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Lecture 5

Previously in Opt 2 …



The maximum-flow problem

• Input
–  G = (N, E), a directed graph
– The node set N contains: 

• A source node, s
• A sink node, t

–  uij = edge capacity; uij ≥ 0
• Objective: To maximize net flow into t, subject to 

constraints:
– Capacity constraints
– Flow conservation constraints:

Net flow out of node i = 0
(for each node i in N, except s and t)



The maximum-flow problem

• Input
–  G = (N, E), a directed graph
– The node set N contains: 

• A source node, s
• A sink node, t

–  uij = edge capacity; uij ≥ 0
• Objective: To maximize net flow into t, subject to 

constraints:
– Capacity constraints
– Flow conservation constraints:

Total flow into i = total flow out of i
(for each node i in N, except s and t)



The maximum-flow problem

• Example:
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The maximum-flow problem

• Example:

Flow value = 15
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Cuts and cut capacities

• Example:
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Q1 (i>clicker)



Q1: Which of the following pairs of sets (S, T) is a valid 
cut, and what is its corresponding cut capacity?

A. S = {t, B, C}, T = {s, A, D}, capacity = 50
B. S = {s, B, C}, T = {A, t}, capacity = 70
C. S = {s, B, C}, T = {A, B, C, t}, capacity = 80
D. S = {s, B, C}, T = {A, D, t}, capacity = 70
E. S = {s, B, C}, T = {A, D, t}, 

capacity = 80
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Q1: Which of the following pairs of sets (S, T) is a valid 
cut, and what is its corresponding cut capacity?

A. S = {t, B, C}, T = {s, A, D}, capacity = 50
B. S = {s, B, C}, T = {A, t}, capacity = 70
C. S = {s, B, C}, T = {A, B, C, t}, capacity = 80
D. S = {s, B, C}, T = {A, D, t}, capacity = 70
E. S = {s, B, C}, T = {A, D, t}, 

capacity = 80
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Q1: Which of the following pairs of sets (S, T) is a valid 
cut, and what is its corresponding cut capacity?

A. S = {t, B, C}, T = {s, A, D}, capacity = 50
B. S = {s, B, C}, T = {A, t}, capacity = 70
C. E = {s, B, C}, T = {A, B, C, t}, capacity = 80
D. S = {s, B, C}, T = {A, D, t}, capacity = 70
E. S = {s, B, C}, T = {A, D, t}, 

capacity = 80
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The maximum-flow problem and
capacities of cuts
Claim 1
The value of any feasible flow 

is less than or equal to the capacity of any cut

Claim 2
The maximum flow value

is less than or equal to the capacity of any cut



Today: Maxflow, continued

More on cuts, flows, and 
Ford-Fulkerson’s algorithm



The maximum-flow and 
the minimum-cut problems
Theorem 1
Consider a maxflow problem with input 

G = (N, E) and capacities uij for each (i, j) in E.

If x* is a feasible flow and (S, T) is a valid cut 
with the property that
the value of flow of x* = capacity of the cut (S, T),

then x* is a maximum flow.



The maximum-flow problem and
capacities of cuts
Claim 1
The value of any feasible flow 

is less than or equal to the capacity of any cut

Claim 2
The maximum flow value

is less than or equal to the capacity of any cut



The maximum-flow problem and
capacities of cuts
Claim 1
The value of any feasible flow 

is less than or equal to the capacity of any cut

Claim 2’
The maximum flow value

is less than or equal to the smallest cut capacity



The minimum-cut problem

• Input
–  G = (N, E), a directed graph
– The node set N contains: 

• A source node, s
• A sink node, t

–  uij = edge capacity; uij ≥ 0
• Objective: To find a cut with minimum cut capacity.

