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This paper is concerned with the estimation of performance measures of two priority disciplines in a d-station re-entrant queueing 
network. Such networks arise from complex manufacturing systems such as wafer fabrication facilities. The priority disciplines 
considered are First-Buffer-First-Served (FBFS) and Last-Buffer-First-Served (LBFS). An analytical method is developed to estimate 
the long-run average workload at each station and the mean sojourn time in the network. When the first-buffer-first-served discipline 
is used, a refined estimate of the mean sojourn time is also developed. The workload estimation has two steps. In the first step, 
following Harrison and Williams (1992), we use a d-dimensional reflecting Brownian motion (RBM) to model the workload process. 
We prove that the RBM exists and is unique in distribution and that it has a unique stationary distribution. We then use an algorithm 
of Dai and Harrison (1992) to compute the stationary distribution of the RBM. Our method uses both the first and second moment 
information, and it is rooted in heavy traffic theory. It is closely related to the QNET method of Harrison and Nguyen (1993) for 
two-moment analysis of First-In-First-Out (FIFO) discipline. Our performance estimates of several example problems are compared 
to the simulation estimates to illustrate the effectiveness of our method. 

T his paper is concerned with queueing network models 
of job-shop or batch manufacturing systems. For our 

purposes, a manufacturing system is a collection of work- 
stations, or simply stations, each of which has one server 
working at the station. A server may represent either a 
machine or an operator. The entities that are processed at 
the workstations will be called jobs or customers. Depend- 
ing on the particular manufacturing context, what we call 
a job might actually be referred to as a part, a work order, a 
production lot, or a production batch. In the models con- 
sidered here, each job that enters the system requires a 
particular sequence of operations, each of which must be 
performed at a particular station. The route of a job is the 
ordered sequence of stations that it visits. The time re- 
quired to perform any given operation is called a service 
time. 

In this paper, we restrict our attention to what Kumar 
(1993) has called a re-entrant line, which is a special type of 
d-station queueing network in which all jobs follow a de- 
terministic route of K stages, and the jobs may visit some 
stations multiple times. An example of two station re- 
entrant line with d = 2 and K = 3 is shown in Figure 1. A 
distinctive feature of a re-entrant line is that jobs at differ- 
ent stages may be processed at the same station. For exam- 
ple, a machining cell is used to perform cutting operations 
of a family of complex components using computer numer- 
ically controlled machines. In order to satisfy the final 

tolerances and finish, various features on a part are pro- 
cessed in several setups based on different data systems 
and motion requirements to reduce the deformations 
caused by thermal expansion and forces in fixturing and 
cutting. Another example of a re-entrant line can be found 
in semiconductor wafer fabrication facilities. The manufac- 
turing process there consists of building up layers of im- 
planted material according to a sequence of masks. Some 
layers are implanted on a common machine at different 
processing stages. As an example, one wafer process (after 
major simplifications and aggregations) can be described 
as a re-entrant line with d = 12 and K = 60, with some 
stations being revisited 14 times. 

When a station in a re-entrant line becomes available 
and there are several jobs at different stages waiting in 
their respective buffers at the station, it is necessary to 
decide which job to process first. Here, the buffer for a 
stage does not have to be physically present. The simplest 
queueing discipline (or dispatching rule) is first-in-first-out 
(FIFO). Alternately, an operator can assign priorities based 
on the stages of a job. Obviously, the queueing disciplines 
impact the number of jobs waiting at various stations and 
the sojourn (or flow) times. The queueing disciplines con- 
sidered in this paper are two buffer priority disciplines: 
first-buffer-first-served (FBFS) and last-buffer-first-served 
(LBFS). Under the FBFS discipline, priority is given to the 
waiting job that is at the earliest stage in its route. Under 
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Figure 1 A threebuffer, wo-statin re-entant line 

the LBFS discipline, priority is given to the waiting job that 
is at the latest stage in its route. We assume preemptive 
priority disciplines, though our simulations show that the 
performance difference between a preemptive discipline 
and a nonpreemptive discipline is not significant. 

In this paper, we present an analytical method to predict 
the performance of the two queueing disciplines. The 
method, called the QNET method following Harrison and 
Nguyen (1990, 1993), has two steps. We first use a d- 
dimensional reflecting Brownian motion (RBM) to model 
the d-dimensional workload process. This amounts to spe- 
cializing the Brownian model developed by Harrison and 
Williams (1992) for a multiclass queueing network to the 
re-entrant line with the FBFS and LBFS disciplines. We 
simplify their formulas that convert queueing network data 
to Brownian model data. The Brownian data are calcu- 
lated explicitly from the first and second moment informa- 
tion of the network. Furthermore, we prove that the 
proposed RBM exists, and is unique in distribution, and 
that it has a unique stationary distribution when the traffic 
intensity at each station is less than one. In the second 
step, we use an algorithm developed by Dai and Harrison 
(1992) to compute the stationary distribution of the RBM. 
We then use the steady-state mean of the RBM to esti- 
mate the long-run average workload at each station and 
the mean sojourn time in the network under each of the 
two priority disciplines. When the FBFS discipline is used, 
the steady-state mean of the RBM is used to develop a 
refined estimate of the mean sojourn time in the network. 
We present some numerical results to compare the esti- 
mates obtained from Brownian models with the estimates 
obtained from simulations. These results show that our 
Brownian estimation performs well for average workload, 
and very well for mean sojourn time under the FBFS 
discipline. 

Performance analysis of queueing networks has mostly 
been restricted to the FIFO discipline. When all inter- 
arrival and service time distributions are exponential, Jack- 
son (1957), Baskett et al. (1975), and Kelly (1975) derived 
exact formulas for performance measures. (The latter two 
papers also dealt with some non-FIFO disciplines.) If gen- 
eral distributions are allowed, one does not have exact 
formulas. Whitt (1983) developed a Queueing Network 
Analyzer to approximately predict the performance of 

Jackson-type networks. That method was generalized to 
multiclass networks by Bitran and Tirupati (1988) and Se- 
gal and Whitt (1989). In all these approximations, a net- 
work is decomposed into many single-station systems, and 
each system is analyzed separately. Shalev-Oren et al. 
(1985) developed a generalization of mean value analysis 
for closed queueing networks that allows static priorities at 
each station. Harrison and Nguyen (1990, 1993) adopted a 
completely different approach called the QNET method. 
They proposed to use d-dimensional RBM to model the 
d-dimensional workload process in an open multiclass net- 
work under the FIFO discipline. They also used an algo- 
rithm of Dai and Harrison (1992) to compute the 
stationary distribution of the RBM. In most cases, their 
performance estimates are quite accurate. Recently, there 
is a growing effort to study Brownian models of queueing 
networks with non-FIFO queueing disciplines. Coffman et 
al. (1995, 1996) developed Brownian models for single- 
station polling systems. Reiman and Wein (1996) devel- 
oped Brownian models for polling systems in tandem. 

Harrison and Williams (1992) developed Brownian 
models of multiclass queueing networks under some gen- 
eral queueing disciplines, which include FIFO discipline, 
processor sharing discipline, and static buffer priority dis- 
ciplines. However, they had not attempted to establish the 
existence of their Brownian models, nor had they assessed 
the accuracy in using their Brownian models to predict 
performance measures of queueing networks. There are 
two major reasons for us to study Brownian models of the 
FBFS and LBFS disciplines. First, these disciplines have 
been proven to be stable as long as the traffic intensity at 
each station is less than one. (See Kumar 1993, Dai and 
Weiss 1996, and Kumar and Kumar 1996.) Recent work on 
the stability of multiclass queueing networks shows that 
such stability property is not shared by all priority disci- 
plines or by the widely used FIFO discipline. (See Kumar 
and Seidman 1990, Lu and Kumar 1991, Rybko and Stol- 
yar 1992, Bramson 1994, and Seidman 1994.) The stability 
of the FBFS and LBFS disciplines indicates that these 
disciplines are reasonably good, at least when they are 
compared with the FIFO discipline; therefore, it is impor- 
tant to understand their performance. The other motiva- 
tion of our work is to present a pilot study for Brownian 
models of priority disciplines. It is unclear at this point 
which type of priority disciplines Brownian models can be 
applied for. 

