
Spring 2013 Optimization II (ORIE 3310/5310/5311)

Lecture 10: Feb 21, 2013

In this notes, we formalize the process of using dynamic programming to solve various opti-
mization problems.

The most important thing to keep in mind when setting up dynamic programming formulation
is: that the point of using dynamic programming is that it allows us to break down large and
complex problems into (possibly a lot of) small, do-able subproblems.

By “breaking down” a large problem, we mean that we tackle the problem in stages. In each
stage, we consider a number of cases, or states. At each state in each stage, we deal with “easy
problems”; this means that the set of allowable decisions is normally simple, small, and easy to
describe.

1 Steps for setting up DP formulation

The following is the summary of the steps that we have to do to solve problems using dynamic
programming.

1. Specify the stages

2. Specify the states

3. Specify the sets of allowable decisions at each state in each stage

4. Describe in words the optimization function to be solved at each state in each stage

5. Specify boundary conditions

6. Write the recurrence relation for the optimization function described in step 4

7. Compute the value of the optimization function for all states in each stage

8. Trace backwards (relative to the order of computation in step 7) to find the optimal objective
function and the optimal decision.

Note that steps 1 through 6 describe the setup of the formulation while steps 7 and 8 are the
computation that follows. The difficult part of dynamic programming is normally the setup stage,
because it often takes experience to identify the appropriate “stages” and “states”. Once you
do the setup correctly, computation is not difficult although there might be a large number of
computation that you have to do.

Also note that although we have outlined the steps above “linearly” (i.e., first think of the
stages, then think of the states, etc.), the process in steps 1 through 6 do not come sequentially.
That is, we cannot come up with the stages, states, allowable decisions, and optimality functions
completely separately, because they together form one formulation. However, we hope that formal-
izing them in the above fashion provides a systematic guidance into the tricky process of learning
how to use dynamic programming.

In what follows, we will go through each of the steps in detail.

1



Spring 2013 Optimization II (ORIE 3310/5310/5311)

1.1 Specify the stages (k)

Think of a way to break down the problem into “several easier/smaller problems of the same type”.
For example, in computing the shortest-path from s to t in a layered graph, we break down the
problem into shortest-path problems from s to node i in a layer that is closer to s. So, the stages
corresponds to the layers in the graph.

When breaking down the problem, think about how an optimal solution of the smaller problem
can help you find the solution to a slightly larger problem easily. That is, think about how the
optimal solution to a subproblem in stage k can help you find the solution to a problem in stage
k − 1 or stage k + 1.

Once you identify what “stage” should correspond to, then identify how many stages you will
have to do in your computation.

1.2 Specify the states (i)

Once you break down the problem into smaller stages, think of the various cases that you have to
consider within each stage. These different cases are/correspond to your states.

For example, in the shortest-path problem in a layered graph, within each layer, we need to
consider each node in that layer. So, in stage k, the states are the nodes in layer k.

1.3 Specify the sets of allowable decisions at each state in each stage
(Qk,i)

Suppose that you are currently at state i in the kth stage. Here, you are faced with a smaller
version of problem as your original problem.

Provided that you set up the states and stages wisely, your optimization problem in state i at
stage k can be broken down into smaller subproblems, each of which corresponds to a problem in
stage k − 1 (or k + 1, depending on how you chose your stages).

This means that the set of decisions that you need to consider are just decisions that will allow
you to refer to another problem in stage k − 1 (or k + 1).

1.4 Describe in words the optimization function to be solved at each
state in each stage (f ∗k (i)

We often denote the optimization function as f ∗k (i), denoting the optimal value of the subproblem
that we’re dealing with at state i, in stage k.

For example, in our shortest-path in a layered graph problem, f ∗k (i) is the length of the shortest
path from s to node i, where node i is a node in the kth layer.

Note that there is some stage k and some state i such that f ∗k (i) corresponds to the optimal
value of the original problem.

In our shortest-path in a layered graph example (where there are 4 layers), f ∗4 (t) is the length
of the shortest path from s to t.

1.5 Specify the boundary conditions

This step involves identifying which stage corresponds to the “smallest” subproblem.

2



Spring 2013 Optimization II (ORIE 3310/5310/5311)

In our shortest-path in a layered graph problem, note that the easiest case will be the shortest
path from s to s, whose optimization function is f ∗0 (s) = 0. We can also consider a slightly less-
trivial subproblem as our boundary condition: f ∗1 (i) = csi, the problem in stage 1, which involves
nodes i that is only one edge away from s, hence the shortest path from s to i is just the unique
edge (s, i) that connects s to i.

1.6 Write the recurrence relation for f ∗k (i)

Here, we would like to express f ∗k (i), the optimal value in stage k, in terms of optimal values in
stage k − 1 (or k + 1): we consider each of the allowable decisions that we can take. Depending
on this decision, we look at a particular state in the stage k − 1.