– A cut: A partition of N into sets (S, T), where S contains the 
source and T contains the sink

– Capacity of the cut (S, T) is
the sum of capacities of edges that go from S to T:

∑
∈∈

∈
TjSi
E,ji

iju
,

s.t. ),(



The maximum-flow and 
the minimum-cut problems
Maxflow
• Input

–  G = (N, E), a directed graph
– The node set N contains: 

• A source node, s
• A sink node, t

–  uij = edge capacity; uij ≥ 0
• Objective: 

To maximize net flow into t, 
subject to constraints:
– Capacity constraints
– Flow conservation constraints:

Net flow out of node i = 0
(for each node i in N, except s and t)

Mincut
• Input

–  G = (N, E), a directed graph
– The node set N contains: 

• A source node, s
• A sink node, t

–  uij = edge capacity; uij ≥ 0
• Objective: To find a cut with 

minimum cut capacity.
– A cut: A partition of N into sets 

(S, T), where S contains the 
source and T contains the sink

– Capacity of the cut (S, T) is
the sum of capacities of 

edges that go from S to T:
∑

∈∈
∈
TjSi
E,ji

iju
,

s.t. ),(



The maximum-flow and 
the minimum-cut problems
Claim 2’
The maximum flow value

is less than or equal to the minimum cut capacity



The maximum-flow and 
the minimum-cut problems
Theorem 2
The maximum flow value

is equal to the minimum cut capacity



The maxflow-mincut theorem

Theorem 2
The maximum flow value

is equal to the minimum cut capacity
Proof. 

…



The Ford-Fulkerson method

0.  Find an initial feasible solution (flow)
1. Consider the current solution, x.
2. If x is not optimal, 

then find a way to improve the flow.
Otherwise, if x is optimal, we’re done!



The Ford-Fulkerson method

0.  Find an initial feasible solution (flow)
1. Consider the current solution, x.
2. If x is not optimal, 

then find a way to improve the flow.
Otherwise, if x is optimal, we’re done!



Example: An initial feasible flow
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The Ford-Fulkerson method

0.  Find an initial feasible solution (flow)
1. Consider the current solution, x.
2. If x is not optimal, 

then find a way to improve the flow.
Otherwise, if x is optimal, we’re done!



The Ford-Fulkerson method

0.  Find an initial feasible solution (flow)
1. Consider the current solution, x.
2. If x is not optimal, 

then find a way to improve the flow.
Otherwise, if x is optimal, we’re done!



Finding a way to improve flow

Current solution, x(1) Scratchwork graph for x(1)
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Finding a way to improve flow

Current solution, x(1) Scratchwork graph for x(1)

s

A B

t

C D

40

15 20

10 15

10 20

0

15

0

15

15

0

0

s

A B

t

C D

40

15 20

10 15

10 20

0

15

0

15

15

0

0

Flow value = 15



Finding a way to improve flow

Current solution, x(1) Scratchwork graph for x(1)
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Finding a way to improve flow

Current solution, x(1) Scratchwork graph for x(1)
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Finding a way to improve flow

Updated solution, x(2) Scratchwork graph for x(1)
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One more iteration to improve flow?

Current solution, x(2) Scratchwork graph for x(2)
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One more iteration to improve flow?

Current solution, x(2) Scratchwork graph for x(2)
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Is x(2) an optimal flow?Flow value = 20



Nope!  A better flow:
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Finding a way to improve flow

Current solution, x(2) Scratchwork graph for x(2)
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Finding a way to improve flow, v.2!
By building a Residual Graph
Current solution, x(2) Residual graph for x(2), Gx(2)
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Building a Residual Graph

Current solution, x(2) Residual graph for x(2), Gx(2)
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Building a Residual Graph

Current solution, x(2) Residual graph for x(2), Gx(2)
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Building a Residual Graph

Current solution, x(2) Residual graph for x(2), Gx(2)

s

A B

t

C D

40

15 20

10 15

10 20

5

15

5

15

20

0

0

Flow value = 20

s

A B

t

C D

35

5

10 15

5

15

5

15

5

20



Then, finding an augmenting path in 
the residual graph
Current solution, x(2) Residual graph for x(2), Gx(2)
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Then, finding an augmenting path in 
the residual graph
Current solution, x(2) Residual graph for x(2), Gx(2)
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Then, finding an augmenting path in 
the residual graph
Current solution, x(2) Residual graph for x(2), Gx(2)
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Finally, using the augmenting path to 
obtain a better solution
Updated solution, x(3) Residual graph for x(2), Gx(2)
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To proceed, repeat the steps!