Our Brownian model is based on a heuristic that is 
rooted in heavy traffic theory. A heavy traffic limit theorem 
would assert that as the traffic intensity at each station 
approaches the critical value of one, the normalized queue 
length process in high-priority classes converges to zero, 
and the normalized d-dimensional workload process con- 
verges to an RBM. In particular, the theorem would assert 
that at each station only customers of the lowest priority 
are in the queue in heavy traffic. As of this writing, there is 
no such heavy traffic limit theorem for a re-entrant line 
under a general priority discipline; however, Chen (1994) 
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has recently shown that for some two-station re-entrant 
lines under the FBFS and LBFS disciplines, the heavy 
traffic limit theorem indeed prevails. It is believed that 
such a limit theorem holds in general under the FBFS and 
LBFS disciplines. 

Multidimensional RBMs were first introduced by Harri- 
son and Reiman (1981) to approximate Jackson-type net- 
works. These approximations were justified by the so- 
called heavy traffic limit theorems in Reiman (1984), 
Johnson (1983), and Chen and Mandelbaum (1991). There 
has been much recent progress in the study of RBMs. For 
example, see Harrison and Williams (1987), Reiman and 
Williams (1988), Dai and Harrison (1992), Taylor and Wil- 
liams (1993), Dupuis and Williams (1994), and Dai and 
Kurtz (1994). With the recent work of Taylor and Williams 
(1993), RBMs can be used to model multiclass networks 
under FIFO discipline; however, the corresponding heavy 
traffic limit theorems are limited either to multiclass 
single-station systems or to feedforward networks. (See 
Reiman 1988, Dai and Kurtz 1995, and Peterson 1991.) 
Readers are referred to Harrison and Nguyen (1993) for 
the current status of heavy traffic limit theorems under 
FIFO discipline. 

The following conventions will be used in this paper. All 
vectors are envisioned as column vectors unless stated oth- 
erwise. Vector inequalities are interpreted componentwise. 
A prime on a vector or a matrix means transpose. The 
symbol V denotes weak convergence of stochastic pro- 
cesses (cf. Ethier and Kurtz 1986). We end this introduc- 
tion by outlining the rest of the paper. The re-entrant 
multiclass queueing network model is introduced in Sec- 
tion 1. The background materials on RBM are discussed in 
Section 2. The derivation of the Brownian model for our 
queueing network is given in Section 3. The performance 
analysis procedure is summarized in Section 4. In Sections 
5 through 7 we present three network examples, where 
Brownian estimates are compared with simulation esti- 
mates. The article concludes in Section 8 with some open 
problems. Readers can first read Section 1 to get the 
model description, and proceed directly to Section 4, and 
then to the examples to get an overview of our method. 

1. MODEL DESCRIPTIONS AND PRELIMINARIES 

Consider a d-station re-entrant queueing network, or a 
re-entrant line. Customers arrive at station 1 from the 
outside according to a general process E1 = {E1(t), t : O}, 
where E1(t) is the cumulative number of arrivals by time t. 
Each customer follows a deterministic route: o-(1) = 1, 
o-(2), ..., o-(K), where o-(k) is the station number that the 
customer visits during the kth stage of its service. We des- 
ignate customers in their kth visit as class k customers, and 
they wait in buffer k for service at station o-(k). We assume 
that each station has a single server and that the buffer size 
for each class is infinite. In the example shown in Figure 1, 
there are two stations (d = 2) and three customer classes 
(K = 3). Customers of classes 1, 2, and 3 visit stations cr(1) 

= 1, o(2) = 2, and cr(3) - 1, respectively. Two classes of 
customers are served at station 1, competing services from 
server 1. 

Let Vk(i) be the service time for the ith class k customer. 
Define: 

Sk (t)-maxfn: n > 0, vk (1) + * + vk (n) t}, 

t :,: 0, k == 1, . .., K. (1. 1) 

We interpret Sk(t) as the number of class k services com- 
pleted in the first t units of time that are devoted by server 
o-(k) to the service of class k. We call Sk = {Sk(t), t 3 O} 
class k service process. We assume that the arrival process 
E1 = {E1(t), t - 0} is independent of the service processes 
S1, . . SK, and that as t -- oo, almost surely: 

E 1(t) 
l -t1) (1.2) t 

S k(t) 
'k k,k = ,... K, (1.3) 

for some constants a, > O,~ k > ? (k = 1,..., K). We 
interpret a, the external arrival rate and gk the service 
rate for class k jobs if server v(k) devotes its full efforts to 
class k. We further assume that the arrival process and 
service processes satisfy a functional central limit theorem. 
That is, there exist a constant C2 > 0 and a K x K positive 
definite matrix F such that as n -> co: 

(El(n ain) @ ((), (1.4) 

(Si(n - gn, ... ,SK(n )- LKn ) X ( 

(41 , (K(0 I) (1.5) 

where .Q) is a one-dimensional, driftless Brownian mo- 
tion with variance a1cC2, is a K-dimensional, driftless 
Brownian motion with covariance matrix F and is indepen- 
dent of (a. 

We call a re-entrant queueing network satisfying the 
standard assumptions if interarrival times are iid with mean 
1/a1 and variance ca/c2x, service processes S1, ..., SK are 
independent, and class k service times are iid with mean 

M22 mk and variance mkcsk (k = 1,..., K). Such re-entrant 
line is called a standard network. The variability parameters 
c2 and C2k are the squared coefficient of variation (SCV) of 
the interarrival times and class k service times. (The 
squared coefficient of variation SCV of a random variable 
is defined to be variance divided by squared mean.) For a 
standard network, conditions (1.2) through (1.5) hold with 
service rate /J4k = l/Mk and the covariance matrix of the 
Brownian motion in (1.5) being: 

F = diag(c 2,1/m 1, ... , c2/mK). 

Our assumption (1.5) holds under much weaker assump- 
tions. For example, (1.5) holds when the service time se- 
quence {(v1(i), ... ., vK(i))', i > 1} is iid with finite second 
moment, and for fixed i the service times (v1(i),..., 
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VK(j))' at different stages of service have arbitrary depen- 
dencies. The latter feature is useful for certain applica- 
tions, notably in computer communications and 
manufacturing systems. There, the length of a computer 
message or the size of a manufacturing lot may be random; 
however, the service times in general are proportional to 
the message length or the lot size, and therefore are posi- 
tively correlated. 

Without loss of generality, we assume that a, = 1 in the 
rest of this paper. Let mk - l/Iuk be the mean service time 
for class k customers. We define the nominal workload per 
unit of time at station i: 

Pi= mk, i=1,...,d, (1.6) 
kE-'6i 

where 'i {k: 1 k - K, o-(k) = i} is the constituency of 
station i. Throughout this paper, we assume that: 

pi < 1, i = 1, . . . , d. (1.7) 

For future use, we define the d x K incidence matrix C = 

(Cik): 

Cik = {1 if o(k) =, (1.8) 
0 otherwise. 

