
THE STABILITY OF TWO-STATIONMULTITYPE FLUID NETWORKS

J. G. DAI
School of Industrial and Systems Engineering and School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0205,

dai@isye.gatech.edu

J. H. VANDE VATE
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205,

john.vandevate@isye.gatech.edu

(Received June 1997; revisions received May 1998, January 1999; accepted January 1999)

This paper studies the �uid models of two-station multiclass queueing networks with deterministic routing. A �uid model is globally stable
if the �uid network eventually empties under each nonidling dispatch policy. We explicitly characterize the global stability region in terms
of the arrival and service rates. We show that the global stability region is de+ned by the nominal workload conditions and the “virtual
workload conditions,” and we introduce two intuitively appealing phenomena—virtual stations and push starts—that explain the virtual
workload conditions. When any of the workload conditions is violated, we construct a �uid solution that cycles to in+nity, showing that
the �uid network is unstable. When all the workload conditions are satis+ed, we solve a network �ow problem to +nd the coe/cients
of a piecewise linear Lyapunov function. The Lyapunov function decreases to zero, proving that the �uid level eventually reaches zero
under any nonidling dispatch policy. Under certain assumptions on the interarrival and service time distributions, a queueing network is
stable or positive Harris recurrent if the corresponding �uid network is stable. Thus, the workload conditions are su/cient to ensure the
global stability of two-station multiclass queueing networks with deterministic routing.

1. INTRODUCTION

Queueing networks o4er an appealing method for model-
ing complex manufacturing processes and have been used to
model telecommunication networks and manufacturing sys-
tems such as wafer fabrication facilities. Unfortunately, they
are themselves generally too complex for successful analy-
sis. For example, the primary tool for evaluating the perfor-
mance of a given dispatch policy is simulation. In fact, we
generally resort to simulation even to determine whether a
queueing network is stable under a given dispatch policy or
whether the servers are unable to manage the workload.
Even very simple queueing networks exhibit surprising

and often counterintuitive behavior. Consider the sim-
ple two-station re-entrant queueing network depicted in
Figure 1, where mk is the average processing time for stage
k; and jobs arrive at rate �. The two rectangles indicate the
two stations, Station A and Station B, and the line traces the
route the jobs follow between them. In this example, each
job passes through +ve stages of processing: The +rst, at
Station A, lasts an average of m1 time units; the second, at
Station B, lasts an average of m2 time units; the third, again
at Station A, lasts an average of m3 time units, and so on.
At any point in time, Station A, for example, may have jobs
waiting in all three of the stages it serves and must decide
which job to process next. A strategy for making these de-
cisions at each station constitutes a dispatch policy. Dai and
Vande Vate (1996) showed that under certain nonidling
(or work-conserving) dispatch policies, the servers are un-
able to serve jobs as quickly as they arrive, even when the
nominal workload at each station is signi+cantly less than

100%, i.e., �(m1 + m3 + m5)¡1 and �(m2 + m4)¡1. In
fact, Dai and Vande Vate (1996) showed that if the servers
give highest priority to jobs at stages 2 and 5, they will be
unable to serve the jobs as quickly as they arrive unless the
nominal utilization at each station is less than 100% and

�(m2 + m5)¡1:

For example, if the average service times are

(0:1; 0:6; 0:1; 0:1; 0:6);

servers employing this dispatch policy will be able to keep
up with the workload only if the arrival rate to the system sat-
is+es �¡1=(m2 +m5)= 5=6. The condition �(m2 +m5)¡1
re�ects the fact that under this dispatch policy Station A and
Station B can serve their high-priority stages simultaneously
only during a transient initial period. Thus, although they
are served by di4erent stations, these two stages can form
a bottleneck that determines the capacity of the entire sys-
tem. We discuss this phenomenon, which we call a “virtual
station,” in more detail in §3.
This paper focuses on the deterministic �uid network

corresponding to a given queueing network. For the �uid
network corresponding to the queueing network pictured in
Figure 1, �uid arrives continuously from the outside at rate
�. The server at Station A pumps �uid in stages 1, 3, and 5,
and the server at Station B pumps �uid in stages 2 and 4.
When a server devotes its full e4ort to stage k �uid, it pumps
at a maximum rate of
k =1=mk , assuming there is stage
k �uid, k =1; : : : ; 5. A dispatch policy in the �uid network

Subject classi$cations: Queueing networks; �uid models; stability; piecewise linear Lyapunov functions; network �ows.
Area of review: STOCHASTIC MODELS.

Operations Research, ? 2000 INFORMS 0030-364X/00/4805-0721 $05.00
Vol. 48, No. 5, September–October 2000, pp. 721–744 721 1526-5463 electronic ISSN

722 / DAI AND VANDE VATE

Figure 1. A +ve-class network.

context describes how to allocate each server’s pumping
capacity at each time among the di4erent stages it serves.
A �uid network is stable under a dispatch policy if it will
eventually empty no matter what the initial �uid levels are.
Our work is largely motivated by a result of Dai (1995)

showing that, under certain distributional assumptions on
interarrival and service times, a queueing network is stable or
positive Harris recurrent if the corresponding �uid network
is stable. Related work can be found in Rybko and Stolyar
(1992), Chen (1995), Dai and Meyn (1995), Stolyar (1994),
Meyn (1995), Dai (1996), and Bramson (1998).
We develop necessary and su/cient conditions for a two-

station �uid network to be globally stable or stable under
any nonidling dispatch policy. Determining the global sta-
bility region is especially important when it is di/cult or
impossible to implement a well-studied dispatch policy. In
such systems, it is possible for servers to unwittingly employ
a policy under which the system is unstable even though the
tra/c intensity or nominal workload at each station is less
than one. Although it is sometimes di/cult to avoid such
bad policies, we can avoid their consequences by maintain-
ing service times that are in the global stability region. In
this way, we can ensure that even under bad policies, the
system will remain stable.
We show that a two-station �uid network is globally

stable if and only if the processing times satisfy the nom-
inal workload conditions and the “virtual workload condi-
tions.” In particular, we introduce two intuitively appealing
phenomena, virtual stations and push starts, that give rise
to the two classes of virtual workload conditions: “virtual
station conditions” and “push start conditions.”
Virtual stations a4ect the global stability of two-station