Updated solution, x(3) Residual graph for x(3), Gx(3)
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The Ford-Fulkerson method

0.  Find an initial feasible solution (flow)
1. Consider the current solution, x.
2. If x is not optimal, 

then find a way to improve the flow.
Otherwise, if x is optimal, we’re done!



The Ford-Fulkerson method

0.  Find an initial feasible solution (flow)
1. Consider the current solution, x.

Construct a residual graph, Gx.
2. Try to find an augmenting path in Gx. 

If there is an augmenting path, 
then use this path to improve the flow.

If there is no augmenting path,
then x is optimal.  We’re done!



The Ford-Fulkerson method

0.  Find an initial feasible solution (flow)
1. Consider the current solution, x.

Construct a residual graph, Gx.
2. Try to find an augmenting path in Gx. 

If there is an augmenting path, 
then use this path to improve the flow.

If there is no augmenting path,
then x is optimal.  We’re done!



No augmenting path = optimal?

Updated solution, x(3) Residual graph for x(3), Gx(3)
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Nodes that are reachable from s 
in Gx(3)

Updated solution, x(3) Residual graph for x(3), Gx(3)
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Nodes that are reachable from s 
in Gx(3)

Updated solution, x(3) Residual graph for x(3), Gx(3)
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The maximum-flow and 
the minimum-cut problems
Theorem 1
Consider a maxflow problem with input 

G = (N, E) and capacities uij for each (i, j) in E.

If x* is a feasible flow and (S, T) is a valid cut 
with the property that
the value of flow of x* = capacity of the cut (S, T),

then x* is a maximum flow.



Nodes that are reachable from s 
in Gx(3)

Updated solution, x(3) Residual graph for x(3), Gx(3)
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By Theorem 1,
x(3) is an optimal flow!



The Ford-Fulkerson method

0.  Find an initial feasible solution (flow)
1. Consider the current solution, x.

Construct a residual graph, Gx.
2. Try to find an augmenting path in Gx. 

If there is an augmenting path, 
then use this path to improve the flow.

If there is no augmenting path,
then x is optimal. We’re done! (A cut whose 
capacity is equal to the flow value is found.) 



Q2 (i>clicker)

(after the break)



Q2: Fun and Game!

You win if the number that you choose is closest 
to half the mean of the numbers chosen by 
the class.

A. 0
B. 1
C. 2
D. 3
E. 4



Back to Ford-Fulkerson

Tying loose ends



The Ford-Fulkerson method

0.  Find an initial feasible solution (flow)
1. Consider the current solution, x.

Construct a residual graph, Gx.
2. Try to find an augmenting path in Gx. 

If there is an augmenting path, 
then use this path to improve the flow.

If there is no augmenting path,
then x is optimal. We’re done! (A cut whose 
capacity is equal to the flow value is found.) 
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The Ford-Fulkerson method

0.  Find an initial feasible solution (flow)
1. Consider the current solution, x.

Construct a residual graph, Gx.
2. Try to find an augmenting path in Gx. 

If there is an augmenting path, 
then use this path to improve the flow.

If there is no augmenting path,
then x is optimal. We’re done! (A cut whose 
capacity is equal to the flow value is found.) 



Lazy approach:
Obtaining Gx(3) directly from Gx(2)

Residual graph for x(2), Gx(2) Residual graph for x(3), Gx(3)
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The Ford-Fulkerson method

0.  Find an initial feasible solution (flow)
1. Consider the current solution, x.

Construct a residual graph, Gx.
2. Try to find an augmenting path in Gx. 

If there is an augmenting path, 
then use this path to improve the flow.

If there is no augmenting path,
then x is optimal. We’re done! (A cut whose 
capacity is equal to the flow value is found.) 