Let Qk(t) be the number of class k customers in station 
o-(k) at time t, including possibly the one being served. For 
each station i, define the workload process at the station: 

Zi (t) =Emk Qk (t), i = 1, . . . , d. 
kE-T,i 

Intuitively, Zi(t) is the average amount of work for server i 
if no more arrivals are allowed to station i after time t. Let 
Q(t) = (Q1(t),..., QK(t))' and Z(t) - (01 ...I 
Zd(t))'. In vector form, we have: 

Z(t) - CMQ(t), 

where M = diag(m1, . . ., mK). We call Z {Z(t), t ? 0} 
the station-level workload process, or simply the workload 
process. Our definition of workload process is slightly dif- 
ferent from the traditional one as defined in Harrison and 
Nguyen (1990, 1993). More will be said on this at the end 
of Section 2. The workload process is the key process that 
we will study in this paper. In particular, we will estimate a 
primary performance measure: 

rt 
- 1' 

Z 3 lim j Zi(s) ds, (i = 1,..., d), (1.9) t-- t J 

which measures the long-run average workload at each 
station. When interarrival and service times are iid with 
finite second moments, the long run average queue length: 

rt 

Qk=lim- M Qk(s) ds, (k 1, ...,K) t--c t Jo 
exists and is finite under the FBFS and LBFiS disciplines. 
(See Dai and Weiss 1996 and Dai and Meyn 1995.) Thus, 
the long-run average workload defined in (1.9) exists and 
is equal to: 

Zi -EMkOk- 
kei 

Another performance measure commonly used is the 
mean sojourn (flow) time F of each job defined to be: 

FlmF, + + Fn F lrn 
n--oo n 

where Fn is the sojourn time in the network for the nth 
job. By Little's law, the mean sojourn time F exists when 
the long-run average queue lengths are finite. 
Furthermore: 

F= Q1 + ' + QK, (1.10) 

when the external arrival rate a, - 1. 
Even when all distributions are exponential, there is no 

analytical method to estimate Qk (k - 1,..., K) in a 
re-entrant line. We are going to devise a method to esti- 
mate the long-run average workload by using an RBM 
described in the next section. 

2. REFLECTED BROWNIAN MOTION 

Let Y be a d x d positive definite matrix, 0 be a d-dimen- 
sional vector, and R be a d x d matrix. A d-dimensional 
continuous process Z* = {Z*(t), t : 0} is said to be a (0, 
3, R)-RBM (see Taylor and Williams 1993 for a more 
precise definition) if: 

d 

Z*(t) =X(t) + RY(t) = X(t) + E Yi, (2.1) 
i=l1 

Z*(t) 3 0, (2.2) 

Y(0) is nondecreasing and continuous with Y(O) = 0, (2.3) 

Yi () increases only at times t when Z (t) 0, 

i 1..., d, (2.4) 

where X = {X(t), t > 0} is a d-dimensional Brownian 
motion with drift 0 and covariance matrix Y, and vi is the 
ith column of the reflection matrix R. Note that the RBM 
Z* is confined to the orthant $d . Heuristically, the behav- 
ior of an RBM Z* may be described as follows. The pro- 
cess Z* behaves like a Brownian motion in the interior of 
the orthant, and it is confined to the orthant by instanta- 
neous "reflection" (or "pushing") by Yi(/)'s at the bound- 
ary, where the direction of reflection on the ith face {x E 

d 
: Xi = 0} is given by Vi. 

In order for an RBM to exist, the directions of reflection 
must point to the interior of the orthant. To fully describe 
the condition on the directions of reflection, we need the 
following definition. 

Definition 2.1. A square matrix A = (vl, . . ., Vd) is an f 
matrix if there exist a1 > 0 (i = 1, . . ., d) such that E4= 
ai7v > 0, where z is the ith column of A. A square matrix 
A is a completely Y' matrix if each principal submatrix of A 
is an Y' matrix. 
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Reiman and Williams (1988) proved that a necessary 
condition for existence of process Z* is that R is a com- 
pletely 9' matrix. Conversely, Taylor and Williams (1993) 
proved the following foundational result: if R is completely 
Sf, then a (0, 1, R)-RBM Z* exists and Z* is unique in 
distribution. 

We have intentionally used symbol Z* in our description 
of the RBM. The resemblance to the queueing network 
analog is to emphasize the connection of this process with 
the workload process in our queueing model. Specifically, 
as we will see in later sections, the workload process Z 
defined in Section 1 will be replaced by an RBM Z*. We 
hope such usage does not cause any confusion. 

3. REDUCTION TO AN RBM 

In this section we present an RBM that approximates the 
workload process in the queueing network. In the Appen- 
dix of Harrison and Williams (1992), the authors pre- 
sented Brownian models for multiclass queueing networks 
under several queueing disciplines. Their multiclass queue- 
ing networks include re-entrant lines considered in this 
paper. Among the queueing disciplines that they consid- 
ered are static buffer priority disciplines, which include the 
FBFS and LBFS disciplines. Harrison and Nguyen (1990, 
1993) also studied Brownian models for multiclass queue- 
ing networks, but their queueing discipline primarily fo- 
cused on FIFO. 

According to Harrison and Williams (1992), the work- 
load process Z ={Z(t), t - 0} can be modeled by a (0, 1, 
R)-RBM Z* = {Z*(t), t - 0} as defined in Section 2. The 
Brownian data (0, E, R) were given on page 288 of Harri- 
son and Williams (1992). Specifically, the reflection matrix 
R was given by: 

R = (I + G)1, (3.1) 

where 

G =CM(I - P') -1P'A, (3.2) 

P is a K x K matrix whose entries are zero, except that 

Pk,k+l = lfork= 1,...,K- 1,andAisaKXdmatrix 
to be explained shortly. The drift vector 0 was given as: 

= -R(e -p), 

where e is a d-dimensional vector of ones, and p is the 
vector of traffic intensities as defined in (1.6). The covari- 
ance matrix E was given as RfR', where f was defined 
through expressions in (A.1), (A.12), (A.17), (A.29), and 
(A.51) of Harrison and Williams (1992). Specializing to 
our model, we have: 

= RC[r + a1cC 2Mee'M]C'R'. 

It is expected that the Brownian data should depend on 
a particular queueing discipline used. It turns out that the 
matrix A used in (3.2) does depend on the queueing disci- 
pline used. The determination of A\ is often based on a 
heavy traffic theory, although the resultant A\ dominates in 

any traffic conditions. The system is in heavy traffic if pi is 
less than one, but is close to one at each station i. For 
some queueing networks, Reiman (1984b) discovered what 
he called the state space collapse phenomenon. That is, the 
queue lengths among different classes at a station are a 
fixed proportion of the workload at the station under a heavy 
traffic scaling. For a given queueing discipline, if there is a 
state space collapse, namely: 

Qk (t) 8 kZi (t) for each k E IC (3.3) 

in heavy traffic, then Harrison and Williams (1992) sug- 
gested to take: 

Aki 8k, if k Eg ti, 
0, otherwise. 

The state space collapse is usually a key to proving a heavy 
traffic limit theorem, which is often used to justify Brown- 
ian approximations of the type proposed by Harrison and 
Williams (1992) and Harrison and Nguyen (1993). Under 
the FBFS and LBFS disciplines, when the system is in 
heavy traffic, we expect that customers in the lowest prior- 
ity class experience most of the waiting. In fact, Johnson 
(1983) and Peterson (1991) proved that for certain multi- 
class queueing networks, under heavy traffic scaling, only 
the lowest priority class has nonempty queue in heavy traf- 
fic. This suggests that: 

Zi (t) m (i) Q (i), 

where T(i) is the lowest priority class at station i. There- 
fore: 

= l/mk, if k is the lowest priority class in T , 
Ak 0, otherwise.(34 

Because CMA = I, one can check that: 

I+ G = CM(I-P')1/-A. 

Because of the special structure of P, (I - P')-1 is a lower 
triangular matrix with each entry in the lower triangular 
part being equal to 1. Therefore, the (i, j)th entry of I + G 
is: 

( 
(mk) 

( (3.5) 
k(=-1i,k-_f(j) m f(j) 

The following two theorems are proved in the appendix. 

Theorem 3.1. Under the FBFS and LBFS disciplines, (I + 
G) is invertible and R - (I + G)-1 is a completely 9' 

matrix as defined in Definition 2.1. Therefore, the (0, 1, 
R)-RBM Z* defined in (2.1) although (2.4) exists and is 
unique in distribution. 