�uid networks because, under some nonidling dispatch poli-
cies, certain groups of stages cannot be served simulta-
neously even though they are served at di4erent stations.
Thus, just as at stations, the tra/c intensities at these groups
must be less than one.
Push starts magnify the in�uence of virtual stations in

�uid networks by giving highest priority to the +rst few
stages. Fluid passes through these stages to the rest of the
network as quickly as it arrives, but having focused so much
attention on the +rst few stages, the servers have less ca-
pacity to dedicate to the rest of the network. Push starts do
not in�uence the capacity of a single station because the

work required to serve the remaining stages at a station is
reduced by exactly the e4ort required to expedite the +rst
few stages. Push starts do in�uence the capacity of virtual
stations, however, because they involve stages at both sta-
tions: The e4ort spent expediting stages at one station does
not reduce the work remaining at the other.
Under certain distributional assumptions, the virtual

workload conditions together with the nominal workload
conditions are su/cient to ensure the global stability of
two-station queueing networks. An independent argument
in a companion paper by Dai and Vande Vate (1996) shows
that the virtual station conditions are also necessary for the
global stability of two-station queueing networks. The push
start conditions, however, are not in general necessary. See,
for example, Dai and Vande Vate (1996).
There has been a recent surge in the study of stability

conditions for multiclass queueing networks. These studies
were primarily motivated by Kumar and Seidman (1990),
Lu and Kumar (1991), Rybko and Stolyar (1992), Bramson
(1994a, 1994b), and Seidman (1994), which demonstrated
that a number of nonidling dispatch policies are unstable
even if the tra/c intensity at each station is less than one.
In these unstable examples, the total number of jobs in the
system goes to in+nity with time. Other recent work on the
stability of queueing networks and �uid networks includes
Harrison and Nguyen (1995), Bramson (1997, 1999),
Bertsimas et al. (1996), Dumas (1996, 1997), Dai and
Weiss (1996), Foss and Rybko (1995), Winograd and Ku-
mar (1996), Kumar and Meyn (1995, 1996), Chen and
Zhang (1997, 1998), Morrison and Kumar (1998), and
Hasenbein (1997).
Recently, Bertsimas et al. (1996) showed that a two-

station �uid network is globally stable if and only if a certain
linear program has bounded objective value. In this paper
we extend the results of Bertsimas et al. by stating explic-
itly, in terms of the arrival rates and service times, necessary
and su/cient conditions for a two-station �uid network to
be globally stable.
The explicit description of necessary and su/cient con-

ditions for the global stability of two-station �uid networks
provides a number of corollaries not immediately available
from the linear programming characterization of Bertsimas
et al. (1996). Most important among these is a complete
understanding of global stability in two-station �uid net-
works via virtual stations and push starts. In addition, our
conditions demonstrate that the global stable region of a
two-station �uid network is monotone, i.e., reducing ser-
vice times maintains global stability. This is not the case for
stability with respect to a given dispatch policy. It is possi-
ble for a dispatch policy to be stable for a given �uid net-
work but unstable when the service times are reduced. For
�uid networks with more than two stations, even the global
stable region need not be monotone (see, for example, Dai
et al. 1999).
Our approach relies on the fact that a �uid network is

stable if there is a piecewise linear Lyapunov function for
it. We formulate the problem of determining the coe/-

DAI AND VANDE VATE / 723

cients of the Lyapunov function as a linear programming
problem, which has unbounded objective values only if
the coe/cients and hence the Lyapunov function exist. Our
linear program arises directly from the piecewise linear
Lyapunov function introduced in Dai and Weiss (1996),
which generalizes that of Botvich and Zamyatin (1992) and
is simpler than that independently formulated by Down
and Meyn (1994).
We transform our linear program into a parametric net-

work �ow problem in an acyclic network. The �uid net-
work is globally stable if there is a value of the parameter
for which the minimum �ow in this network is su/ciently
small. Thus, invoking the Min-Flow Max-Cut Theorem, we
see that the �uid network is globally stable if there is a value
of the parameter for which the capacity of each cut in the
acyclic network is su/ciently small. Finally, we show that
these “cut conditions” are equivalent to the more easily un-
derstood virtual workload conditions.
In Dai and Vande Vate (1996), we show that the

virtual station conditions are necessary for the stability of
two-station queueing networks by showing that under cer-
tain nonidling dispatch policies, both stations cannot simul-
taneously serve the classes of a virtual station. This implies
that the virtual station conditions are also necessary for the
stability of two-station �uid networks. We also provide an
example showing that the push start conditions need not
be necessary for global stability in these networks. In this
paper, we o4er a direct construction showing that both the
virtual station conditions and the push start conditions are
necessary for the stability of two-station)uid networks. In
particular, when the service times strictly violate the virtual
workload conditions, we construct a nonidling dispatch
policy that causes the work-in-process to grow without
bound. We are able to construct the policy without know-
ing the speci+c service times because it depends only on
the violated conditions. In every case, we identify a +nite
sequence of states through which the �uid network cycles
with greater work-in-process in each successive cycle.
The proof in Dai and Vande Vate (1996) that the virtual

