a beta density to this 
empirical distribution, using 
maximum likelihood estimation.

✤ We set α0x and β0x to their values 
from the fitted distribution.

✤ A beta distribution is analytically 
convenient, and fits the data well.
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We use a standard Bayesian 
statistical model
✤ Recall that we model θx~Beta(α0x,β0x).

✤ Here’s how we choose α0x and β0x.

✤ We then fit a beta density to this 
empirical distribution, using 
maximum likelihood estimation.

✤ We set α0x and β0x to their values 
from the fitted distribution.

✤ A beta distribution is analytically 
convenient, and fits the data well.
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We use a standard Bayesian 
statistical model
✤ After observing our data, we update 

our prior to obtain a posterior 
distribution using Bayes rule.
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We use a standard Bayesian 
statistical model
✤ After observing our data, we update 

our prior to obtain a posterior 
distribution using Bayes rule.
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We use a standard Bayesian 
statistical model
✤ Our posterior is
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✤ We can parameterize this posterior 
with (μnx, αnx+βnx) where
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An algorithm partitions the space of 
posteriors into “Forward” and “Discard”
✤ Here is one possible algorithm:
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An algorithm partitions the space of 
posteriors into “Forward” and “Discard”
✤ Here is another possible algorithm:
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An algorithm partitions the space of 
posteriors into “Forward” and “Discard”
✤ Here is yet another possible algorithm:
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The myopic algorithm can be 
expressed in this way.

✤ The expected immediate payoff 
of forwarding is En[θx-c]= μnx-c

✤ The expected immediate payoff 
of discarding is 0.

✤ The rule that maximizes 
expected immediate reward is:

✤ Forward if μnx >c

✤ Discard if not. 
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The myopic algorithm ignores the 
value of exploring

✤ If our current posterior has:

✤ small αnx+ βnx

✤ μnx close to c

✤ then it might be worth 
forwarding, just to learn 
more about θx.

✤ If it turns out θx >c, we can 
take advantage of this in 
future forwarding 
decisions.
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We can compute the optimal algorithm 
through stochastic dynamic programming

✤ Let V(αnx,βnx) be the expected 
future reward under the 
optimal policy, given n 
documents of history.

✤ V satisfies the dynamic 
programming recursion:

αnx+ βnx

Forward, V(αnx,βnx)>0

Discard, V(αnx,βnx)=0

c

V(αnx,βnx)=P(Nx>n) max(0,μnx-c+En[V(αn+1,x,βn+1,x)])

μnx



The optimal algorithm trades 
exploration vs. exploitation

✤ Theorem 1: There exists a 
function μ*(α+β) such that it 
is optimal to forward when 
μnx ≥μ*(α+β) and to discard 
otherwise.

✤ Theorem 2: μ*(α+β) has the 
following properties:

✤ it is bounded above by c;
✤ it is increasing in α+β;
✤ it and goes to c as α+β→∞.
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The optimal algorithm trades 
exploration vs. exploitation

✤ When αnx+βnx is small, μ*(αnx+βnx) is 
much less than c, and we favor 
exploration.

✤ When αnx+βnx is big, μ*(αnx+βnx) is 
close to c, and we favor 
exploitation.
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Optimal outperforms myopic 
(with simulated users)
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Optimal outperforms myopic 
(in backtesting with historical data)

time

E[reward]

Category= hep-th (theoretical 
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Combining single-category solutions 
solves the multi-category problem
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✤ We know the optimal forwarding/discarding strategy for a single 
category.

✤ To deal with multiple categories, simply apply this strategy 
independently to each individual category.

✤ The value of this optimal multi-category strategy is the sum of the 
values of the optimal single-category strategies:

Combining single-category solutions 
solves the multi-category problem
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Extension #1: 
Periodic review

✤ In the arxiv, users do not respond instantaneously.  Instead they visit 
arxiv periodically (once per day) to read papers.

✤ We allow papers to accumulate in a queue until the user arrives.

✤ When the user arrives, we decide which papers to forward/discard.

✤ The analysis is still tractable using stochastic dynamic programming.



Extension #2: 
Unknown costs
✤ In reality, we do not know the cost c for each forwarded document.

✤ To address this, we:

✤ Compute c* for each paper, which is the largest cost c such that we would be 
willing to forward this paper.

✤ We present papers in a ranked list in decreasing order of c*.

✤ Optimality analysis:

✤ If we model the user as knowing his own c, and looking at all papers with c*>c,  then this algorithm is optimal.

✤ If we model the user as looking at the top n papers in the list each time, this algorithm is not optimal in general, but we can 
obtain tractable upper and lower bounds.

✤ If n=1, this algorithm is optimal, and is equivalent to the Gittins index policy for multi-armed bandits.



Extension #3: 
Time-varying user preferences

✤ User preferences change over time.

✤ Our Bayesian statistical model may be extended to allow θx to change 
over time.

✤ The analysis is still tractable.



Extension #4: 
Correlated prior distributions

✤ Our model assumed an independent prior on θx.

✤ In the data, a user’s strong interest in one category (e.g., theoretical high-energy 

physics) may make a strong interest in another category more likely (e.g., 

experimental high-energy physics). 

✤ We can model this with a correlated prior on θx.

✤ The dynamic program is no longer tractable, but we can compute 
μ*(αnx+βnx) using independence, but update our posterior using a 
correlated prior.



Conclusion

✤ We have presented a mathematical model that captures the 
exploration vs. exploitation tradeoff in information filtering.

✤ If the posterior mean is just a bit below c, and the number of samples 
is low, the optimal algorithm forwards, while the myopic algorithm 
does not.

✤ We are deploying an algorithm based on this analysis to my.arxiv.org 



Thanks to my collaborators!

✤ This project is part of a larger collaboration on 
recommender systems for the arxiv, with faculty & 
students in CS, Operations Research, and Information 
Science at Cornell, Princeton, & Rutgers.

✤ Paul Ginsparg, Thorsten Joachims, Xiaoting Zhao, 
Darlin Alberto, Karthik Raman, Ziyu Fan, Akilesh 
Potti (Cornell)

✤ Paul Kantor & Vladimir Menkov (Rutgers)

✤ Dave Blei & Laurent Charlin (Princeton)



Thanks for your attention!

✤ Any questions?