Theorem 3.2. Under the FBFS and LBFS disciplines, the 
RBM Z* has a stationary distribution when the traffic con- 
dition (1.7) is satisfied. 

It was shown by Dai and Kurtz (1994) that the stationary 
distribution of Ze was unique. Furthermore, it was charac- 
terized by a basic adjoint relationship. (See Harrison and 



DAI, YEH, AND ZHOU / 615 

Williams 1987.) The stationary distribution of the RBM 
can be computed by a numerical algorithm devised by Dai 
and Harrison (1992). When the reflection matrix R and 
covariance matrix E satisfy a special condition, the station- 
ary distribution of the RBM is of an exponential form that 
can be determined analytically. The condition, called the 
skew symmetric condition for historical reasons as in Har- 
rison and Williams (1987), takes the form: 

21 = RD1A + AD1R', (3.6) 

where D = diag(R) and A = diag(Y). When (3.6) is satis- 
fied, the stationary density has a product-form given by: 

K exp -X x), x = (xl, .*,Xd) E + (3.7) 

with X = -2A-1 D R-10 and some normalizing constant 
K > 0. 

In Harrison and Williams (1992), the RBM Z* was used 
to model what they called the immediate workload process 
W(t) = (W1(t), . .. , Wd(t))', where Wi(t) is the sum of the 
impending service times of customers who are queued at 
station i at time t, plus the remaining service times of those 
customers (if any) who are being serviced there at time t. 
Readers might have noticed that their definition of Wi(t) is 
slightly different from the definition of average workload 
Zi(t) defined in this paper. If all service times at station i 
are deterministic, and server i has just initiated a new 
service at time t, then Wi(t) is equal to Zi(t). In general, 
when the system is in heavy traffic, there will be a lot of 
customers waiting in buffer k = ((i) at each station i. By 
the strong law of large numbers (1.5), the amount of im- 
mediate workload contributed by this class is roughly 
mkQk(t). Because workload contribution from other 
classes are negligible, we have: 

Z(t) W(t). 

Therefore, Z and W should yield the same Brownian 
model Z*. 

4. SUMMARY OF THE PERFORMANCE ANALYSIS 
PROCEDURE 

Recall that the input data for the re-entrant queueing net- 
work contain external arrival rate a, = 1, SCV c2 for interar- 
rival times, service rate lik (k = 1,..., , covariance 
matrix F that captures the variability of service times for 
each class, as well as the correlation of service times 
among different classes. The queueing discipline used is 
either FBFS or LBFS. For a given priority discipline, let 
((i) be the lowest priority class at station i. 

In Section 3 we have shown that the workload process Z 
can be replaced by an RBM Z* with drift vector 0, covari- 
ance matrix E, and reflection matrix R, or simply a (0, E, 
R)-RBM. To repeat, the Brownian data (0, , R) are given 
by: 

R = diag(me(1), ... ., me(d)( E ink) 1, (4.1) 

6 - -R(e -p), (4.2) 

E = RC[r+ a, cxi2Mee'M]C'R', (4.3) 

where, as before, mk = i/ILk, 'Ci is the constituency of 
station i, e is a d-dimensional vector of ones, p is the vector 
of traffic intensities, M = diag(m1, . . ., mK), and C is the 
constituency matrix. Notice that the second moment infor- 
mation is contained in E only. Also, the reflection matrix 
R, and hence the drift vector 0, covariance matrix E of the 
RBM Z* depend on the discipline used. 

It has been proven in Theorems 3.1 and 3.2 that the (0, 
1, R)-RBM Z* exists, that it is unique in distribution, and 
when the traffic condition (1.7) is satisfied, Z* has a unique 
stationary distribution. The stationary distribution of the 
RBM can be computed by a numerical algorithm, which 
has been implemented in a QNET software package that 
can be run on virtually any type of computer platform. In 
particular, the long-run average position: 

lim- Z (s) ds (i =1,...d) 
t-?o t J 

of the RBM can be computed. We use these numbers to 
estimate the long-run average workloads Zi (i = 1, . .. , d) 
in the network. By the heavy traffic state space collapse 
heuristic alluded in Section 3, we can further obtain rough 
estimates of average queue lengths: 

r 1 - if k is the lowest priority 
Qk rnz class at station i, (4.4) 

ol O, otherwise. 

The mean sojourn time F can be estimated based on mean 
queue length (Q1, ..., QK)' and Little's law as in (1.10). 

When the queueing discipline is FBFS, we propose the 
following recursive procedure to obtain a refined estimate 
of (Q1,..., QK)' from the estimate of mean workload. 
First, observe that in analyzing the first L (L - K), buffers 
1,..., L, the rest of the buffers L + 1,..., K can be 
ignored because of the FBFS discipline. We call the sub- 
network consisting of buffers 1,..., L the L-truncated net- 
work. We choose the largest K1 - K such that there is exactly 
one class at each station in the K1-truncated network. For 
k = 1,..., K1, Qk can be calculated via Qk 
where Z$1) is the mean workload at station i = o(k) in the 
K1-truncated network. If K1 = K, we are done; otherwise, 
choose the largest K2 (K1 < K2 - K) such that in the 
K2-truncated network each station has, at most, one job 
class that has an unknown mean queue length. For any 
station i in the K2-truncated network, there are, at most, 
two classes visiting the station. If station i has one job class 
k, then Qk can be computed as before via Qk =-Z22)lMk; 

otherwise, there are two classes, k and , with k - K1 and 
K1 < ( - K2. In this case, Qk has been computed in the 
K1-truncated network. Furthermore, Qe can be computed 
via: 

Qe = , (Z )Mk Qk )lMf, 

where Z(2) iS the mean workload at station i in the K2- 
truncated network. Thus, we have obtained estimates for 
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Qk (k 1, ..., K2). Continuing in this way, we will even- 
tually have K1 < K2 < - * < Ke = K and an estimate of Qk 

fork = 1,.. .,K. 
In the next three sections, we present numerical studies 

for three re-entrant lines. 

5. A SIMPLE RE-ENTRANT LINE 

Let us come back to the two-station network shown in 
Figure 1. Assume that the standard assumptions in Section 
1 hold, and the exogenous arrival process to class 1 is 
Poisson with rate 1. For this network, the workloads Z(t) 
= (Z1(t), Z2(t))' at time t at both stations are: 

Zl(t) = mlQl(t) + m3Q3(t), 

Z2(t) = m2Q2(t). 

Under the FBFS discipline, the workload process Z can be 
replaced by a (0, E, R)-RBM ZV with: 

R=(i1 -m3/m2) 
0O 1J 

0 - (ml + m3/m2 - 1, m2 - 1)', 

2(C2 + C21) + m2(c,2 + C2%) 

2 2 
mJm2Ca - m2m3Cs,2 

2 2\ 
mlm2Ca M-M 3C2 

2 2 +c2 I m 2(ca2 + Cs22 

Because of the form of the reflection matrix, the second 
component Z*(t) of Z* is a one-dimensional RBM. There- 
fore, its stationary distribution is exponential with mean 
(for example, see Harrison 1985): 

522 _ / mz \ 1 + C22 122 ____ ___ 2 

2(1- M2) 1 - M2 2 

which is identical to the familiar Pollaczek-Kinchine for- 
mula for a M/G/1 queue. (See, for example, Gross and 
Harris 1985.) This result is not surprising, because under 
our heuristics customers entering system experience no 
waiting at station 1 and proceed directly to station 2. 
Therefore, station 2 acts like an MIG/1 queue, for which 
the Pollaczek-Kinchine formula prevails. For the RBM, 
condition (3.6) is equivalent to: 

-m2m3 (C + C2=, 2mmlM2C- 2m2Ms3c 2, 

which reduces to: 

2 ~ 2 
(2m 1 + M3)Ca= M3Cs2. 

Therefore, in our case where the arrival process is Poisson, 
the corresponding RBM has product form stationary dis- 
tribution if, and only if, c22 = (2m1 + m3)/m3. 