station conditions are necessary to ensure global stability re-
quires less detailed analysis and applies to a broader class of
networks encompassing both queueing networks and �uid
networks. The proof presented here is rather detailed and
applies only to two-station �uid networks. It does, how-
ever, demonstrate the necessity of the push start conditions
for two-station �uid networks and shows exactly how the
work-in-process in an unstable system swings from class to
class as it grows to in+nity. Further, it is not apparent how
to extend the simpler proof given in Dai and Vande Vate
(1996) to certain classes of conditions necessary to ensure
the global stability of �uid networks with more than two
stations. These larger networks appear to require the more
direct proof technique used in this paper (see, for example,
Dai et al. 1999).
We show that whenever the �uid network is unstable,

there is a static bu4er priority dispatch policy under which
the work-in-process goes to in+nity. Thus, the class of static

bu4er priority dispatch policies is “worst” among all non-
idling policies in the sense that a two-station �uid network
is globally stable if and only if it is stable under all static
bu4er priority dispatch policies.
We introduce the virtual workload conditions in §3 and

show that they are su/cient for stability in §§4 through 7.
Finally, we prove they are necessary for stability in §8.

2. PRELIMINARIES

Before introducing the virtual workload conditions, we give
a brief review of the Minimum Flow Problem and introduce
our notation for �uid networks. For an excellent and acces-
sible treatment of network �ows, see Ahuja et al. (1993).

2.1. The Minimum Flow Problem

Consider a directed network (N; E) with node set N and
edge set E. We distinguish two vertices s, the source, and
t, the sink. Given (possibly in+nite) lower bounds l=(lij)
and upper bounds u=(uij), we wish to +nd a minimum �ow
from the source s to the sink t subject to �ow conservation
constraints and edge capacity constraints. Thus, the mini-
mum �ow problem is:

Minimize v;

subject to∑
j∈N

xsj−
∑
j∈N

xjs= v; (1)

∑
j∈N

xij−
∑
j∈N

xji=0 for each node i∈N\{s; t}; (2)

∑
j∈N

xtj−
∑
j∈N

xjt = − v; (3)

lij6xij6uij for each edge (i; j)∈E: (4)

Suppose (x; v) satis+es (1)–(4). We refer to the vector x as
a feasible)ow and the value v as the value of the)ow x.
A minimum)ow is a feasible �ow with smallest value
among all feasible �ows.
An s; t-cut in the network (N; E) is a partition of N into

two sets S and T with s∈ S and t ∈T . The capacity of the
cut (S; T), denoted c(S; T), is

c(S; T)=
∑

(i; j)∈E : i∈S; j∈T

lij −
∑

(i; j)∈E : i∈T; j∈S

uij:

Note that our de+nition of capacity interchanges the roles of
upper and lower bounds in the usual de+nition as applied to
the maximum �ow problem. This de+nition is appropriate
for the minimum �ow problem and is sometimes referred to
as the)oor of a cut. A maximum s; t-cut is one with largest
capacity among all s, t-cuts. Theorem 1 is a classic result
of network �ows and can be found in Ahuja et al. (1993,
exercise 6.18, p. 202).

THEOREM 1. The value of a minimum)ow equals the
capacity of a maximum s; t-cut.

724 / DAI AND VANDE VATE

2.2. Multitype Fluid Networks

We consider �uid networks with two single-server stations,
denoted A and B, and a set I of di4erent �uid types. Type i
�uid arrives at a constant rate �i¿0 and follows a prescribed
route, visiting one station and then the other a number of
times before exiting the system. Di4erent types of �uid may
follow di4erent routes. We number the stages �uid i passes
through consecutively from 1 to ci and let Ai and Bi denote
the stages in which �uid i is served at Station A and at
Station B, respectively.
We refer to type i �uids waiting for the kth stage as class

(i; k))uids, which reside in bu+er (i; k). Each unit of class
(i; k) �uid requires service lasting mi

k¿0 units of time. The
service time mi

k is the time it takes the station to process one
unit of class (i; k) �uid. Equivalently,
i

k =1=m
i
k is the rate

at which the server depletes class (i; k) �uid from the bu4er
when it devotes all its e4orts to serving that class.
A)uid solution is a vector (Q(·); T (·))= (Qi

k(·),
T i
k (·))i∈I; k=1;:::; ci of functions of time satisfying

Qi
k(t)=Qi

k(0) +
i
k−1T

i
k−1(t)−
i

kT
i
k (t)¿0

for t¿0; i∈ I; k =1; : : : ; ci; (5)

