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Abstract. In this paper, we study the projection onto the intersection of an affine subspace and a
convex set and provide a particular treatment for the cone of positive semidefinite matrices. Among
applications of this problem is the calibration of covariance matrices. We propose a Lagrangian
dualization of this least-squares problem, which leads us to a convex differentiable dual problem. We
propose to solve the latter problem with a quasi-Newton algorithm. We assess this approach with
numerical experiments which show that fairly large problems can be solved efficiently.
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1. Introduction.

1.1. To find the best approximation. We propose a method to solve the
following problem: to project a point, in a Euclidean space, onto the intersection of
a closed convex set K and of an affine subspace. We are particularly interested in the
case where K is a cone, more specifically the cone of symmetric positive semidefinite
matrices. We call this latter problem semidefinite least-squares (sdls).

Semidefinite least-squares problems arise in different fields of numerical and ap-
plied mathematics. For instance, a “good” approximation of a covariance matrix
between n assets, which plays a key role in portfolio risk analysis, could be obtained
from a first estimate by solving a semidefinite least-squares (this is developed in sub-
section 5.4). Semidefinite least-squares also occur in robust quadratic optimization
and numerical linear algebra (preconditioning of linear system and error analysis of
Jacobi methods for the symmetric eigenvalue problem; see [DH00]).

Our aim is to propose an algorithm based on Lagrangian duality to solve the
above-mentioned least-squares problem. This paper is organized as follows. We focus,
in section 2, on the case where there are no affine constraints: using tools from convex
analysis, we recover known properties of distance functions. In section 3, we introduce
affine constraints and we show that their dualization yields a dual problem which is
convex and differentiable. A quasi-Newton algorithm is proposed in section 4 to solve
this last problem. Computational results, comparison with existing methods, and
applications of the semidefinite version of this algorithm are presented in section 5.

1.2. Basic notation. The general framework of this paper is a Euclidean space,
say R

p, equipped with a scalar product 〈·, ·〉. We will denote by || · || the associated
norm. We consider, in particular, the space of n×n symmetric matrices Sn, equipped,
for instance, with the Frobenius scalar product

∀X,Y ∈ Sn 〈X,Y 〉 = tr(XY ) =

n
∑

i,j=1

XijYij ,
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where tr(X) is the trace of the matrix X. We give below a short glossary of symbols:
• the closed convex cone of positive semidefinite matrices is denoted by S+

n ; we
use the notation X � 0 to express that X lies in S+

n ;
• the adjoint of a linear mapping A is denoted by A∗;
• for any vector x in R

n, Diagx denotes the diagonal matrix with the vector
x on the main diagonal; its adjoint operator diag: Sn → R

n is diag(A) =
[a11, . . . , ann]>.

1.3. Formulation. The problems we will focus on can be expressed as follows.
Let K be a closed convex set of R

p. Let a vector b ∈ R
m and a linear operator

A : R
p −→ R

m be given. We want to compute the projection of a vector c ∈ R
p onto

the closed convex subset of R
p formed by the intersection of K and the affine subspace

defined by A and b. Our goal is to design an algorithm to solve






inf 1

2
||x− c||2,

Ax = b ,
x ∈ K .

(1.1)

Each component function of A can be expressed as a scalar product: there exist m
elements ai ∈ R

p such that A(x) = [〈a1, x〉, . . . , 〈am, x〉]>. Therefore an equivalent
formulation is (for b, ai, and c given)







inf 1

2
||x− c||2,

〈ai, x〉 = bi , i = 1, . . . ,m,
x ∈ K .

The first remark is that, if the feasible domain is nonempty, there exists a unique x?

which achieves the above infimum. In what follows, we assume this to be the case;
therefore we use the notation min rather than inf for this least-squares problem.

To end this introduction, we specify the framework of this paper. Our first mo-
tivation is to solve efficiently semidefinite least-squares (i.e., when K = S+

n ), which
section 5 is devoted to. Although the material of this paper can be developed with a
general closed convex set K (see Remarks 2.3 and 4.3(ii)), we restrict ourselves to the
case where K is a closed convex cone. This allows us to introduce adapted tools, to
simplify calculus and to stay closer to semidefinite least-squares.

