Lecture 5

Lecture 5

Previously in Opt 2 ...

The maximum-flow problem

* |nput
— G =(N, E), adirected graph
— The node set N contains:

e A source node, s
 Asink node,t

— U, = edge capacity; u; 20
* Objective: To maximize net flow into t, subject to
constraints:
— Capacity constraints
— Flow conservation constraints:

Net flow out of node i=0
(for each node i in N, except s and t)

The maximum-flow problem

* |nput
— G =(N, E), adirected graph
— The node set N contains:

e A source node, s
* Asink node, t

— U, = edge capacity; u; 20
* Objective: To maximize net flow into t, subject to
constraints:
— Capacity constraints
— Flow conservation constraints:

Total flow into i = total flow out of i
(for each node i in N, except s and t)

The maximum-flow problem

 Example: 0
A
40
15 20
C o

B

0%

The maximum-flow problem

40,0

15715

Flow value = 15

 Example:
o8
0
1

5

20

10

(BR

o

Cuts and cut capacities

 Example:

40

15 20

Crm—(D’s

Q1 (i>clicker)

Q1: Which of the following pairs of sets (S, T) is a valid
cut, and what is its corresponding cut capacity?

A. S={t,B, C}, T={s, A, D}, capacity = 50
S={s, B, C}, T={A, t}, capacity =70

. S={s, B, C}, T={A, B, C, t}, capacity = 80
. S={s,B,C}, T={A, D, t}, capacity =70

S = {SI BI C}I T = {A) DI t}l
capacity = 80

mo o w

Q1: Which of the following pairs of sets (S, T) is a valid
cut, and what is its corresponding cut capacity?

A. S={t,B, C}, T={s, A, D}, capacity = 50
B. S={s, B, C}, T={A, t}, capacity = 70
C. S={s,B,C}, T={A, B, C, t}, capacity = 80

Q1: Which of the following pairs of sets (S, T) is a valid
cut, and what is its corresponding cut capacity?

A. S={t,B, C}, T={s, A, D}, capacity = 50
B. S={s, B, C}, T={A, t}, capacity = 70
C. E={s, B, C}, T={A, B, C, t}, capacity = 80

E' S = {S/ B; C}I T = {A) D) t})
capacity = 80

20

10

40

20

15

15

The maximum-flow problem and
capacities of cuts

Claim 1

The value of any feasible flow
is less than or equal to the capacity of any cut

Claim 2

The maximum flow value

is less than or equal to the capacity of any cut

Today: Maxflow, continued

More on cuts, flows, and
Ford-Fulkerson’s algorithm

The maximum-flow and
the minimum-cut problems

Theorem 1

Consider a maxflow problem with input
G = (N, E) and capacities u; for each (i, j) in E.

If x* is a feasible flow and (S, T) is a valid cut
with the property that

the value of flow of x* = capacity of the cut (S, T),

then x* is a maximum flow.

The maximum-flow problem and
capacities of cuts

Claim 1

The value of any feasible flow
is less than or equal to the capacity of any cut

Claim 2

The maximum flow value

is less than or equal to the capacity of any cut

The maximum-flow problem and
capacities of cuts

Claim 1

The value of any feasible flow
is less than or equal to the capacity of any cut

Claim 2’

The maximum flow value

is less than or equal to the smallest cut capacity

The minimum-cut problem

* |nput
— G =(N, E), adirected graph
— The node set N contains:

* A source node, s
* Asink node, t

— U, = edge capacity; u; 20
* Objective: To find a cut with minimum cut capacity.

— A cut: A partition of N into sets (S, T), where S contains the
source and T contains the sink

— Capacity of the cut (S, T) is
the sum of capacities of edges that go from Sto T:

(i,j)UE,s.t.

i0S, ;07

The maximum-flow and
the minimum-cut problems

Maxflow

* Input
— G=(N, E), adirected graph
— The node set N contains:

* Asource node, s
* Asink node, t

— U, = edge capacity; u; 20
* Objective:
To maximize net flow into t,
subject to constraints:
— Capacity constraints
— Flow conservation constraints:

Net flow out of nodei=0
(for each node i in N, except s and t)

Mincut

* Input
— G=(N, E), adirected graph
— The node set N contains:

* Asource node, s
 Asink node, t

— U, = edge capacity; u; 20
* Objective: To find a cut with
minimum cut capacity.