Under the LBFS discipline, the workload process Z can 
be replaced by a (6, Y, R)-RBM Z* with: 

\ -mm 11 +m3/rn2)J 

o - (inl + m3/m2 -1, mimi - m / - 1)', 

\21 22} 

where 

C= m2(C + C21) + m3(c% + C52), 

= ~~~~22 
-12 = 21 -m1m2CS,l - m2m3(1 + m3/ml)Cs2 

-(m2/n1)m2c 32 

-22 = MC 1 + (1 + m3/m1) 2m c2 

+ (m2/m) 2m c 23. 

Unlike the FBFS case, neither of the marginal distribu- 
tions of ZV is a one-dimensional RBM. Condition (3.6) 
reduces to: 

R12 22 + R21l111 2112, 

where: 

-=RD-'=(1 -mlm3/[m2(ml +m3)]) 

which can be further reduced to: 

ml(ml + M3)C2-mj cl1 + m3(ml + m3)c 2 

+ m3cs3% (5.1) 

Notice that condition (5.1) does not involve mean service 
time at station 2. When service times at station 1 are de- 
terministic (c21 = 2 = 0), and service times at station 2 
are exponentially distributed (c,2 = 1), condition (5.1) is 
satisfied; hence, the RBM has a product form stationary 
distribution. 

The proposed method in this paper gives estimates of 
the mean workloads Z1 - m1Q1 + m3Q3 and Z2 - m2Q2 

According to the heavy traffic state space collapse heuris- 
tic, under the FBFS discipline, we have: 

Ql- , Q2= Z2, Q3 = Z1. (5.2) 

Under the LBFS discipline, we have: 

- _1 - -_1- - 
Q1 - Zl, Q2 Z21 Q3 = (5.3) 

Finally, the mean sojourn time F under either of the 
queueing disciplines can also be estimated via F= Q1 + 

Q2 + Q3. 
Under the FBFS discipline, one can obtain a refined 

estimate of (Q1, Q2, Q3) from (Z1, Z2), as discussed in 
Section 4. Because the FBFS discipline is used, buffer 1 
can be analyzed in isolation, ignoring the existence of 
other buffers. Thus the 1-truncated network is an M/G/1 
queue, and our Brownian estimate of the mean workload 
is. 

ml( mfl) AV+Ch) 
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Table I 
Estimates of Mean Workloads and Mean Sojourn Times in a Two-station Network 

FBFS LBFS 

Case Station Refined 
Number Number SIMAN QNET SIMAN QNET 

A-1 1 4.74 (5.6%) 4.83 (1.9%) 3.53 (4.6%) 3.58 (1.4%) 
2 7.93 (3.0%) 8.10 (2.1%) 9.46 (3.1%) 9.99 (5.6%) 

Sojourn 19.4 (3.1%) 19.73 (1.7%) 18.3 (2.7%) 19.1 (4.1%) 
A-2 1 5.95 (7.2%) 5.92 (0.5%) 5.33 (6.3%) 5.25 (1.5%) 

2 7.91 (2.9%) 8.10 (2.4%) 8.11 (3.3%) 8.36 (3.1%) 
Sojourn 32.2 (5.6%) 32.77 (1.8%) 17.2 (3.3%) 16.8 (2.4%) 

A-3 1 5.59 (4.9%) 5.85 (4.7%) 3.44 (3.1%) 3.48 (1.2%) 
2 8.16 (3.0%) 8.10 (0.7%) 15.4 (3.5%) 18.63 (21.0%) 

Sojourn 17.7 (3.4%) 17.54 (0.9%) 28.5 (3.3%) 37.8 (32.6%) 
B-1 1 5.62 (4.8%) 6.18 (10.0%) 4.19 (2.9%) 4.51 (7.6%) 

2 8.59 (3.2%) 8.10 (5.7%) 10.7 (3.6%) 11.3 (5.7%) 
Sojourn 22.0 (3.2%) 22.73 (3.3%) 21.1 (2.3%) 22.6 (7%) 

B-2 1 9.37 (5.9%) 10.8 (15.2%) 8.41 (4.2%) 9.41 (11.9%) 
2 10.1 (2.9%) 8.10 (19.8%) 11.3 (3.8%) 11.8 (4.4%) 

Sojourn 50.0 (4.2%) 51.33 (2.6%) 25.8 (3.5%) 26.6 (2.9%) 
B-3 1 4.32 (3.3%) 4.33 (0.2%) 2.83 (2.3%) 2.63 (7.1%) 

2 8.05 (2.9%) 8.10 (0.6%) 12.9 (3.3%) 15.2 (18.2%) 
Sojourn 15.5 (3.9%) 15.54 (0.3%) 23.7 (2.7%) 30.0 (26.7%) 

C-1 1 5.88 (5.7%) 6.76 (15.0%) 4.18 (4.5%) 4.60 (10.0%) 
2 6.14 (2.9%) 5.06 (17.6%) 7.93 (3.9%) 7.93 (0.0%) 

Sojourn 20.3 (3.9%) 20.64 (1.7%) 18.1 (3.4%) 19.0 (5.2%) 
C-2 1 9.36 (5.8%) 11.0 (17.4%) 8.40 (5.5%) 9.41 (12.0%) 

2 7.79 (3.1%) 5.06 (35.0%) 8.71 (4.0%) 8.72 (0.1%) 
Sojourn 47.3 (6.1%) 48.96 (3.5%) 22.5 (3.5%) 23.1 (2.6%) 

C-3 1 4.97 (6.1%) 5.36 (7.8%) 2.67 (3.4%) 2.68 (0.4%) 
2 5.63 (3.1%) 5.06 (10.1%) 10.6 (3.0%) 11.94 (12.6%) 

Sojourn 14.3 (2.8%) 13.64 (4.8%) 21.2 (3.1%) 26.7 (25.8%) 

The Brownian estimate of the mean queue length Q1 is: 

ml t+ c 2,1 

1 - m1/ 2 /S, (5.4) 

which differs from the exact value for M/G/l queue: 

Ml +m m1 ( -~Ml 2 )55 

The relative error of our Brownian estimate is: 

(1-ml) 2 + 2 1 + 

Once we have an estimate of Q1, we have the estimates of 
Q2 and Q3 given by: 

Q2 = Z2/M2, 

Q3 = (Z1 - M1Q1)/m3. 

Now we present some numerical experiments for this 
network. We consider three systems with different combi- 
nations of service time varabilities among classes. For sys- 
tems A, B, and C, the corresponding service time SCVs 
(cf1, cS2, c23) are given as (1, 1, 1), (3, 1, 0.25), and (3, 
0.25, 1), respectively. For System A, all service times follow 
exponential distributions. Although such a system can be 

modeled by a continuous-time, discrete state space Markov 
chain, its stationary distribution is beyond the domain of 
exact analysis. In System B, class 3 has low variability ser- 
vice times, whereas in system C, class 2 has low variability 
service times. We should expect that the mean workload at 
station 2 be smaller in system C than in other systems, re- 
gardless of whether the FBFS or LBFS discipline is 
employed. 