2. Projection onto a closed convex cone. To begin with, we isolate the
problem of computing the projection pK(c) of a fixed c ∈ R

p onto a closed convex
cone K, with a special study for K = S+

n . The aim of this section is twofold:

(1) to recall results we will need;

(2) to draw connections between these results and tools from convex analysis.

2.1. Moreau theorem and Moreau regularization. The projection onto a
cone K enjoys properties which come close to those of the projection onto a subspace.
The set playing the role of the orthogonal subspace is the polar cone Ko of K:

Ko := {s ∈ R
p : 〈s, x〉 ≤ 0 for all x ∈ K} .

A first observation is that Ko is also closed and convex. There is a decomposition
result which generalizes the decomposition of a vector space as the direct sum of a
(closed) subspace and its orthogonal (see [HUL01, Chap. A]).

Theorem 2.1 (Moreau decomposition). Let K be a closed convex cone. For the
three elements x, x1, and x2 in R

p, the two properties below are equivalent:
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(i) x = x1 + x2 with x1 ∈ K, x2 ∈ Ko and 〈x1, x2〉 = 0,

(ii) x1 = pK(x) and x2 = pKo(x).

We turn now to variational properties of the half-squared distance to K, which
will be needed in section 3:

dK : R
p −→ R,

x 7−→ min
y∈K

1

2
||x− y||2 .(2.1)

We start by observing that there is another useful expression of dK. By definition,
the above minimum is reached at the unique point pK(x). Then Theorem 2.1 yields

dK(x) =
1

2
||x− pK(x)||2 =

1

2
||pKo(x)||2 .(2.2)

The following properties are not new, and can be proved with basic tools. Here,
we show that they are straightforward applications of properties of Moreau–Yosida
regularization [HUL93, Chap. XV]. For a convex function f on R

p, we define the
Moreau–Yosida regularization of f to be the function

x 7−→ min
y∈Rp

{

f(y) +
1

2
||x− y||2

}

.

Theorem 2.2. Let K be a closed convex cone in R
p. Then the function dK(x)

defined by (2.1) is a convex differentiable function from R
p to R, whose gradient is

∇dK(x) = pKo(x) .(2.3)

Furthermore the gradient function is 1-Lipschitz continuous.
Proof. Let IK be the indicator function of K (whose values are 0 on K and +∞

elsewhere). The theorem is just Theorem 4.1.4 of [HUL93, Chap. XV] written in our
case, since dK can be interpreted as the Moreau–Yosida regularization of IK:

dK(x) = min
y∈Rp

{

IK(y) +
1

2
||x− y||2

}

.

We get, in particular, ∇dK(x) = x−pK(x) = pKo(x) (by Theorem 2.1). The Lipschitz
property is clear here since the gradient is a projection.

Remark 2.3. Note that the above result is valid when k is a general closed convex
set, but then the expression (2.3) of the gradient is replaced by ∇dK(x) = x− pK(x)
which is again 1-Lipschitz.

2.2. Projection onto S
+
n

. In this subsection, we consider the semidefinite least-
squares problem without any affine constraint. We recall a crucial theorem for our
purposes: an explicit formula for the projection onto S+

n .
We need more notation. We denote by λi(C) the (real) eigenvalues of C ∈ Sn,

and rank them in nonincreasing order

λ1(C) ≥ λ2(C) ≥ · · · ≥ λn(C);

λ(C) will stand for [λ1(C), . . . , λn(C)]>. The symmetric matrix C is diagonalizable
in an orthonormal basis of R

n formed by eigenvectors of C: C = PC(Diagλ(C))P>
C .
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We will often drop the dependence on C from our notation. We denote by C+ the
“positive semidefinite part” of C (negative eigenvalues are set to zero):

C+ := P







max{λ1, 0}
. . .

max{λn, 0}






P> ;(2.4)

likewise the “negative semidefinite part” is denoted by C−.
Theorem 2.4. Let C ∈ Sn. Then the projection pS+

n

(C) of C onto S+
n is the

matrix C+, defined by (2.4). Likewise the projection pS−

n

(C) of C onto the polar cone

(S+
n )o = S−n is C−.