For example, in the shortest path in a layered graph problem, suppose that we would like to
know the length of the shortest path from s to a node i in the kth layer. We assume that we know
the shortest path from s to any node in the k−1th layer (because it is an easier/smaller problem).
Then, the only decisions/possibilities that we need to consider is what edge to take from some
node j in the k − 1th layer to go to our current node i which is in the kth layer. The number of
allowable decisions is relatively small because we only consider an edge between layer k − 1 and
layer k. So, the shortest path from s to i is just the minimum among various possible nodes j in
the k − 1th layer of (the length of the shortest path from s to j + the length of the edge from j
to i).

2 Solving inventory planning problems using DP

2.1 An inventory planning problem

The following is an example of a “basic” inventory planning problem. There are other inventory
planning models that are more complicated and have more components, but this example should
illustrate the basic ideas of how dynamic programming is used to solve inventory planning problems
in general.

A company is to plan its production for the next T periods: periods 1, 2, . . . , T (T could be
in order of weeks, month, etc.). In each period, the company needs to meet a certain amount
of demand. We denote the demand in period k as dk. The costs that are involved are per-
unit production cost, fixed production cost, and per-unit holding cost. We denote the per-unit
production cost in period k as ck, the fixed production cost in period k as Fk (this is a “set-up
cost” which is charged if the company is to produce any nonzero quantity in period k), and the
holding cost in period k as hk (this is the cost for holding one unit of item that is left at the end
of period k).

We assume that we have zero units in the inventory at the beginning of period 1. How many
units should the company produce in each period so that its total cost is minimized?

To summarize the problem:

• Input:

– T = number of periods in the “planning horizon”

– For each period k ∈ {1, 2, . . . , T}, there is a demand dk, a per-unit production cost ck,
a fixed cost of production Fk, and a per-unit holding cost hk.

3



Spring 2013 Optimization II (ORIE 3310/5310/5311)

• Decision to make: to determine the quantity to be produced in each period

• Constraint: demand in each period must be satisfied by the end of the period

• Objective: to minimize total cost

Example 2.1. The following is an example involving four periods.

Period (k) dk ck Fk hk

1 10 3 5 0.2
2 40 2 20 0.3
3 20 4 10 0.5
4 50 3 10 0.8

Also assume that the production quantities can only be in multiples of 10.

2.2 Dynamic programming formulation

2.2.1 Specify the stages

Stage k corresponds to period k. So, there will be five stages: 1, 2, 3, 4, 5, where the fifth stage is
a dummy stage, indicating the end of the fourth period.

2.2.2 Specify the states

The state I corresponds to inventory level I at the beginning of the period.
So, at each stage k, we will consider various cases: what is our optimal cost if we begin the

period with an inventory level of I? The set of all possible states is called the state space, which
might be the same or different for each of the stages.

There are several ways to do this, but in this lecture note, we will choose the state space to be
the same for all the stages for simplicity purposes:

Sk = {0, 10, 20, . . . , 120}.

The reason we choose at most 120 is because it is the sum of all demands. It is quite obvious that
we won’t ever need to store more than this many units in the inventory.

During lecture, we had a different setup: Sk = {0, 10, . . . ,
∑n

i=k di}. That is, we recognize that
at the beginning of each stage, we will not want to have more than the sum of future demands
(because if we have extras, we have to pay holding costs for them). The advantage of that
formulation is that there are fewer states to consider, which ease computation.

(Either setup is equally correct!)

2.2.3 Specify the sets of allowable decisions at each state in each stage

Let xk denote the quantity to produce at stage k. If we start with an inventory of I units at the
beginning of stage k, then we want to make sure that:

• We have enough items to satisfy demand: I + xk ≥ dk

4



Spring 2013 Optimization II (ORIE 3310/5310/5311)

• And since we assume that our inventory level is at most 120, we need only consider xk such
that

I + xk − dk ≤ 120.

This second constraint is less crucial than the first one. The first constraint is intrinsic to
the inventory problem (“we must satisfy demand!”) but the second constraint is due to our
choice of state spaces in step 2.

Note that if, as in what we did in lecture, we chose Sk = {0, 10, . . . ,
∑n

i=k di}, then the second
constraint above will be replaced by:

I + xk − dk ≤
n∑

i=k

di.

So, in summary, we formulate the set of allowable decisions at state I in stage k as:

Qk,I = {x ∈ {0, 10, . . .} | I + xk ≥ dk and I + xk − dk ≤ 120},

which can be simplified as:

Qk,I = {x ∈ {0, 10, . . .} | dk − I ≤ xk ≤ 120− (I − dk)}.

For example:

Q1,0 = {10, 20, . . . , 130}
Q1,10 = {0, 10, . . . , 120}
Q1,20 = {0, 10, . . . , 110}

...
...