T i
k (0)= 0 and T i

k (t) is nondecreasing for all i∈ I;

and k =1; : : : ; ci; (6)

t −
∑
i∈I

∑
k∈Ai

T i
k (t) is nondecreasing; (7)

t −
∑
i∈I

∑
k∈Bi

T i
k (t) is nondecreasing; (8)

where T i
0 (t)= t and
i

0 =�i for each type i∈ I to model the
exogenous arrival of �uids.
We interpretQi

k(t) as the volume of class (i; k) �uid in the
bu4er at time t, and T i

k (t) as the cumulative time spent ser-
ving class (i; k) �uids up to time t. The relationship between
the bu4er levels and the cumulative allocations of e4ort is
given by (5) for each class of �uid. These equations sim-
ply relate the bu4er levels to the initial bu4er levels and the
total volume of �uid entering and leaving each bu4er. Con-
ditions (6) ensure that no work is completed before time 0.
Conditions (7) and (8) ensure that each server divides its
time between serving the various classes and accumulating
idle time.
Each �uid solution (Q(·); T (·)) has derivatives at almost

all times t¿0 (with respect Lebesgue measure on [0;∞));
see Dai and Weiss (1996). A point t ∈ [0;∞) is a regular
point of the �uid solution (Q; T) if T is di4erentiable at t.
We henceforth use ḟ(t) to denote the derivative of f at t.
We consider �uid networks under nonidling dispatch poli-

cies or policies that do not allow a server to be idle when
there is work for it to do. We can express this restric-
tion via the “complementarity” conditions on �uid solutions
(Q(·); T (·)):
∑
i∈I

∑
k∈Ai

Ṫ i
k (t)= 1 whenever

∑
i∈I

∑
k∈Ai

Qi
k(t)¿0; (9)

and∑
i∈I

∑
k∈Bi

Ṫ i
k (t)= 1 whenever

∑
i∈I

∑
k∈Bi

Qi
k(t)¿0; (10)

for each regular point t of (Q(·); T (·)). The cumulative idle
time at Station A up to time t is simply

t −
∑
i∈I

∑
k∈Ai

T i
k(t);

and Condition (7) ensures that it is nondecreasing. Condi-
tion (9) further ensures that when Station A is accumulating
idle time, the bu4ers it serves are empty. The cumulative idle
time at Station B is de+ned similarly. Henceforth, we con-
sider only �uid solutions satisfying (5)–(10). When there
is only a single type of �uid, we omit references to the type
and speak of class k �uid as having bu4er levels Qk(t), etc.
A bu4er priority is a one-to-one mapping � from the set of

bu4ers onto {1; : : : ; c}, where c is the total number of classes
in the network. When �(i; k)¿�(j; l) for two classes both
served at the same station, class (i; k) has higher priority
than class (j; l). A static bu4er priority discipline with bu4er
priorities � stipulates that, in addition to (5)–(10), every
�uid solution (Q(·); T (·)) must also satisfy

∑
i∈I; k∈Ai; �(i;k)¿�(j;l)

Ṫ i
k (t)= 1

whenever
∑

i∈I; k∈Ai; �(i; k)¿�(j;l)

Qi
k(t)¿0; (11)

for each j∈ I and l∈Aj, and regular point t of (Q(·); T (·))
and

∑
i∈I; k∈Bi; �(i; k)¿�(j;l)

Ṫ i
k (t)= 1

whenever
∑

i∈I; k∈Bi; �(i; k)¿�(j;l)

Qi
k(t)¿0; (12)

for each j∈ I and l∈Bj and regular point t of (Q(·); T (·)).
Equations (11) and (12) dictate that whenever a bu4er
accumulates �uid, no lower priority bu4er at the same
station can receive service.
The �uid network is said to be stable under nonidling

dispatch policies, or simply globally stable, if there is some
+nite time �¿0 beyond which any �uid solution (Q(·); T (·))
that begins with one unit of work-in-process or WIP, i.e.,
with

∑
i∈I

ci∑
k=1

Qi
k(0)= 1;

will have no WIP, i.e.,

∑
i∈I

ci∑
k=1

Qi
k(t)= 0;

for all t¿�. Dai (1995) showed if a �uid network is sta-
ble, the corresponding queueing network is positive Harris
recurrent under some distributional assumptions.

DAI AND VANDE VATE / 725

A �uid solution (Q(·); T (·)) is said to be unstable if there
exists {tn} with tn →∞ such that Q(tn)
=0 for each n.
A �uid solution (Q(·); T (·)) is said to diverge to in+nity if
the WIP goes to in+nity as time t→∞. A divergent �uid
solution is clearly unstable.
The tra/c intensities or nominal workloads at the stations

are

�A=
∑
i∈I

∑
k∈Ai

�imi
k and �B=

∑
i∈I

∑
k∈Bi

�imi
k :

It is well known (see, for example, Dai 1996) that the �uid
network can only be stable if the tra/c intensities are less
than one, i.e.,

�A¡1 and �B¡1: (13)

3. VIRTUAL WORKLOAD CONDITIONS

The stability conditions for a two-station �uid network take
two forms: (1) the nominal workload conditions (13) that
arise because classes at the same station must share the
server’s time, and (2) the virtual workload conditions, gen-
eralizing condition �(m2+m5)¡1 for the �uid network in
Figure 1, that arise through the interactions between virtual
stations and push starts.
Two intuitively appealing phenomena give rise to the vir-

tual workload conditions. The intuition behind the +rst of
these phenomena is best described in the context of queue-
ing networks. The second phenomenon is most easily un-
derstood in the context of �uid networks.
Figure 1 illustrates a simple single-type queueing net-

work. If we give highest priority to class 5 at Station A and
to class 2 at Station B, these two classes can be served
simultaneously only during a transient initial period, see Dai
and Vande Vate (1996, lemma 3:1). Thus, these two classes
form a “virtual station,” and although they are served at
di4erent stations, the workload at these two classes cannot
exceed 1. This virtual station gives rise to the virtual work-
load condition