A direct proof of this result is proposed in [Hig88]. It is worth mentioning that this
theorem is also a straightforward application of Theorem 2.1 (see [HUL01, Exercise
A.15]), the key being that C+ ∈ S+

n , C− ∈ S−n and 〈C+, C−〉 = 0.
Remark 2.5. The space Sn is frequently equipped with a weighted version of the

Frobenius norm

||X||W = ||W 1/2XW 1/2||,

where W is a positive definite matrix. It is easy to express the projection (in the
sense of the weighted scalar product) of C ∈ Sn onto S+

n as

W−1/2(W 1/2CW 1/2)+W
−1/2.

3. Lagrangian duality. We propose in this section a Lagrangian dualization of
(1.1). The idea is to treat in two different ways the two different kinds of constraints:
on one hand affine constraints in R

p and on the other hand convex constraints. The
technique is to dualize only affine constraints, forming a partial Lagrangian.

All the present paper relies upon the next statement. It motivates the develop-
ments of previous sections and will give birth to computational methods.

Theorem 3.1. Consider the following least-squares problem in (Rp, || · ||):

(primal)

{

min 1

2
||x− c||2,

x ∈ K, Ax = b ,

which is our primal problem. Form the partial Lagrangian depending on two variables
(the primal variable x which lies in K ⊂ R

p and the dual variable y which lies in the
constraint space R

m)

L(x; y) :=
1

2
||c− x||2 − y>(Ax− b) .(3.1)

Define the corresponding dual function

θ(y) := min
x∈K

L(x; y)(3.2)

and the dual problem on the constraint space R
m

(dual)

{

sup θ(y),
y ∈ R

m .

The dual function has the following expressions:

θ(y) = − 1

2
||pK(c +A∗y)||2 + 1

2
||c||2 + y>b

= −dKo(c +A∗y) + 1

2
||c||2 + y>b .

(3.3)
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Proof. Let us transform the partial Lagrangian to isolate the function dK of (2.1):

L(x; y) = 1

2
||c− x||2 − 〈A∗y, x〉+ y>b

= 1

2
||(c +A∗ y)− x||2 − ( 1

2
||A∗y||2 + 〈c,A∗ y〉) + y>b

= 1

2
||(c +A∗ y)− x||2 − ( 1

2
||A∗y + c||2 − 1

2
||c||2) + y>b .

Now get an expression of θ. For any fixed y ∈ R
m:

θ(y) := minx∈K L(x; y)

= dK(c +A∗y)− 1

2
||A∗y + c||2 + 1

2
||c||2 + y>b .

Simplify with (2.2):

θ(y) = 1

2
||pKo(c +A∗y)||2 − 1

2
||A∗y + c||2 + 1

2
||c||2 + y>b

= − 1

2
||pK(c +A∗y)||2 + 1

2
||c||2 + y>b

= −dKo(c +A∗y) + 1

2
||c||2 + y>b .

We therefore obtain the expected formulations of θ.
Notice that we know the unique point in K which achieves the minimum in (3.2)

for y ∈ R
p. In the remainder of the paper, we denote it by x(y):

x(y) := argmin
x∈K

L(x; y) = pK(c +A∗y) .(3.4)

In other words there holds

θ(y) = L(x(y); y) .(3.5)

The dual function θ inherits the properties of dKo studied in section 2.
Theorem 3.2. The function θ of (3.3) satisfies the properties below:

(i) θ is concave,

(ii) θ is differentiable,

(iii) ∇θ is Lipschitz continuous and is given by

∇θ(y) = −A{pK(c +A∗ y)}+ b(3.6)

Proof. The dual function, as a minimum of affine functions of y, is concave by
construction. Besides, with equation (3.3), according to results on dKo (Theorem 2.2
for Ko), θ is differentiable, its gradient is

∇θ(y) = −A{∇dKo(c +A∗ y)}+ b

= −A{pK(c +A∗ y)}+ b ,

which is the required result.
The dual function has a strong structure which will be used for algorithmic per-

spectives. The dual problem reduces to the convex-differentiable optimization problem
{

inf 1

2
||pK(c +A∗y)||2 − y>b,

y ∈ R
m .

Example 1 (semidefinite least-squares). In the case K = S+
n , the key point is that

we have an easy-to-compute formulation of the projection (Theorem 2.4). The dual
problem is here

{

min ||(C +A∗y)+||2 − b>y

y ∈ R
m .
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4. A dual algorithm. We want to solve the primal problem, i.e., to find x? ∈ K
closest to c ∈ R

p while satisfying affine constraints. The structure of the primal is not
easy to use directly. On the other hand, its dual problem is more strongly structured
(Theorem 3.2) and thus opens the way to a possible resolution procedure.