— A cut: A partition of N into sets
(S, T), where S contains the
source and T contains the sink

— Capacity of the cut (S, T) is
the sum of capacities of

edges thatgo f StoT:
2 ij
(i,7)UE,s.t.

i8S, jOr

The maximum-flow and
the minimum-cut problems

Claim 2’
The maximum flow value

is less than or equal to the minimum cut capacity

The maximum-flow and
the minimum-cut problems
Theorem 2

The maximum flow value

is equal to the minimum cut capacity

The maxflow-mincut theorem

Theorem 2
The maximum flow value

is equal to the minimum cut capacity

Proof.

The Ford-Fulkerson method

0. Find an initial feasible solution (flow)
1. Consider the current solution, x.

2. If x is not optimal,
then find a way to improve the flow.
Otherwise, if x is optimal, we’re done!

The Ford-Fulkerson method

1. Consider the current solution, x.

2. If x is not optimal,
then find a way to improve the flow.
Otherwise, if x is optimal, we’re done!

Example: An initial feasible flow

40

«

15

S:>1O
O
1

5

20

10

(BR

o

The Ford-Fulkerson method

0. Find an initial feasible solution (flow)

2. If x is not optimal,
then find a way to improve the flow.
Otherwise, if x is optimal, we’re done!

The Ford-Fulkerson method

0. Find an initial feasible solution (flow)
1. Consider the current solution, x.

2. If xis not optimal,
then
Otherwise, if x is optimal, we’re done!

Finding a way to improve flow

Current solution, x(2) Scratchwork graph for x(2)

A RO 20
15
40, 0
(j 15
t
15 15 20

Flow value = 15

Finding a way to improve flow

Current solution, x(?)

40

=

15

Flow value = 15

10

20

10

Scratchwork graph for x(?)

15

10

20

10

Finding a way to improve flow

Current solution, x(2) Scratchwork graph for x(2)

A RO 20
15
40, 0
(j 15
t
15 15 20

Flow value = 15

Finding a way to improve flow

Current solution, x(2) Scratchwork graph for x(2)

A RO 20
15
40, 0
(j 15
t
15 15 20
— 09@/15

Flow value = 15

Finding a way to improve flow

Updated solution, x(?) Scratchwork graph for x(2)
DO
40 | 2
(j 15
t
15% 15 20

Flow value = 20 An augmenting path of capacity 5!

One more iteration to improve flow?

Current solution, x(?) Scratchwork graph for x(2)

A RO 20
20
40 | 2
(j 15
t
1Y 15 20

Flow value = 20

One more iteration to improve flow?

Current solution, x(?) Scratchwork graph for x(2)

40 | 2

(§ 15
t
153 15 20

No way to improve the current solution?

Amny e S o s x(2) an optimal flow?

Nope! A better flow:

10
(Ao

40,10

15715

Flow value = 25

BR

10

20

10

B

Finding a way to improve flow

Current solution, x(?) Scratchwork graph for x(2)

A RO 20
20
40 | 2
(j 15
t
1Y 15 20

Flow value = 20

Finding a way to improve flow, v.2!
By building a Residual Graph

Current solution, x(?) Residual graph for x(?), G (3

A HY G 20
20
40 | 2
(j 15
t
15N 15 20

Flow value = 20

Building a Residual Graph

Current solution, x(?) Residual graph for x(?), G (3

A HY 20
20
40 | 2
(j 15
t
15N 15 20

Flow value = 20

Building a Residual Graph

Current solution, x(?) Residual graph for x(?), G (3
DETROY
40 | 2
(j 15
t
15 15 20

Flow value = 20

Building a Residual Graph

Current solution, x(?) Residual graph for x(?), G (3
DETROY
40 | 2
(j 15
t
15 15 20

Flow value = 20

Then, finding an augmenting path in
the residual graph

Current solution, x(?) Residual graph for x(?), G (3

5

10 ‘
A s >(B R0 Aer—(B
20
40 | 5 35 5
15
o D G
1N 15 20 15
== 0 9@/15 15 C I @ 15

Flow value = 20 An augmenting path!

Then, finding an augmenting path in

the residual graph

Current solution, x(?)

40 | 2

15Y 15

Flow value = 20

10

20

10

5

A 5
35 5

5 15
T=(C)

©

Residual graph for x), G

15

20

An augmenting path of capacity 5!