�(m2 + m5)¡1;

which we refer to as a “virtual station condition.” These
conditions also apply to �uid networks.
The �uid network of Figure 2 illustrates the second phe-

nomenon giving rise to virtual workload conditions. Assume
that the nominal workload conditions (13) hold. If we give
highest priority to class 1 at Station A and to class 2 at Sta-
tion B in this network, the �uid levels in these two bu4ers
will reach zero and remain zero thereafter. For the sake of
our discussion, we assume that these two bu4ers are always
empty. Then, the server at Station A will constantly devote
a fraction �m1 of its time to class 1 to keep the bu4er empty,
and hence have only a fraction 1−�m1 of its time left for
other classes at Station A. Similarly, the server at Station B
will constantly devote a fraction �m2 of its time to class
2 and have only a fraction 1−�m2 of its time left for the
other classes at Station B. Note that in a queueing network

Figure 2. A seven-class network.

we cannot anticipate a constant, uninterrupted devotion of
time to these classes, but we can in a �uid network. The
fact that the servers are slowed by their e4orts on classes
1 and 2 magni+es the time required to serve each unit of
�uid in the remaining classes. In particular, the server at
Station A will require m7=(1−�m1) units of time to com-
plete one unit of class 7 �uid and the server at Station B
will require m4=(1−�m2) units of time to complete one unit
of class 4 �uid. Because bu4ers 1 and 2 remain empty,
�uid passes through them as quickly as it arrives, and hence
arrives at bu4er 3 at rate �. Thus, push starting the +rst two
classes magni+es the virtual station condition

�(m4 + m7)¡1;

in the induced network to give the virtual workload condition

�m4
1−�m2

+
�m7
1−�m1

¡1;

ensuring that the virtual station can divide its time between
serving the two classes. We refer to this condition as a “push
start condition.”
Together, these two phenomena explain all the virtual

workload conditions of two-station �uid networks. Although
these ideas are intuitively appealing, formalizing them is
more involved. We formalize the conditions under which
classes at di4erent stations cannot receive service simulta-
neously in the following way.
The +rst notion in our charaterization of virtual stations is

the idea of an excursion or set of consecutive classes at the
same station. In the network of Figure 3 each type makes
four excursions at Station A and four excursions at Station B.
For example, the second excursion for type 2 consists of
classes (2; 2) and (2; 3).
We let E denote the set of excursions and, for each type

i∈ I , we let Ei denote the set of excursions for type i cus-
tomers, which we number consecutively from 1 to ni. We
partition Ei into Ei

A, the set of excursions at Station A, and
Ei
B, those at Station B. Because an excursion at one station
must be followed by an excursion at the other (unless it is
the last excursion), one of these is the set of odd numbered
excursions and the other is the set of even numbered excur-
sions depending on where type i customers +rst enter the

726 / DAI AND VANDE VATE

Figure 3. A 28-class �uid network with two types of �uid.

network. We use [i; e] to denote the eth excursion for type i
�uid. Recall that (i; k) denotes the type i �uid that is waiting
for its kth service.
We let E[i; e] denote the classes of excursion [i; e] and

we partition these classes into the last class and all the
rest, which we call $rst classes of the excursion. We
let l[i; e] denote the last class and f[i; e] the set of +rst
classes in E[i; e]. If an excursion consists of only one
class, that class is the last class and the excursion has no
+rst classes. For example, in the 28-class network of Fig-
ure 3, l[1; 1]= (1; 1); f[1; 1]= ∅; l[1; 2]= (1; 3); f[1; 2]=
{(1; 2)}; : : : ; l[1; 8]= (1; 14) and f[1; 8]= ∅. When e¿ni,
both E[i; e] and f[i; e] are empty. To simplify notation, we
sometimes use l[i; e] to denote the stage number of the last
class and f[i; e] to denote the set of stage numbers of the
+rst classes in excursion E[i; e].

DEFINITION 1. The neighbors of a set X of excursions is the
set

V(X)= {[i; e]∈E : [i; e−1] or [i; e + 1] is in X }:

DEFINITION 2. A set S of excursions is said to be separating
if it contains no consecutive excursions. Thus, a set S of
excursions is separating if S ∩ V(S)= ∅.

DEFINITION 3. A separating set S is said to be A-strictly sep-
arating if it contains no +rst excursion at Station A, i.e., if
S ∩ {[i; 1]∈Ei

A : i∈ I}= ∅. Similarly, a separating set S is
said to be B-strictly separating if it contains no +rst excur-
sion at Station B, i,e., if S ∩ {[i; 1]∈Ei

B : i∈ I}= ∅. A sepa-
rating set S is said to be strictly separating if it contains no
+rst excursion, i.e., if S ⊆{[i; e] : i∈ I; e=2; : : : ; ni}.

The set of excursions at Station A, for example, is
B-strictly separating. Likewise, the set of excursions at
Station B is A-strictly separating. We refer to these two
separating sets as trivial separating sets.

Each strictly separating set S of excursions induces a vir-
tual station V (S) or maximal collection of classes with the
property that if we give highest priority to these classes the
two servers can simultaneously serve classes of V (S) only
during a transient initial period.

DEFINITION 4. Each separating set S of excursions induces a
collection V (S) consisting of the classes in excursions of S
together with the +rst classes of excursions whose immediate
predecessor is not in S. Thus,

V (S)=

 ⋃
[i; e]∈S

E[i; e]

 ∪

 ⋃
[i; e]∈Ei\S

f[i; e + 1]

 :

When S is strictly separating we refer to V (S) as a virtual
station.