We assume in this section that there is a solution y? to the dual problem: the dual
function is bounded from above and its supremum is actually a maximum, achieved
at y?. We are therefore in the following primal-dual situation

(primal)

{

min 1

2
||x− c||2

x ∈ K, Ax = b
(dual)

{

max θ(y)
y ∈ R

m .
(4.1)

with θ expressed by (3.3).

4.1. From dual to primal solution. In this subsection, we suppose that we
are able to get efficiently y?. We show that in this case the primal problem is indeed
solved. We start by mentioning that each value of the dual function gives a lower
bound on the primal objective function: from the weak duality theorem (see [HUL93,
Chap. XII]), there holds

θ(y) ≤ 1

2
||c− x||2(4.2)

for all dual-feasible points (i.e., y ∈ R
m) and for all primal-feasible points (i.e., x ∈ K

such that Ax = b).
Theorem 4.1. Assume the existence of a dual solution y?. Then the solution x?

of the primal problem is given by

x? = pK(c +A∗y?) .(4.3)

Proof. From Theorem 3.2, θ is concave and differentiable, then at y? which
achieves its maximum, its gradient is zero. By equations (3.4) and (3.6), this re-
sults in Ax(y?) = b, i.e., x(y?) is primal-feasible. Then we have by (3.5)

θ(y?) = L(x(y?); y?) =
1

2
||c− x(y?)||2.(4.4)

By (4.2), θ(y?) is a lower bound of the objective function of the primal. Equation
(4.4) means that this lower bound is reached at the primal-feasible x(y?). Thus that
point is the minimum and

x? = x(y?) = pK(c +A∗y?) ,

which ends the proof.
This theorem says that there is no duality gap between the primal and the dual.

This is expressed by equation (4.4): the values of the primal function at its minimum
and of the dual at its maximum are the same.

A particular case yielding both existence of y? and absence of a duality gap is
the primal Slater condition (see [HUL93, Chap. XII]), expressing that feasibility of
the primal constraints is preserved despite perturbations of b. It corresponds to the
existence of a point strictly feasible of the primal: there exists x satisfying Ax = b
and lying in the interior of K, assumed nonempty.
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4.2. Computing a dual solution. The regularity properties of θ allow the use
of any classical algorithm to minimize it; for instance, a quasi-Newton algorithm is
considered as most efficient.

Algorithm 1. Consider the pair of primal-dual problems (4.1). Let a black-box
perform the following task:

(i) compute A∗y for given y ∈ R
m;

(ii) compute Ax for given x ∈ R
p;

(iii) compute pK(z) for given z ∈ R
p.

Use a quasi-Newton optimization code to maximize θ on R
m. With the help of the

above black-box, this code generates a maximizing sequence (yk)k together with the
corresponding:

(i) xk = pK(c +A∗yk) ;

(ii) ∇θ(yk) = −Axk + b ;

(iii) θ(yk) = − 1

2
||xk||2 + y>b.

To implement the above algorithm the only thing we basically need is to compute
pK. In other words, the key point to solve our problem (i.e., to compute the projection
onto the intersection of K with an affine hyperplane) is to know how to solve the
problem without affine constraints (i.e., to compute the projection onto K). This
means the algorithm is efficient when the difficulty is due to the addition of affine
constraints. For instance, this is the case for semidefinite least-squares, where we
have the easy-to-compute expression (2.4) of the projection.

An instance of quasi-Newton known to be convergent when the objective function
is convex and has a Lipschitz gradient is the so-called BFGS with Wolfe line-search
(Theorem 4.9 of [BGLS03]). Here is a convergence result.

Theorem 4.2. Let A be surjective and the Slater assumption hold. Then Algo-
rithm 1 gives an approximation of x?: for any ε>0, there is k such that ||xk − x?||≤ε.

Proof. From the Slater assumption and the surjectivity of A, the dual optimal set
is bounded [HUL93, Chap. VII], and then each level-set is bounded [HUL93, Chap. IV].
The sequence (yk) is thus bounded. Take ε > 0. Since θ is continuous on R

m, there
exists a dual solution y? and k large enough such that ||yk − y?|| ≤ ε/||A∗||. Now
from Lipschitzian property of the projection we can write

||x? − xk|| = ||pK(c +A∗y?)− pK(c +A∗yk)|| ≤ ||A∗|| ||y? − yk|| ≤ ε .