For every system, we fix the traffic intensity at both sta- 
tions to be 0.90, which is reasonably heavy. For each sys- 
tem we consider three different cases. Each case 
corresponds to a different work allocation for server 1. In 
case 1, server 1 evenly splits its efforts between class 1 and 
class 3 customers; therefore, m1 = M3 = 0.45. In case 2, 
ml = 0.7 and m3 = 0.2; therefore, server 1 devotes signif- 
icantly more time on class 1 customers. For case 3, we let 
Ml = 0.2 and m3 = 0.7. Table I gives the simulation and 
QNET estimates of the long-run average workload at each 
station and the mean sojourn time in the network under 
the FBFS and LBFS disciplines. When the FBFS discipline 
is used, QNET estimates of the mean sojourn time are 
calculated from the refined procedure proposed in Section 
4. The following conventions apply to this table, as well as 
to all subsequent tables. The column SIMAN contains the 
estimates obtained by simulations, and the numbers in 
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1 2 

Figure 2. The Lu-Kumar network. 

parentheses after the simulation estimates represent the 
half-width of 95-percent confidence intervals, which is ex- 
pressed as a percentage of the simulation average. The esti- 
mates obtained by the proposed method are contained in the 
QNET column, and the numbers in the parentheses after 
the QNET estimates represent percentage errors from the 
simulation average. The simulations are performed using 
SIMAN 3.5. In all cases, simulation estimates are collected 
from 10 replications, and the simulation time of each rep- 
lication is set to be 105, at which time the systems seem to 
have been in steady state for a long time. Since service 
time distributions are allowed to be general, in simulations 
we use Erlang distributions, exponential distributions, and 
hyperexponential distributions to fit service time distribu- 
tions, with SCV being less than one, equal to one, and 
larger than one, respectively. A random variable is said to 
have hyperexponential distribution with mean m and SCV 
c2 if its probability density function is given by: 

f(x) =pA1e AlX + (1 -p)A2e-A2X X 0, (5.6) 

wherep = 1/2 + 1 /(c2 - 1)/(c2+ 1), A1 = 2p/m and A2 
= 2(1 - p)/m. 

Notice that, as we discussed earlier, our QNET method 
cannot tell the difference among the three cases for long- 
run average workload at station 2 under the FBFS discipline, 
whereas simulation indicates that they are significantly dif- 
ferent between Systems B and C. We expect this discrep- 
ancy to become smaller if the traffic intensities at both 
stations get higher. Also, under the FBFS discipline, in 
case 3 (mi1 = 0.2, m3 = 0.7) of all systems the QNET 
estimates are more accurate. We attribute this accuracy to 
the small mean service time for class 1, which allows class 
1 customers to pass through station 1 quickly. The quick 
passage of class 1 customers is consistent with the heavy 
traffic conjecture. Notice that the refined QNET estimates 
of the mean sojourn times under the FBFS discipline are 
extremely accurate compared with the simulation results. 
In calculating the QNET estimates of mean sojourn times, 
we used the Brownian estimates for mean queue length in 
formula (5.4) instead of the exact formula (5.5). Our calcula- 
tions show that the relative difference of mean sojourn times 
based on these two estimates are insignificant (within 1%). 

6. THE LU-KUMAR NETWORK 

Shown in Figure 2 is the Lu-Kumar two-station re-entrant 
line. Customers enter the network from outside and follow 
a deterministic routing sequence given by stations 1, 2, 2, 
1. Lu and Kumar (1991) show that if classes 2 and 4 

receive higher priorities, the network may not be stable, 
even if (1.7) is satisfied. 

Under the standard assumptions in Section 1, and the 
assumption that the exogenous arrival process is a Poisson 
process with rate 1, the FBFS and LBFS disciplines are 
stable, as proved by Dai and Weiss (1996), for any re- 
entrant lines. The workload process Z(t) is given by: 

Z1(t) = m1Q1(t) + m4Q4(t), 

Z2(t) = m2Q2(t) + m3Q3(t). 

Under the FBFS discipline, the workload process Z can be 
replaced by a (0, E, R)-RBM Z* with: 

0 - ((mIm3 - m2m4)/m3 + m4/m3 - 1, 

(M2 + M3) - 1)', 

1 {<1 t12 

421 422J 

RA 
1 

m4/M3) 

where: 

11 = (ml - M2m4/M3)2ca + i2cS 

+ (M4/M3 ) 2cs,2 

+ sn,(c,3 + cr4), 

112,= -21 = (M2 + M3)(Ml - M2M4/M3)Ca 

2 2 ~~~2 - (M4/M3)Mi2cs,2 - m3M44c,3, 

22 = (Mi2 + Mi3)2Ca + in2s,2 + M3Cs,3. 

The RBM Z* exists and is unique in the pathwise sense 
because R is of upper-triangular form. Again, as in the FBFS 
case in Section 5, the Brownian estimates of the workload at 
station 2 can be analytically calculated without using the 
QNET software. In this network, the product-form condition 
(3.6) is equivalent to: 

-M4/M3yi22 -212- 

After a lengthy calculation, the condition is further re- 
duced to: 

(2mlM2 + 2mlM3 + m3M4)ca 

2 

- 

24 
(Ca + cS2) + M3m4cs,3. 

in3 

Notice that c2 1 does not play any role in the product-form 
condition. 

Under the LBFS discipline, the workload process can be 
replaced by a (0, >, R)-RBM with: 

0 = (ml + m4/(M2 + M3) - 1, m2/Ml 

-m2(ml + m4)/[mI(M2 + m3)])', 

I I VI- 12) 

Y421 Y 22 

I /1 ( 
M4/(M2 + 

mi3) 
R t m 2/ m2 (m1 +n4 )/[min (i2 + in3 ] 

where: 
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Table II 
Estimates of Mean Workloads and Mean Sojourn Times in the Lu-Kumar Network 

FBFS LBFS 

Case Station Refined 
Number Number SIMAN QNET SIMAN QNET 
A-1 1 4.84 (1.8%) 4.84 (0.0%) 3.36 (1.9%) 3.28 (2.4%) 

2 5.46 (3.7%) 6.08 (11.4%) 3.64 (2.0%) 3.56 (2.2%) 
Sojourn 22.9 (2.6%) 24.3 (5.97%) 15.5 (1.94%) 15.2 (1.9%) 

A-2 1 6.04 (3.0%) 5.87 (2.9%) 5.21 (2.3%) 5.22 (0.1%) 
2 6.02 (3.6%) 6.70 (11.3%) 5.13 (2.2%) 5.26 (2.5%) 

Sojourn 48.0 (4.2%) 51.2 (6.63%) 15.8 (2.53%) 15.0 (5.2%) 
A-3 1 5.67 (2.0%) 5.87 (3.5%) 3.20 (1.6%) 3.00 (6.3%) 

2 6.25 (4.3%) 6.70 (7.2%) 3.36 (2.4%) 3.36 (0.0%) 
Sojourn 18.3 (2.7%) 18.3 (0.08%) 25.0 (2.4%) 31.8 (27.2%) 

B-1 1 5.98 (4.4%) 6.20 (3.7%) 3.96 (3.8%) 4.20 (6.1%) 
2 6.27 (4.2%) 6.08 (3.0%) 4.31 (4.0%) 4.25 (1.4%) 

Sojourn 26.9 (2.6%) 27.3 (1.5%) 18.5 (3.9%) 18.8 (1.5%) 
B-2 1 10.3 (4.6%) 10.8 (4.6%) 8.55 (4.2%) 9.35 (9.4%) 

2 8.48 (4.2%) 6.70 (21.0%) 7.93 (4.1%) 8.03 (1.3%) 
Sojourn 73.8 (5.2%) 66.5 (9.9%) 25.1 (4.0%) 24.8 (1.1%) 

B-3 1 4.38 (3.7%) 4.36 (0.5%) 2.43 (2.8%) 2.14 (11.9%) 
2 6.17 (5.2%) 6.70 (8.6%) 2.78 (4.0%) 2.61 (6.1%) 

Sojourn 16.2 (3.1%) 16.4 (1.2%) 20.2 (3.5%) 23.8 (17.6%) 

/ 2 

-m2(c2 + c1) + ( ) (msc,2 + m3cs,3) 

Jxa ~m2 + M3/ 

+ m 2c24, 

2 m2m4(m1 + m4) 
~12 

- 
21 = mlm2Cs,l - 

Ml (M2 + M3_2 m1(m2 +m3) 

* (m2c22 + m2c2,3) - (m2/ml)m2c24, 

2 2 (m2(ml + M4 ) 2( 2 232 
~22 

M2Cs,1 \ml(m2 +m3 2cs2+ 3cs, 

+ (m2/ml)2m2c24. 