Then, finding an augmenting path in
the residual graph

Current solution, x(?) Residual graph for x(?), G (3

A HY G 20
20
40 | 2
(j 15
t
15N 15 20

Flow value = 20 An augmenting path of capacity 5!

20

Finally, using the augmenting path to
obtain a better solution

Updated solution, x(3) Residual graph for x(?), G (3

A FE o G 20
20
40, 10
(j 10
t
15N 15 20

Flow value = 25 An augmenting path of capacity 5!

20

To proceed, repeat the steps!

Updated solution, x(3) Residual graph for x3), G 3,

Ao G 20
20
40, 10
(j 10
t
1N 15 20
— 5 »@/15

Flow value = 25

The Ford-Fulkerson method

0. Find an initial feasible solution (flow)
1. Consider the current solution, x.

2. If x is not optimal,
then find a way to improve the flow.
Otherwise, if x is optimal, we’re done!

The Ford-Fulkerson method

0. Find an initial feasible solution (flow)

1. Consider the current solution, x.
Construct a residual graph, G,.

2. Try to find an augmenting path in G,.
If there is an augmenting path,
then use this path to improve the flow.
If there is no augmenting path,
then x is optimal. We’re done!

The Ford-Fulkerson method

0. Find an initial feasible solution (flow)

1. Consider the current solution, x.
Construct a residual graph, G,.

2. Try to find an augmenting path in G,.
If there is an augmenting path,
then use this path to improve the flow.

. We're done!

No augmenting path = optimal?

Updated solution, x(3) Residual graph for x3), G 3,

A FE o G 20
20
40, 10
(j 10
t
15N 15 20

Flow value = 25

Nodes that are reachable from s
N Gx(3)

Updated solution, x(3) Residual graph for x3), G 3,

A FE o G 20
20
40, 10
(j 10
t
15N 15 20

Flow value = 25

Nodes that are reachable from s
N Gx(3)

Updated solution, x(3) Residual graph for x3), G 3,

Flow value = 25
Cut capacity = 25

The maximum-flow and
the minimum-cut problems

Theorem 1

Consider a maxflow problem with input
G = (N, E) and capacities u; for each (i, j) in E.

If x* is a feasible flow and (S, T) is a valid cut
with the property that

the value of flow of x* = capacity of the cut (S, T),

then x* is a maximum flow.

Nodes that are reachable from s
N Gx(3)

Updated solution, x(3) Residual graph for x3), G 3,

By Theorem 1,

Flow value = 25
Cut capacity = 25 x3) is an optimal flow!

The Ford-Fulkerson method

0. Find an initial feasible solution (flow)

1. Consider the current solution, x.
Construct a residual graph, G,.

2. Try to find an augmenting path in G,.
If there is an augmenting path,
then use this path to improve the flow.
If there is no augmenting path,

then x is optimal. We're done! (A cut whose
capacity is equal to the flow value is found.)

Q2 (i>clicker)

(after the break)

Q2: Fun and Game!

You win if the number that you choose is closest
to half the mean of the numbers chosen by
the class.

A.0
B.1
C.2
D.3
E. 4

Back to Ford-Fulkerson

Tying loose ends

The Ford-Fulkerson method

0. (flow)

1. Consider the current solution, x.
Construct a residual graph, G,.

2. Try to find an augmenting path in G,.
If there is an augmenting path,
then use this path to improve the flow.
If there is no augmenting path,

then x is optimal. We're done! (A cut whose
capacity is equal to the flow value is found.)

40

15

10

15
0
5
15 20)
10 0 _)@45

40

15

20

o

10

The Ford-Fulkerson method

0. Find an initial feasible solution (flow)

2. Try to find an augmenting path in G,.
If there is an augmenting path,
then use this path to improve the flow.
If there is no augmenting path,

then x is optimal. We're done! (A cut whose
capacity is equal to the flow value is found.)

Lazy approach:
Obtaining G, directly from G,

Residual graph for x'?), G (3 Residual graph for x3), G 3,

The Ford-Fulkerson method

0. Find an initial feasible solution (flow)

1. Consider the current solution, x.
Construct a residual graph, G,.

2. Try to in G
If there is an augmenting path,
then use this path to improve the flow.
If there is no augmenting path,

then x is optimal. We're done! (A cut whose
capacity is equal to the flow value is found.)