This ends the proof.
We mention that the so-called limited memory quasi-Newton method can also be

used. It avoids the need to store an m ×m matrix, thus accommodating very large
values (see [BGLS03, sects. 1.2.2 and 6.3]).

Remark 4.3. To conclude this section, we mention two possible extensions.

(i) Observe that the dual of
{

min 1

2
||x− c||2,

x ∈ K, Ax ≤ b,

is (by an easy adaptation of the proof of Theorem 3.1)
{

max θ(y),
y ∈ R

m, yi ≥ 0 for all i = 1, . . . ,m.

Thus Algorithm 1 can solve such problems with inequality constraints, whenever
the quasi-Newton algorithm accepts box-constraints.
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(ii) We also add that this approach can even be used for problems when K is a
general closed convex set. The method can be adapted to treat the projection
on the intersection of a convex set K and an affine subspace, if one knows how
to project onto K. In fact, θ is always a concave differentiable function, whose
gradient is

∇θ(y) = −Ax(y) + b

with x(y) = argminx∈K L(x; y). All these results come from [HUL01, Chap. D.4.4].

5. Semidefinite least-squares. In this section, we focus on the case where
K = S+

n . Semidefinite least-squares is a very important subclass of the general least-
squares problem (1.1). For instance, the computation of a “good” approximation
of the covariance matrix of n assets can be expressed as a semidefinite least-squares
problem (see subsection 5.4). Recall that an optimization program is written under
a semidefinite least-squares form if there are a matrix C ∈ Sn, a vector b ∈ R

m and
a linear operator A : Sn −→ R

m such that

(sdls)







min 1

2
||X − C||2,

AX = b,
X � 0 .

If A is expressed via its m component functions, (sdls) can be formulated with the
help of m symmetric matrices:







min 1

2
||X − C||2,

〈Ai, X〉 = bi , i = 1, . . . ,m,
X � 0 .

We present, in subsections 5.1 and 5.2, known methods to solve (sdls): interior points
and alternative projections. We also give a dual interpretation of the latter. We then
show that Algorithm 1 is a good alternative to these methods.

5.1. Semidefinite approach. A natural idea to attack (sdls) directly is to
phrase it as a semidefinite program. The problem can actually be seen as a quadratic-
semidefinite program and then efficient interior-points methods for SDP programming
are available (see [Tod01] for a review).

The (nonlinear) objective function can actually be pushed into constraints:















min t,
||X − C|| ≤ t,
AX = b,
X � 0,

(5.1)

a problem expressed as a quadratic-semidefinite program [BTN01]. Thus powerful
interior-points methods solvers can be used. However the number of variables is
O(n2) and this approach is presented as impractical for large n in [Hig02, subsect.
3.3]. Tests that we ran with sedumi [Stu99] confirm this point.

However, it should be mentioned that putting (5.1) in sedumi format requires the
introduction of artificial variables and constraints. Adapted interior-points variants
may exist. Note that [Tak03] provides one for sparse matrices.
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5.2. Alternating projections method. Another interesting method is pro-
posed in [Hig02] to solve particular instances of semidefinite least-squares (and it
could be easily generalized to any semidefinite least-squares). Here A is the diag-
operator: we want to solve







min 1

2
||X − C||2 ,

Xii = 1 , i = 1, . . . , n ,
X � 0 .

(5.2)

Introducing the notation

U = {X ∈ Sn : Xii = 1},(5.3)

the idea of the so-called alternating projection method is to repeat the operation

X ← pS+
n

(pU (X)).(5.4)

Besides, the so-called Dykstra’s correction [Dyk83] is used in [Hig02]. All together
the algorithm is as follows.

Algorithm 2 (Algorithm 3.3 of [Hig02]). For C∈Sn, this algorithm solves (5.2):
∆S0 = 0, Y0 = C
for k = 1, 2, . . .

Rk = Yk−1 −∆Sk−1 % Dykstra’s correction
Xk = pS+

n

(Rk)
∆Sk = Xk −Rk

Yk = pU (Xk)
end

The alternating projection method has actually a dual interpretation in this case.
Theorem 5.1 below says that it is just the standard gradient optimization algorithm
applied to the dual of (5.2), namely yk+1 = yk + ∇θ(yk). In fact, recalling formula
(3.6), the gradient algorithm can be expressed as follows.