For the RBM, condition (3.6) reduces to: 
2 M m1 i2 +Mn42 

ml +m4 S, a (m2 + mr )2 

/ in4 ~~~~~~~m2M 2 *(-2M2-M2 ml + 1 + Min)c2 ( + 7 3)2 Cs,22 

We consider two systems of this network. In System A, 
all service times are exponentially distributed. In System B, 
service time SCVs are (3, 1, 1, 0.25). Again, as in the first 
example, we fix the traffic intensities at both stations to be 
0.90. For each system, we consider three cases, each case 
corresponds to a different combination of mean service 
times. In Case 1, all mean service times are the same, 
equal to 0.45. In Case 2, classes 1 and 2 have long mean 
service times (equal to 0.7), and classes 3 and 4 have short 
mean service times (equal to 0.2). In Case 3, classes 1 and 
2 have short mean service times (equal to 0.2), and classes 
3 and 4 have long mean service times (equal to 0.7). The 
numerical results are summarized in Table II. The conclu- 
sion is similar to the first example. In particular, the 

ONET estimates of the mean sojourn times under the 
FBFS discipline are again quite accurate. 

7. A SIX-STATION RE-ENTRANT LINE 

Consider the six-station queueing network depicted in Fig- 
ure 3. In the network, customers enter from outside and 
follow a deterministic routing sequence given by stations 1, 
2, 3, 2, 1, 4, 5, 6, 5, 4, 6. We assume the standard assump- 
tions as in Section 1, and the exogenous arrival process is a 
Poisson process with rate 1. 

In this example we consider two systems. In System A, 
all service time distributions are exponential. In System B, 
the service time SCVs are given: 

(1, 2.25, 0.25, 1, 1, 0.25, 1, 2.25, 1, 1, 1). 

In both systems, traffic intensities are 0.9 at all stations. 
Class 3 has mean service time 0.9, and the rest of the 
classes have mean service time 0.45. The numerical results 
are summarized in Table III, which shows that the QNET 
estimates are still encouraging. This example shows that 

1 2 3 

4 5 6 

Figure 3. A six-station network. 
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Table III 
Estimates of Mean Workloads and Mean Sojourn Times in a Six-station Network 

FBFS LBFS 

Station Refined 
System Number SIMAN QNET SIMAN QNET 

A 1 4.66 (4.1%) 4.54 (4.54%) 3.70 (5.5%) 3.65 (1.4%) 
2 4.82 (4.5%) 4.82 (0.0%) 3.93 (4.4%) 3.73 (5.1%) 
3 8.36 (4.3%) 8.10 (3.1%) 10.2 (3.7%) 10.5 (2.9%) 
4 6.23 (5.3%) 5.32 (14.6%) 3.41 (3.1%) 3.20 (6.2%) 
5 9.81 (4.5%) 10.2 (4.0%) 3.80 (3.3%) 3.53 (7.1%) 
6 5.50 (4.3%) 4.69 (1427%) 3.70 (2.6%) 3.63 (1.9%) 

Sojourn 74.9 (3.1%) 74.71 (0.25%) 53.3 (2.4%) 51.1 (4.1%) 
B 1 5.29 (2.9%) 5.37 (1.7%) 3.60 (4.6%) 3.27 (9.2%) 

2 5.52 (5.9%) 5.88 (6.5%) 4.60 (2.6%) 4.55 (1.1%) 
3 5.89 (3.0%) 5.06 (14.1%) 7.30 (3.5%) 7.27 (0.4%) 
4 5.70 (5.0%) 4.43 (22.3%) 2.84 (2.5%) 2.31 (18.7%) 
5 10.4 (4.3%) 10.91 (4.9%) 3.63 (3.3%) 3.04 (16.3%) 
6 5.21 (3.5%) 5.50 (5.6%) 4.78 (3.1%) 4.39 (8.2%) 

Sojourn 79.8 (4.0%) 76.9 (3.6%) 49.3 (2.4%) 47.1 (4.4%) 

the proposed method is quite robust in analyzing compli- 
cated networks. When the FBFS discipline is used, the 
refined QNET estimates of the mean sojourn times are 
calculated as follows. First, as discussed in Section 4, we let 
K1 = 3. We obtain the QNET estimates of Q1, Q2 and Q3. 
Next, we let K2 = 8 and obtain the QNET estimates of Q4, 
Q5, Q6, Q7 and Q8. Finally, letting K3= K = 11, we obtain 
QNET estimates of Q9, Q10 and Q11. The mean sojourn 
time in the network is Q1 + + Q11 by the Little's law. 

8. CONCLUSIONS AND OPEN PROBLEMS 

In this paper, we have presented a Brownian system model 
that can be used to predict the long-run average workload 
level at each station and the mean sojourn time in a re- 
entrant line under the FBFS and LBFS disciplines. When 
the discipline is FBFS, our method also yields a refined 
estimate of the mean sojourn (or flow) time in the system. 
The Brownian model was first proposed by Harrison and 
Williams (1992), in which a d-dimensional reflected 
Brownian motion was used to model the workload process 
in the re-entrant line. We show that the reflected Brown- 
ian motion exists, and that it is unique in distribution, and 
that it has a unique stationary distribution when the usual 
traffic condition (1.7) is satisfied. We also present three 
network examples in which performance estimates based 
on the Brownian model are shown to be reasonably accurate. 

We have not attempted to prove a heavy traffic limit 
theorem that would justify the approximation procedure 
presented here. We conjecture that a properly normalized 
sequence of workload processes converges to the RBM in 
Section 4 under a heavy traffic condition when the FBFS 
or LBFS discipline is used. In fact, our method can readily 
be applied to any buffer priority disciplines for which a 
conventional heavy traffic limit theorem holds. Finally, it is 
desirable that more numerical studies, which represent all 
traffic intensities, be conducted to test the accuracy of our 
method, which is rooted in heavy traffic theory. 

APPENDIX 

PROOFS FOR THEOREMS 3.1 AND 3.2 

In this appendix, we present proofs for Theorems 3.1 and 
3.2. Recall that e(i) is the lowest priority class at station i. 
We make the convention that stations are numbered such 
that f(1) < f(2) < .. < f(d). Also, recall the definition 
of the reflection matrix R = (I + G)-' in (3.1). It follows 
from (3.5) that: 

R = diag(m (l M .1d))A~ , (A.1) 

where A is the d x d matrix: 

A ( k e(mk>- (A.2) 
keTi,k-_f fj) 

Proof of Theorem 3.1. (a) Assume that the FBFS disci- 
pline is used. Then f(i) is the last class that visits station i; 
hence, for j > i, kEjk>Eke(j) mk = 0. Therefore, A, and 
hence R, is a lower triangular matrix with positive diagonal 
entries. Thus, R is a completely $ matrix. 

(b) Assume that the LBFS discipline is used. It will be a 
consequence of the proof in part (b) of Theorem 3.2 that 
the determinant of A is positive. Let L be any subset of 
{1 . . . , d}, and let ILI be the cardinality of L. The ILI x 

ILI submatrix: 

is a principal submatrix of A. By the same consequence of 
the proof in part (b) of Theorem 3.2, the determinant 
of this submatrix is again positive. Therefore, A is a @- 
matrix as defined in Berman and Plemmons (1979). It fol- 
lows from Berman and Plemmons (1979) that A is 
invertible and A` is also a --matrix. The latter fact im- 
plies that A-1 is a completely SF matrix. Therefore, R = 

diag(me(l), .., mf(d))A-1 is a completely 9 matrix. [] 
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Before proving Theorem 3.2, let us state a lemma that 
was proved by Dupuis and Williams (1994, Theorem 2.6). 

Lemma A.1. Let R be a completely 9' matrix. A (0, 1, 
R)-RBM has a stationary distribution if every solution z() 
to the following deterministic Skorohod problem eventually 
reaches zero for any z(O) - 0. 