XI

Finding an augmenting path
(Finding nodes reachable from s)

A labeling algorithm: Residual graph for x(?), G (3
List of “checked” nodes: L = {s}

While L is not empty:

 Take the first node off the
list L, suppose it’s node i.

 For each edge (i, j) out of
i, if j is unchecked, check
it and add j to the list L.
Highlight the edge.

* (repeat)

Finding an augmenting path
(Finding nodes reachable from s)

A labeling algorithm: Residual graph for x(?), G (3
List of “checked” nodes:

While L is not empty:

 Take the first node off the
list L, suppose it’s node i.

 For each edge (i, j) out of
i, if j is unchecked, check
it and add j to the list L.
Highlight the edge

* (repeat)

Finding an augmenting path
(Finding nodes reachable from s)

A labeling algorithm: Residual graph for x(?), G (3
List of “checked” nodes: L = {s}

While L is not empty:

 For each edge (i, j) out of
i, if j is unchecked, check
it and add j to the list L.
Highlight the edge

* (repeat)

Current node: s

Finding an augmenting path
(Finding nodes reachable from s)

A labeling algorithm: Residual graph for x(?), G ;)

List of “checked” nodes: L = {s} i

While L is not empty:

A8
* Take the first node off the 35/5
list L, suppose it’s node i. c
L c 15
(O—(

15

* (repeat)

Current node: s

Finding an augmenting path
(Finding nodes reachable from s)

A labeling algorithm: Residual graph for x(?), G ;)

List of “checked” nodes: L = {s} i

While L is not empty:

A8
35 5
.. S
 For each edge (i, j) out of -
i, if j is unchecked, check L y
()

it and add j to the list L.
Highlight the edge

* (repeat)

Current node: A

Finding an augmenting path
(Finding nodes reachable from s)

A labeling algorithm: Residual graph for x(?), G (3
List of “checked” nodes: L = {s}

While L is not empty:

 Take the first node off the
list L, suppose it’s node i.

* (repeat)

Current node: A

Finding an augmenting path
(Finding nodes reachable from s)

A labeling algorithm: Residual graph for x(?), G (3
List of “checked” nodes: L = {s}

While L is not empty:

 For each edge (i, j) out of
i, if j is unchecked, check
it and add j to the list L.
Highlight the edge

* (repeat)

Current node: B

Finding an augmenting path
(Finding nodes reachable from s)

A labeling algorithm: Residual graph for x(?), G ;)

List of “checked” nodes: L = {s} i

(\
While L is not empty: A
35/5
. S
 For each edge (i, j) out of .
i, if j is unchecked, check L y
15 C S

it and add j to the list L. Q
Highlight the edge.

* (repeat)

Current node: B

Finding an augmenting path
(Finding nodes reachable from s)

A labeling algorithm: At the end of the algorithm
List of “checked” nodes: L = {s} one of the following
happens:
While L is not empty: 1. The algorithm stops, and
node t is not “checked”.
Then, ...

* Foreachedge (i, joutof 5 Tha algorithm stops, and
i, if j is unchecked, check node tis “checked”

it and add j to the list L.
Highlight the edge. Then, ...

* (repeat)

Some history

ORIGINS

Harris-Ross, 1955

Air power is an effective means of interdicting an enemy’s rail system, and such usage is a
logical and important mission for this Arm.

As in many military operations, however, the success of interdiction depends largely on how
complete, accurate, and timely is the commander’s information, particularly concerning the
effect of his interdiction-program efforts on the enemy’s capability to move men and supplies.
This information should be available at the time the results are being achieved.

The present paper describes the fundamentals of a method intended to help the specialist who
is engaged in estimating railway capabilities, so that he might more readily accomplish this
purpose and thus assist the commander and his staff with greater efficiency than is possible at
present.

Exercise

(grab a piece of paper

or use your notebook!)

Exercise: Draw the residual graph for
the following solution

1
(Ar~(8
40,10
s, 2 e
15

10 20 0

10 O_)C[D45

Exercise: Draw the residual graph for
the following solution

40

15

10

15
0
5
15 20)
10 0 _)@45

Finding a way to improve flow, v.2!

Current solution, x(?) Residual graph for x(?), G (3

A HY G 20
20
40 | 2
(j 15
t
15N 15 20

Flow value = 20

Finding a way to improve flow, v.2!

Current solution, x(?) Residual graph for x(?), G (3

A HY G 20
20
40 | 2
(j 15
t
15N 15 20

Flow value = 20