Q2,0 = {40, 50, . . . , 160}
Q2,10 = {30, 40, . . . , 150}
Q2,20 = {20, 30, . . . , 140}
Q2,30 = {10, 20, . . . , 130}
Q2,40 = {0, 10, . . . , 120}
Q2,50 = {0, 10, . . . , 110}

...
...

Q3,0 = {20, 30, . . . , 140}
Q3,10 = {10, 20, . . . , 130}

...
...

2.2.4 Describe in words the optimization function to be solved at each state in each
stage

Consider a state I in stage k. That is, the inventory level at the beginning of period k is I. Then,

f ∗k (I) = the minimum total cost to meet demands in period k until period T + 1

5



Spring 2013 Optimization II (ORIE 3310/5310/5311)

2.2.5 Specify boundary conditions

Note that the above word-description of f ∗k (I) suggests that the “easiest” subproblem is when
k = T + 1. Indeed, this provides the boundary conditions. In our case, since T = 4, then stage
T + 1 = 5 provide the boundary conditions:

f ∗5 (I) = 0, ∀I ∈ {0, 10, . . . , 120}.

Why is f ∗5 (I) = 0? Suppose that we have an inventory of I at the beginning of stage 5, what is
the minimum cost to meet all demands in stage 5? The answer is the cost is zero, because there is
no more cost to incur: we don’t need to produce more to satisfy more demand, and there is no cost
incurred for “throwing away” the leftovers in the inventory. (Note that in some other variant of
the inventory problem, you may have to pay a disposal fee to get rid of leftovers at the end of the
planning horizon. In yet some other variant, you may be able to “sell” the remaining inventory for
a small revenue, etc. In these cases, then f ∗T+1(I) might not be zero, but is still easy to compute.)

2.2.6 Write the recurrence relation for the optimization function described in step 4

We call our equation a “recurrence relation” because we are about to express f ∗k in terms of f ∗k+1

(there is a a recurrence of f ∗)
The following is the process that we might go through while thinking about how we should

come up with the recurrence relation.

• Our boundary condition indicates that the larger values of k corresponds to “easier” problems

• So, think of expressing f ∗k in terms of f ∗k+1

• Suppose that we are currently at state I in stage k. How can we express

“the minimum cost to satisfy demands in periods k to T + 1 given that our starting
inventory is I”

in terms of

“the minimum cost to satisfy demands in periods k + 1 to T + 1 given that our starting
inventory is J”

for some state J?

• Suppose we decide to produce xk units in period k, then the inventory level at the beginning
of period k + 1 is

I + xk − dk.

• So, if we decide to produce xk units in this period, then our total cost is

cost due to producing xk in period k + total cost in periods k + 1 to T + 1
given that the starting inventory is I + xk − dk.

• Then, the best we can do if we produce xk units this period, is to have a total cost of

6



Spring 2013 Optimization II (ORIE 3310/5310/5311)

cost due to producing xk in period k + the minimum total cost in periods k + 1 to T + 1
given that the starting inventory is I + xk − dk.

• So, the minimum total cost in periods k to T + 1 is achieved when we consider all allowable
values of xk and taking the minimum:

min
xk∈Qk,I

{
cost due to producing xk in period k + f ∗k+1(I + xk − dk)

}
,

Hence,

f ∗k (I) = min
xk∈Qk,I

(xk ∗ ck + 1xk>0Fk + (I + xk − dk) ∗ hk)︸ ︷︷ ︸
cost due to producing xk in period k

+f ∗k+1(I + xk − dk)

 .

2.2.7 Compute the value of f ∗k (I) for each state I ∈ Sk, for each stage k

To compute f ∗k (I), we only need to use the recurrence relation we described in step 6. In order
to do the computation, since each f ∗k refer to a value f ∗k+1, we do the computation starting from
k = T + 1 (the boundary conditions), then k = T, T − 1, . . . , 1.

Within each stage k, we solve for f ∗k (I) for all states I ∈ Sk, before proceeding to stage k − 1.
That is, we complete the following table starting from each row in the leftmost column, proceeding
to the next columns.

The completed table is as follows:

7


	Steps for setting up DP formulation
	Specify the stages (k)
	Specify the states (i)
	Specify the sets of allowable decisions at each state in each stage (Qk, i)
	Describe in words the optimization function to be solved at each state in each stage (fk*(i)
	Specify the boundary conditions
	Write the recurrence relation for f*k(i)

	Solving inventory planning problems using DP
	An inventory planning problem
	Dynamic programming formulation
	Specify the stages
	Specify the states
	Specify the sets of allowable decisions at each state in each stage
	Describe in words the optimization function to be solved at each state in each stage
	Specify boundary conditions
	Write the recurrence relation for the optimization function described in step 4
	Compute the value of f*k(I) for each state I Sk, for each stage k