Algorithm 3. This algorithm maximizes θ(y) = −||pS+
n

(C +A∗y)||2 + b>y on
R

n, by the gradient method (with constant stepsize equal to 1):
y1 = 0,
for k = 1, 2, . . .

X̄k = pS+
n

(C +A∗yk)

yk+1 = yk + (−AX̄k + b)
end

In view of (5.2), we have here b = [1, . . . , 1]>, A = diag, A∗ = Diag, and we observe
that AA∗ = Im.

Theorem 5.1. The sequence (X̄k) generated by Algorithm 3 is the same as (Xk)
generated by Algorithm 2.

Proof. First, observe that the projection of X ∈ Sn on U is

pU (X) = X −A∗(AX − b).(5.5)

Let us prove by recurrence that

X̄k = Xk and Rk = C +A∗yk for all k ≥ 0 .(5.6)
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This is true for k = 1 since R1 = C, y1 = 0, and X̄1 = X1 = pS+
n

(C). Suppose now
that it holds for k; then

Rk+1 = Yk −∆Sk

= Yk −Xk + Rk

= −A∗(AXk − b) + Rk

= −A∗(AX̄k − b) + C +A∗yk
= C +A∗(yk − (AX̄k − b))
= C +A∗yk+1 .

[definition of Rk+1]

[definition of ∆Sk]

[(5.5) and definition of Yk]

[recurrence assumptions]

[definition of yk+1]

Hence Xk+1 = pS+
n

(Rk+1) = pS+
n

(c + A∗yk+1) = X̄k+1, and the theorem is
proved.

As a result, the method of alternative projections (Algorithm 2) and our proposal
(Algorithm 1) are well comparable: both are optimization algorithms to maximize the
dual function, the former does this by the (simple) gradient method with constant
step size while the latter uses the (sophisticated) quasi-Newton approach.

5.3. Numerical results. For illustration, Algorithm 1 has been applied to ins-
tances of (5.2). We ran three types of experiments:

(i) We solve (5.2) with random dense matrices C (random Cij ∈ [−1, 1] and
Cii = 1) of sizes from 100×100 to 3000×3000.

(ii) We take a matrix X? in U∩S+
n (where U is defined by (5.3)) of size 1000×1000

and we perturb it to create a matrix C such that X? is the projection of C.
We then test Algorithm 1 with this C.

(iii) We fix the size (500×500) and we take matrices with increasing entries on
the diagonal.

The algorithm has been coded in Fortran and we use the lapack library for numerical
algebra. Note that the computation of the projection onto S+

n is nothing more than
an eigensystem computation: we use symmetric QR algorithm of lapack. In our
experiments, the stopping test is

1√
n
||∇θ(yk)|| =

1√
n
||AXk − b|| ≤ 10−7 .

The performance measures have been obtained on a machine of the Intel P4 2 GHz
processor family with 512 Mbytes of memory. The system runs under Linux Redhat
8.0 and uses the gnu compilation chain.

First experiment. The results with random matrices are as follows.

matrix sizes cpu time nb of iterations
100× 100 0.2 s 14
300× 300 3.3 s 14
500× 500 16.3 s 17
800× 800 1 min 10 s 17

1000× 1000 2 min 05 s 18
1500× 1500 7 min 35 s 18
2000× 2000 17 min 41 s 19
3000× 3000 1h 08 min 14 s 19

Some observations are worth mentioning:
• Computation on matrices up to 200× 200 takes less than one second and the

algorithm copes very well with larger matrices (one hour for a 3000 × 3000
dense matrix).
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• For these kinds of matrices (with Cij ∈ [−1, 1]), the typical number of iter-
ations ranges between 10 and 20, almost independently of the problem size.
The experimental computational cost is O(n3).

• The bulk of the work is the spectral decomposition. Better cpu time could
be obtained along the lines of Corollary 3.5 of [Hig02], by avoiding the com-
putation of the full eigensystem. We have not implemented this idea.