A virtual station V; then, is a set of classes satisfying:
1. No class of a +rst excursion is in V; i.e., E[i; 1]∩V = ∅

for each type i.
2. If the last class of an excursion is in V; then every class

of that excursion is in V and if a +rst class of an excursion
is in V , then every +rst class of that excursion is in V . Thus,
a virtual station must have either none of the classes, all of
the classes, or all but the last class of each excursion.
3. The last class of an excursion (except a last excursion)

is in V if and only if no class of the next excursion is in
V; i.e., for each excursion e¡ni; l[i; e]∈V if and only if
E[i; e + 1]∩V = ∅.
In the network of Figure 1, the separating set S = {2; 5} of

excursions gives rise to the virtual station V (S) consisting
of classes 2 and 5 (there are no +rst classes in excursion 3).
This is the only virtual station that is not itself a subset of
the classes at a station.
The second phenomenon determining the global stability

of a two-station �uid network is push starting. Giving highest
priority to the +rst few classes of each type can magnify the

DAI AND VANDE VATE / 727

e4ects of virtual stations in the subnetwork consisting of the
remaining classes.

DEFINITION 5. Let e=(ei)i∈I be a vector with 16ei6ni for
each type i. We let F¡(e) denote the push start set consist-
ing of the collection of all classes up to but not including
the last class of excursion [i; ei] for each type i∈ I and we
let R(e) denote all the remaining classes. Thus,

F¡(e)= {(i; k) : i∈ I; 16k¡l[i; ei]}
and

R(e)= {(i; k) : i∈ I; l[i; ei]6k6ci}:
We let F6(e) denote the collection of all classes up to and
including the last class of excursion [i; ei] for each type i∈ I .
Thus,

F6(e)= {(i; k) : i∈ I; 16k6l[i; ei]}:

Note that if V (S) is a virtual station and F¡(e) is a push
start set, then V (S)\F6(e) is the classes of a virtual station
in the subnetwork consisting of the classes of R(e).
Given a set X of classes, we de+ne XA to be the classes

of X served at Station A and XB to be those served at Sta-
tion B. For example, we use VA(S) to denote the classes of
the virtual station V (S) at Station A, and we use F¡

A (e) to
denote the classes of F¡(e) at Station A. Further, to sim-
plify our notation, we adopt the convention that for each set
X of classes,

�m(X)=
∑
(i; k)∈X

�imi
k :

THEOREM 2. A two-station)uid network is globally stable
if and only if

�A¡1; �B¡1; (14)

and for each vector e=(ei)i∈I of excursions and each sep-
arating set S; we have

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S)\F6B (e))
1− �m(F¡

B (e))
¡1: (15)

Furthermore; if some vector e=(ei)i∈I of excursions and
separating set S satisfy

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S)\F6B (e))
1− �m(F¡

B (e))
¿1; (16)

then there exists a nonidling)uid solution such that the
WIP diverges to in$nity with time.

We refer to the conditions (15) as the virtual workload
conditions. When F¡(e)= ∅, we refer to the virtual work-
load condition (15) as a virtual station condition. Otherwise,
the condition involves push starting F¡(e), and we refer to
it as a push start condition. For example, the virtual work-

load conditions of the �uid network in Figure 2 are

�(m2 + m5 + m7)¡1;

�(m2 + m4 + m7)¡1;

�m3
1− �m1

+ �m6¡1;

�m4
1− �m2

+
�m7

1− �m1
¡1:

The remainder of this paper is devoted to proving that
the nominal workload conditions and the virtual workload
conditions are necessary and su/cient to ensure the global
stability of two-station �uid networks. We argue in §§4 and
5 that we can construct a certain piecewise linear Lyapunov
function showing that the WIP will eventually go to zero
and remain zero if the arrival rates and service rates satisfy
certain constraints. We then argue in §§6 and 7 that these
rather complicated constraints are equivalent to the virtual
workload conditions.
In §8, we show that the virtual workload conditions (15)

are necessary to ensure the global stability of the �uid net-
work. We o4er a direct proof that explicitly demonstrates
a nonidling dispatch policy under which, if some vector
e=(ei)i∈I of excursions and separating set S satisfy (16),
WIP levels grow without bound. In fact, we demonstrate the
trajectory of the �uid network through a +nite sequence of
states with greater and greater WIP in each successive cycle.

4. A PIECEWISE-LINEAR LYAPUNOV FUNCTION

We show that the virtual workload conditions of Theorem 2
are su/cient to ensure global stability of a two-station �uid
network by showing that when they are satis+ed there is
a potential function or Lyapunov function G proving that
the WIP drains to zero regardless of the initial conditions.
Consider a �uid solution (Q(·); T (·)). We let Zi

k(t) denote
the volume of �uid i that has already entered the network
by time t, but has not yet received class (i; k) service, i.e.,

Zi
k(t)=Zi

k(0) + �it −
i
kT

i
k (t)=

∑
l6k

Qi
l(t):

We de+ne G to be the maximum of two linear functions
of (Zi

k(t))—one for each station—and so it is a piecewise-
linear function of the bu4er levels (Qi

k(t)). In particular,
given weights x=(xik) for the classes, we de+ne the linear
functions at Station A and Station B to be

GA(x; t)=
∑
i∈I

∑
k∈Ai

xikZ
i
k(t)=�i;

and

GB(x; t)=
∑
i∈I

∑
k∈Bi

xikZ
i
k(t)=�i:

Let

G(x; t)= max{GA(x; t); GB(x; t)}:

728 / DAI AND VANDE VATE

If there is '¿0 such that
• G(x; t)¿0, and
• Ġ(x; t)≡ @G(x; t)=@t6− ',

whenever the WIP is not zero at time t and Q(·) and G(x; ·)
are di4erentiable at t, then after time �=G(x; 0)=' all bu4ers
will have drained to zero, proving that the �uid network is
globally stable. Dai and Weiss (1996) showed that G will
satisfy these conditions if there is '¿0 and weights x¿0
such that:

GA(x; t)6GB(x; t) whenever
∑
i∈I

∑
k∈Ai

Qi
k(t)= 0; (17)

GB(x; t)6GA(x; t) whenever
∑
i∈I

∑
k∈Bi

Qi
k(t)= 0; (18)

@GA(x; t)
@t

6−' whenever
∑
i∈I

∑
k∈Ai

Qi
k(t)¿0; (19)

and

@GB(x; t)
@t

6−' whenever
∑
i∈I

∑
k∈Bi

Qi
k(t)¿0; (20)

where conditions (17) and (18) apply for all t and condi-
tions (19) and (20) apply only when t is a regular point of
(Q(·); T (·)). Thus, we have the following proposition.

PROPOSITION 1. If there exists '¿0 and x¿0 such that
(17)–(20) hold; the)uid network is stable under nonidling
dispatch policies.

5. A LINEAR PROGRAMMING FORMULATION

We transform the problem of +nding weights x such that
GA(x; t) and GB(x; t) satisfy (17)–(20) into a linear pro-
gramming problem. The linear program has a solution with
strictly positive objective value if and only if the desired
weights x exist and any solution with strictly positive
objective value provides weights satisfying the desired
conditions.
We +rst transform (17) into linear constraints on x. When

∑
i∈I

∑
k∈Ai

Qi
k(t)= 0; (21)

GA reduces to

∑
i∈I

∑
k∈Ai

xik

∑
l∈Bi; l¡k

Qi
l(t)=�i

=
∑
i∈I

∑
l∈Bi

Qi

l(t)
∑

k∈Ai; k¿l

xik =�i

; (22)

and GB reduces to:

∑
i∈I

∑
k∈Bi

xik

∑
l∈Bi; l6k

Qi
l(t)=�i

=
∑
i∈I

∑
l∈Bi

Qi

l(t)
∑

k∈Bi; k¿l

xik =�i

: (23)

It follows that (17) is satis+ed if:
∑

k∈Ai; k¿l

xik6
∑

k∈Bi; k¿l

xik (24)

for each i∈ I and l∈Bi. Because the weights x are nonneg-
ative, we can restrict attention to those constraints of (24)
where l∈Bi, but l+ 1 =∈Bi. In other words, (24) is equiva-
lent to∑
k∈Ai; k¿l[i;e]

xik6
∑

k∈Bi; k¿l[i;e]

xik (25)

for each excursion [i; e] at Station B.
Similar analysis leads to the conclusion that GA and GB

satisfy (18) if
∑

k∈Bi; k¿l[i;e]

xik6
∑

k∈Ai; k¿l[i;e]

xik ; (26)

for each excursion [i; e] at Station A.
We next transform (19) into linear conditions on x. When

∑
i∈I

∑
k∈Ai

Qi
k(t)¿0;

the nonidling condition (9) ensures that Station A is not
accumulating idle time, and so
∑
i∈I

∑
k∈Ai

Ṫ i
k (t)= 1: (27)

Now,

ĠA(t) =
∑
i∈I

∑
k∈Ai

xik Ż
i
k(t)=�i

=
∑
i∈I

∑
k∈Ai

xik(1−
i
k Ṫ

i
k (t)=�i)

=
∑
i∈I

∑
k∈Ai

xik −
∑
i∈I

∑
k∈Ai

xik

i
k Ṫ

i
k (t)=�i:

Thus, (19) is satis+ed if
∑
j∈I

∑
k∈Aj

x j
k + '6xil

i
l=�i (28)

for each i∈ I and l∈Ai.
Similar analysis shows that (20) is satis+ed if:

∑
j∈I

∑
k∈Bj

x j
k + '6xil

i
l=�i (29)

for each i∈ I and l∈Bi.

DAI AND VANDE VATE / 729

Finding the largest possible value of ' for which there
are weights x satisfying (25)–(26) and (28)–(29) reduces
to solving the following linear program for ' and x:

Maximize '; (30)

subject to:

∑
k∈Ai; k¿l[i; e]

xik −
∑

k∈Bi; k¿l[i; e]

xik60

for each i∈ I and [i; e]∈Ei
B; (31)∑

k∈Bi; k¿l[i; e]

xik −
∑

k∈Ai; k¿l[i; e]

xik60

for each i∈ I and [i; e]∈Ei
A; (32)

∑
j∈I

∑
k∈Aj

x j
k

− xil

i
l=�i + '60 for i∈ I and l∈Ai;

(33)
∑

j∈I

∑
k∈Bj

x j
k

− xil

i
l=�i + '60 for i∈ I and l∈Bi;

(34)

x; '¿0: (35)

The constraints (31)–(35) de+ne a cone with the sin-
gle extreme point given by x=0 and '=0. Thus, we have
Proposition 2.

PROPOSITION 2. If the linear program (30)–(35) has un-
bounded objective values; then each solution (x; ') with '¿0
provides weights x¿0 such that G(x; t) is a piecewise-linear
Lyapunov function proving that the)uid network is stable.

In §6, we transform the linear program (30)–(35) into
a parametric network �ow problem and, by exploiting a
dual formulation, derive su/cient conditions for stability
of a two-station �uid network. In §7, we show that these
conditions are equivalent to the conditions of Theorem 2.

