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Lemma 4.1 of this paper need not always hold as stated (e.g., for S = {x ∈ R : 0 ≤ x ≤ 1}
and ε = 2, the left member of (4.2) is S and the right member of (4.2) is empty). However, (4.2)
does hold for all ε sufficiently small. The resultant corrected form of Lemma 4.1 is given below. As
explained further below, this lemma implies a local oscillation inequality — a corrected version of
Lemma 4.3 — which is also stated below. The corrected forms of Lemmas 4.1 and 4.3 suffice for
the proofs of the main results in the paper. Consequently those results on existence and uniqueness
of semimartingale reflecting Brownian motions in convex polyhedrons remain valid.

Correction to Lemma 4.1.
The corrected form of Lemma 4.1 is as follows.

Lemma 4.1. There is ε0 > 0 such that for all 0 ≤ ε < ε0,

S =
⋃
K∈C

F ε
K,

where C denotes the collection of subsets of J consisting of all maximal sets in J together with the
empty set.

Correction to the Proof. The original proof begins with the correct statement that for any ε ≥ 0,

S =
⋃
L⊂J

Gε
L,

where L ranges over all subsets of J, including the empty set, and

Gε
L ≡ {x ∈ Rd : 0 ≤ ni · x− bi ≤ ε for all i ∈ L, ni · x− bi > ε for all i ∈ J \ L}.

The error in the proof occurs in the next line which makes the (false) assertion that if ∅ 6= L ⊂ J
is not maximal, then there is a maximal K ⊃ L such that FL = FK. This assertion is true (by
the definition of a maximal set) provided that FL 6= ∅. Now, we only need the conclusion of the
assertion for L 6= ∅ such that Gε

L 6= ∅. Consequently, the rest of the proof is valid provided that
FL 6= ∅ whenever Gε

L 6= ∅ and L 6= ∅. This is true for all ε sufficiently small, as we now show.
Let

ε1 = inf{d(FM, Fi) : ∅ 6= M ⊂ J, FM 6= ∅, i ∈ J \M, FM ∩ Fi = ∅},

where d(FM, Fi) denotes the distance between FM and Fi, and the infimum of the empty set is +∞.
It follows from Lemma 1 below that ε1 > 0, although it may take the value +∞. Let ε0 ∈ (0,∞)
such that

ε0 <
ε1

Cm
,

where C is the constant appearing in Lemma B.1 and m = |J|. Suppose that 0 ≤ ε < ε0 and let
∅ 6= L ⊂ J such that Gε

L 6= ∅. For a proof by contradiction, suppose that FL = ∅. Then, since
L 6= ∅ and Fj 6= ∅ for all j ∈ J, there is M ⊂ L such that M 6= ∅, M 6= L, FM 6= ∅ and FM∩Fi = ∅
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for some i ∈ L \M. Let x∗ ∈ Gε
L. Then, x∗ ∈ S and by Lemma B.1, since ni · x∗ − bi ≤ ε for all

i ∈ L, we have
d(x∗, FM) ≤ C|M|ε,

d(x∗, Fi) ≤ Cε,

and so
d(FM, Fi) ≤ d(x∗, FM) + d(x∗, Fi) ≤ C|L|ε ≤ Cmε < ε1.

However, this contradicts the definition of ε1. This completes the proof of the desired assertion
and the corrected version of Lemma 4.1 as stated above follows. �

Lemma 1. Suppose that ∅ 6= M ⊂ J such that FM = ∩j∈MFj 6= ∅ and i ∈ J \ M such that
FM ∩ Fi = ∅. Then,

d(FM, Fi) > 0.

Proof. We note first that FM ∩ Hi = ∅, where Hi = {x ∈ Rd : ni · x = bi}. If this were not so,
then there would be x ∈ FM ∩Hi. This x would be in S, since FM ⊂ S. Then, since Fi = S ∩Hi,
x would be in Fi, and since x ∈ FM also, this would contradict FM ∩ Fi = ∅.

Since Fi ⊂ Hi, d(FM, Fi) ≥ d(FM,Hi), and so it suffices to prove that d(FM,Hi) > 0. For this,
note that since FM is convex and does not meet Hi, FM must lie on one side of the hyperplane Hi.
Without loss of generality, we assume that ni · x > bi for all x ∈ FM. Then, the distance from FM

to the hyperplane Hi is given by the “perpendicular” distance:

inf{ni · x− bi : x ∈ FM}.

Since FM is not empty, either the optimal cost of this linear programming problem is −∞ or there is
an x∗ ∈ FM that achieves the infimum (cf. D. Bertsimas and J. N. Tsitsiklis, Linear Optimization,
Athena Scientific Press, Belmont, MA, 1997; Corollary 2.3, page 67). Since ni · x > bi for all
x ∈ FM, it follows that the former option cannot occur and an optimal x∗ ∈ FM exists with

d(FM,Hi) = ni · x∗ − bi > 0,

as desired. �

Implications for other results.
Lemma 4.1 was used to prove Lemma 4.3. In view of the correction described above, only a

local version of Lemma 4.3, as stated below, is true. This can be proved in a similar manner to
that in the original text, provided one restricts the size ε of the oscillations of x to be sufficiently
small. In particular, for parts (b) and (c) of the proof, one needs that C1ε < ε0 where ε0 is the
value indicated in the corrected statement of Lemma 4.1 above. (We note here that there is a
non-critical typo in the formula for C2 in part (c), it should read C2 = C1C

2m2.)

Lemma 4.3. There exist constants κ > 0 and δ > 0 that depend only on (S, R) such that for
any T > 0, x ∈ C([0, T ],Rd) with x(0) ∈ S, and an (S, R)-regulation (y, z) of x over [0, T ], the
following holds for each interval [t1, t2] ⊂ [0, T ]:

Osc(y, [t1, t2]) ≤ κ Osc(x, [t1, t2]) and Osc(z, [t1, t2]) ≤ κ Osc(x, [t1, t2]),

whenever Osc(x, [t1, t2]) ≤ δ.

The main results of the paper remain valid, for when Lemmas 4.1 and 4.3 are used in deriving
those results, only local versions of them are needed. In particular, these lemmas are used in
establishing tightness and for that purpose the local, corrected versions cited here suffice.
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