Second experiment. Now we give an idea of the behavior of the algorithm by
tracing the error between the exact solution and the current iterate. To construct a
synthetic example, one can proceed as follows. Take a matrix X? in U ∩ S+

n . Then
set C := X? + δX, where δX lies in the normal cone to U ∩ S+

n at X?, so that X?

solves (5.2).
By calculus rules of [HUL01, Chap. A], the normal cone to U ∩ S+

n at X? is the
sum of U⊥ (normal “cone” to the subspace U) and of S−n ∩X⊥ (normal cone to S+

n

at X?). It suffices to choose an X? such that constructing a matrix in S−n ∩ X⊥ is
easy. For example, take 1 ≤ ` ≤ n and consider the matrix

X? :=

[

E`

In−`

]

,

where In−` is the (n− `)×(n− `) identity matrix and E` is the `× ` matrix with all
entries equal to 1. Then it is easy to see that a suitable matrix is

C :=

[

`
`−1

E`

In−`

]

+ D,

where D is an arbitrary diagonal matrix.
Figure 5.1 shows the evolution of the distance of the current iterate Xk to the

solution (which is X? by construction) for an instance where n = 1000, ` = 500, and
Dii is a random number in [−10, 10]. The algorithm converges in 56 iterations (and
58 diagonalizations). Note that the run takes more iterations than the 1000×1000-
instance of the first experiment (18 iterations). This fact is underlined by the third
experiment.

Fig. 5.1. Evolution of ||Xk −X?||2.
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Fig. 5.2. Influence of the remoteness of C.

Third experiment. When the entries of C get larger, C gets more remote from the
target U ∩ S+

n . One can think that computing the projection of C then takes more
iterations. The aim of this experiment is to quantify the phenomenon, which turns
out to be fairly significant. In Figure 5.2, C is constructed as in the second experiment
with n = 500, ` = 250, and random Dii ∈ [−d, d] (we increase d from 0 to 20000).

5.4. Calibration of covariance matrices. In this subsection we outline the
problem of finding a “good” approximation Q̄ of the theoretical covariance matrix Q
between n assets: it turns out to be a semidefinite least-squares problem. Another
problem of that kind is computing the nearest correlation matrix [Hig02]. To have a
good approximation Q̄ is important in portfolio management: this matrix is used to
have a robust estimation of the “ex-ante” risk of any possible portfolio among these
n assets.

For instance, portfolio managers often look for portfolios minimizing the financial
risk while having a fixed return. They want to solve a portfolio selection problem of
the following type:







min x>Qx ,
x>r ≥ β ,
xi ∈ [0, 1],

∑n
i=1

xi = 1.
(5.7)

This is the famous portfolio selection problem of Markowitz (Nobel prize winner in
1990). The covariance matrix Q (which is positive semidefinite) is used to estimate
the risk. Under the classical economic assumption that there is no rewarding risk-
less investments (no-arbitrage assumption), Q is definite positive. Let Q̃ be a first
estimate of the true covariance matrix Q: for instance Q̃ can be the empirical estimate
after k days. The point is that Q̃ has a bad condition number:

• When the number of observations k is too small, Q̃ is rank-deficient (some
investments are considered with no risk; it is not consistent with the no-
arbitrage assumption).

• When there are different levels of risks in the portfolio, Q̃ is ill conditioned
(the condition number of Q̃ is typically greater than 107 if there are stocks,
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options, and monetary products in the portfolio; it reaches 1017 for hedge
funds).

We may impose X � αIn for some selected α > 0 to avoid too low-risk portfolios: we
thus guarantee “cautious” risk evaluations, and stability of the portfolio selected by
(5.7). Eventually we are led to the so-called calibration of covariance matrix problem,
which is a shifted (sdls):















min 1

2
||X − Q̃||2,

X � αIn ,

〈In, X〉 = tr(Q̃) ,
〈Ai, X〉 = σ2

i ,

where σ2
i represent “ex-post” volatilities of well-chosen portfolios. The constraint

〈In, X〉 = tr(Q̃) enforces the conservation of the empirical total risk. We solve real-
life instances of this problem (provided to us by raise partner) with Algorithm 1;
the results are quite similar to those of subsection 5.3.

We end with a remark. The material developed in this section can be easily
extended to the Frobenius norm with weights (see Remark 2.5). This is of little impact
in theory but more in practice: for instance, the covariance between some assets are
sometimes more relevant than others, so we want to ensure in the calibration process
of the covariance matrix that the relevance is properly emphasized.
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