The Skorohod Problem: 

z(t) = z(O) + Ot + Ry(t), (A.3) 

z(t) O, (A.4) 

y(O) = 0 and each component of y(Q) is nondecreasing, 

(A.5) 

{0zi(t) dyi(t) = 0, i = 1, . . ., d. (A.6) 

Proof of Theorem 3.2. (a) Assume that the FBFS disci- 
pline is used. In this case, R is a lower triangular matrix, as 
argued in part (a) of the proof for Theorem 3.1. Recall 
that R = (I + G)-1 where G is a lower triangular matrix 
defined in (3.2). Let z(-) be any solution to the Skorohod 
problem with z(O) - 0. It follows from (A.3) and (4.2) that: 

(I + G)z(t) = R 1z(t) 

= (I + G)z(O) + R-10t + y(t) 

= (I + G)z(O) - (e - p)t + y(t). (A.7) 

Because G is a lower triangular matrix with positive diag- 
onal entries, we have: 

(1 + Gjj)zj(t) = (1 + G11)z1 (0) - (1 - pl)t +y1(t). 

It follows from Harrison (1985, Chapter 2) that z1(t) 0 
for t - t- (1 + G1l)zl(0)/(1 - Pl). Now for t - t1, from 
(A.7): 

(1 + G22)z2(t) = (1 + G22)z2(t1) - (1 - p2)(t -t1) 

+Y2(t) -Y2(t1). 

Therefore, for t - t1 + t2, z2(t) = 0, where t2 = (1 + 

G22)Z2(tl)/(l - P2). By the same argument, one can show 
that for i = 1, . . ., d, zi(t) 0for t - t1 + * * * + ti, where 
ti = (1 + Gjj)zj(tj_1)/(1 - pi) (assume that to = 0). By 
Lemma A.1, any (0, >, R)-RBM has a stationary 
distribution. 

(b) Assume that the LBFS discipline is used. In light of 
(A.1), we first find the inverse of the d x d matrix A by 
using the traditional Gaussian elimination method. To be- 
gin with, we form a 2d x d matrix on the left side of (A.8) 
and transform it into a matrix on the right side of (A.8) by 
performing column transformations: 

For] = 2,..., d, subtracting columnI from column j - 

1, we obtain a matrix on the left side of (A.9): 

all a12 a13 .. ald 

O a22 a23 .. a2d 

O O a33 ... a3d 

o o 0 ... add 

1 0 0 ... 0 

-1 1 0 ... 0 
O -1 1 ... 0 

o o 0 .. 1 

all 0 0 ... 0 

O a22 0 ... 0 

O O a33 ... 0 

O 0 0 ... add 

1 b 42) b 12) ... b id-l) (A.9) 
- bf2 b3 d 

o1 -21) bS3) ... bSd-1) 

O -1 b ;2) . . . 
b3?d-1) 

o 0 0 ... b df1) 

where aiJ = 
YkETj,e(j)k<ke(j+1) mk with the convention 

i(d + 1) = K + 1. From this matrix, we have that the 
determinant of A is a1ja22 . . . add > 0 (this fact has been 
used in the proof of Theorem 3.1). Continuing the column 
operations on the matrix on the left side of (A.9), we 
obtain the matrix on the right of (A.9), where for r = 

l,...d -1: 

br +i,r? = 1 + ar,r?1 (A.10) 
ar j 

a brr (A-11) 

b k,). = b k(rl - 1 r) _ J:-)k=1 ,r 
rr 

j=r+1,...,d. (A.12) 
Therefore, A1 = [diag(a1l, ..., add)]-1 B, where: 

1 b 1) b i) ... bid 1)) 

Hence the reflection matrix R has the following represen- 
tation: 

R = diag(m e(l) /albl, .. , m (d)/add)B 

Let z() be a solution to the Skorohod problem as defined 
in (A.3) through (A.6). Because 0 = -R(e - p) as in (4.2), 
we have: 

z(t) = z(0) + Ot + Ry(t) = z(0) + Rx(t), 
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where: 

x(t) = (p - e)t + y(t). 

Let wi(t) = ajijz(t)/me(j) and w(t) = (w1(t),..., wd(t))'. It is 
easy to see that w(Q) solves the Skorohod problem defined by: 

w(t) = w(O) + B(p - e)t + By(t), (A.13) 

plus the analogous equations (A.4)-(A.6) with reflection 
matrix B. Let 

g(t) = e'w(t) = w 1 (t) + . . . Wd (t). 

It is a linear function of w(t), and hence of z(t). It is often 
called a linear Laypunov function. We are going to show 
that g(*) decreases to zero at a certain rate. A vector- 
valued function x() is said to be regular at time t if it is 
differentiable at t. We use x(t) to denote the derivative of 
x(Q) at a regular point t. Let t be a regular point for w(). 
Assume that g(t) > 0. There exists an r such that: 

Wr(t) > O, Wr+ 1 (t) = O, * * * . Wd (t) = O 

We would like to show that for i = r, r + 1,. ..,d: 

i ( ( 1) d aij a)d(t) (A. 14) 

Suppose that (A.14) holds for i = r + 1, . . , d, we show 
that (A.14) holds for i - r. To see this, notice that 
wr+1(t) = 0 implies wr+i(t) = 0; hence, from (A.13), we have: 

d 

Xr(t) =, b r(j- l)j(t) 
j=r+l1 

[ _ _ d 1 

= E br(J+ 1) ajk Xd(t) 
j=r+ a ajj k=j 

1 d 

=- >E ark Xd (t), 
aarr k=r 

where the last equality follows from Lemma A.2 
below. Therefore, (A.14) holds by an induction argu- 
ment. It is clear from (A.10) and (A.11) that for r = 

1, I. . ., d: 

d 1 d 

rb (1+ X,j - arj. (A.15) 
j=r+ 1 arr j =r 

Thus, one can check that e'B = (0, . . ., 0, 1), and hence: 

g(t) = Xd (t). 

Because wr(t) > 0, by (A.6), Mr(t) = 0, and hence: 

Xr(t) = Pr - 1 < 0. 

Therefore, we have: 

p(t) d(t) [ L k =r a rk] r(t) 
ar 

r k=r ark= 
(Pr 1) (t) 

where: 

d 
k=r ark1 

E= min (1 - Pr) > O. 
1--rsd a rr I 

It follows from Lemma 5.2 of Dai (1995) that g(t) = 0 for 
t - g(0)/E. D 

Lemma A.2. For each r - 1, ..., 

Eb(r + 1, - aik)= E ari- 
i=r+l aii k=i arr i=r 

Proof. We prove by induction that for each j d, 
. . . , .r: 

d 

(i - 1) (1E ) E ( ) 1E ) 

i=r+ 1 aii k = i i=r+1 ak 

d 

+ Z b l,k (A.16) 
k=j+ 1 

(The empty summation is interpreted as zero.) If (A.16) 
holds, the lemma is proved by taking j = r. It is obvious that 
(A.16) holds for j = d. Suppose that (A.16) holds for j, we 
would like to show that it holds for j - 1 as well. Now: 

d 
(i 1~ 1 d 

E i r? + ,ia Xaik) 
i=r+l1 a ii k=i 

(1 d 
= E r? +i (-E aik) + E bilk 

i=r+l aii k=i k=j+ 1 

j-1 ( 1 d k 1 d ( 

- E ? b(li)t- ai +, br(+lj Z J- E ajk) i=rsl aaii k=i / ajj k 

d 

+ X br0+ 1,k 
k=j?l 

/~d d 

i=r+l r k= aIl k j 

d r , ajk I, + b b[i %k 

k=j?l 
r 

a,.r1L 
(-1 )1 1 d d 

b, i E aik) + Z b f'+ ,k 

z=r+1l 
' i = = , 

By induction (A.16) holds, and therefore the lemma is 
proved. LII 
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