Finding an augmenting path
(Finding nodes reachable from s)
A labeling algorithm:
List of “checked” nodes: L = {s}

While L is not empty:
• Take the first node off the 

list L, suppose it’s node i.
• For each edge (i, j) out of 

i, if j is unchecked, check 
it and add j to the list L. 
Highlight the edge.

• (repeat)

Residual graph for x(2), Gx(2)
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Finding an augmenting path
(Finding nodes reachable from s)
A labeling algorithm:
List of “checked” nodes: L = {s}

While L is not empty:
• Take the first node off the 

list L, suppose it’s node i.
• For each edge (i, j) out of 

i, if j is unchecked, check 
it and add j to the list L. 
Highlight the edge

• (repeat)

Residual graph for x(2), Gx(2)
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Finding an augmenting path
(Finding nodes reachable from s)
A labeling algorithm:
List of “checked” nodes: L = {s}

While L is not empty:
• Take the first node off the 

list L, suppose it’s node i.
• For each edge (i, j) out of 

i, if j is unchecked, check 
it and add j to the list L. 
Highlight the edge

• (repeat)

Residual graph for x(2), Gx(2)
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Finding an augmenting path
(Finding nodes reachable from s)
A labeling algorithm:
List of “checked” nodes: L = {s}

While L is not empty:
• Take the first node off the 

list L, suppose it’s node i.
• For each edge (i, j) out of 

i, if j is unchecked, check 
it and add j to the list L. 
Highlight the edge

• (repeat)

Residual graph for x(2), Gx(2)

s

A B

t

C D

35

5

10 15

5

15

5

15

5

20
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Finding an augmenting path
(Finding nodes reachable from s)
A labeling algorithm:
List of “checked” nodes: L = {s}

While L is not empty:
• Take the first node off the 

list L, suppose it’s node i.
• For each edge (i, j) out of 

i, if j is unchecked, check 
it and add j to the list L. 
Highlight the edge

• (repeat)

Residual graph for x(2), Gx(2)
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Finding an augmenting path
(Finding nodes reachable from s)
A labeling algorithm:
List of “checked” nodes: L = {s}

While L is not empty:
• Take the first node off the 

list L, suppose it’s node i.
• For each edge (i, j) out of 

i, if j is unchecked, check 
it and add j to the list L. 
Highlight the edge

• (repeat)

Residual graph for x(2), Gx(2)
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Finding an augmenting path
(Finding nodes reachable from s)
A labeling algorithm:
List of “checked” nodes: L = {s}

While L is not empty:
• Take the first node off the 

list L, suppose it’s node i.
• For each edge (i, j) out of 

i, if j is unchecked, check 
it and add j to the list L. 
Highlight the edge

• (repeat)

Residual graph for x(2), Gx(2)
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L = {}. Edges: (s, A), (A, B)

Current node: B



Finding an augmenting path
(Finding nodes reachable from s)
A labeling algorithm:
List of “checked” nodes: L = {s}

While L is not empty:
• Take the first node off the 

list L, suppose it’s node i.
• For each edge (i, j) out of 

i, if j is unchecked, check 
it and add j to the list L. 
Highlight the edge.

• (repeat)

Residual graph for x(2), Gx(2)
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Current node: B



Finding an augmenting path
(Finding nodes reachable from s)
A labeling algorithm:
List of “checked” nodes: L = {s}

While L is not empty:
• Take the first node off the 

list L, suppose it’s node i.
• For each edge (i, j) out of 

i, if j is unchecked, check 
it and add j to the list L. 
Highlight the edge.

• (repeat)

At the end of the algorithm 
one of the following 
happens:

1. The algorithm stops, and 
node t is not “checked”.   

Then, …
2. The algorithm stops, and 

node t is “checked”.  
Then, …



Some history



Harris-Ross, 1955

“

”



Exercise

(grab a piece of paper
or use your notebook!)



Exercise: Draw the residual graph for 
the following solution
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Exercise: Draw the residual graph for 
the following solution
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Finding a way to improve flow, v.2!

Current solution, x(2) Residual graph for x(2), Gx(2)
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