6. A NETWORK FLOWS FORMULATION

The linear program (30)–(35) o4ers a computationally
attractive method for determining whether or not a two-
station �uid network with speci+ed service times is globally
stable. A network with given arrival rates and service times
is globally stable if the linear program (30)–(35) has un-
bounded objective values. Otherwise, as we show in §8, it
is not. The linear program does not, however, provide a the-
oretically attractive characterization of the global stability
region for a two-station �uid network.
To obtain an explicit characterization of the arrival rates

and service times under which a two-station �uid network is
globally stable, we translate the linear program (30)–(35)
into an equivalent parametric network �ow problem. The
parametric network �ow problem is equivalent to the linear
program in the sense that the linear program has unbounded

objective values if and only if there is a value of the
parameter for which the network �ow problem has strictly
positive objective value.
To transform (30)–(35) into an equivalent network �ow

problem, we +rst observe that because (31)–(35) de+nes a
cone, there is a solution (x; ') to (31)–(35) with '¿0 if and
only if there is a solution with '¿0 and∑
i∈I

∑
k∈Ai

xik + '=1: (36)

Although we can arbitrarily scale the sum of the weights
on classes at one station (we have chosen Station A) to 1,
we cannot simultaneously scale the sum of the weights on
classes at the other station to a +xed value. Thus, we let
) denote the sum of the weights on the classes served at
Station B:∑
i∈I

∑
k∈Bi

xik + '=): (37)

We do not know a priori a value of) at which ' is maxi-
mized, but by treating it as a parameter rather than a variable,
we can express the constraints (33)–(34) as lower bounds:

�imi
k6xik for i∈ I and k ∈Ai; (38)

)�imi
k6xik for i∈ I and k ∈Bi: (39)

Next, we add slack variables s=(sie) and write the con-
straints (31)–(32) as

∑
k∈Ai; k¿l[i; e]

xik −
∑

k∈Bi; k¿l[i; e]

xik + sie=0

for each i∈ I and [i; e]∈Ei
B; (40)∑

k∈Bi; k¿l[i; e]

xik −
∑

k∈Ai; k¿l[i; e]

xik + sie=0

for each i∈ I and [i; e]∈Ei
A: (41)

Adding (40) for an excursion [i; e] at Station B and (41)
for excursion [i; e+ 1] at Station A and multiplying by −1,
we obtain

−
∑

k∈f[i; e+1]

xik + xil[i; e] − sie − sie+1 =0: (42)

Similarly, adding (41) for excursion [i; e] at Station A and
(40) for excursion [i; e + 1] at Station B, we obtain∑
k∈f[i; e+1]

xik − xil[i; e] + sie + sie+1 =0: (43)

Adopting the convention that sini+1 =0, we can write (40)
for a last excursion [i; ni]∈Ei

B as

−
∑

k∈f[i; ni+1]

xik + xil[i; ni] − sini − sini+1 =0

and we can write (41) for a last excursion [i; ni]∈Ei
A as∑

k∈f[i; ni+1]

xik − xil[i; ni] + sini + sini+1 =0:

730 / DAI AND VANDE VATE

Combining these transformations gives the following
linear program:

Maximize '; (44)

subject to:

∑
k∈f[i; e+1]

xik − xil[i; e] + sie + sie+1 =0

for i∈ I and [i; e]∈Ei
A; (45)

−
∑

k∈f[i; e+1]

xik + xil[i; e] − sie − sie+1 =0

for i∈ I and [i; e]∈Ei
B; (46)∑

i∈I

∑
k∈Ai

xik + '=1; (47)

−
∑
i∈I

∑
k∈Bi

xik − '= −); (48)

�imi
k6xik for i∈ I and k ∈Ai; (49)

)�imi
k6xik for i∈ I and k ∈Bi; (50)

x; s; '¿0: (51)

There is a value of the parameter) such that the linear
program (44)–(51) has optimum objective value '¿0 if
and only if the linear program (30)–(35) has unbounded
objective values.
The linear program (44)–(51) is a network �ow problem

with right-hand sides and lower bounds that depend on the
parameter). The nodes of the network are:
• A node for each excursion [i; e] corresponding to the

constraints (45) and (46).
• A node for each Station A and B corresponding to the

constraints (47) and (48).
• A node called the root corresponding to the redundant

constraint

∑
i∈I

 ∑

k∈Bi∩f[i;1]

xik −
∑

k∈Ai∩f[i;1]

xik

+
∑

i∈I :l[i;1]∈ Bi

si1 −
∑

i∈I :l[i;1]∈ Ai

si1 =) − 1;

obtained by adding (45)–(48) and multiplying by −1.
The edges of the network are:
E.1. An edge from the node for Station A to the node for

excursion [i; e] at Station A. This edge corresponds to the
variable xil[i; e] and has lower bound �imi

l[i; e].
E.2. An edge from the node for excursion [i; e]

at Station B to the node for Station B. This edge
corresponds to the variable xil[i; e] and has lower bound
)�imi

l[i; e].
E.3. An edge from the node for Station A to the node for

excursion [i; e] at Station B for each class (i; k) in f[i; e+1].
These edges correspond to the variables xik for the classes in
f[i; e + 1]. The edge for class (i; k) has lower bound �imi

k .

E.4. An edge from the node for excursion [i; e] at Station A
to the node for Station B for each class (i; k) in f[i; e + 1].
These edges correspond to the variables xik for the classes in
f[i; e+1]. The edge for class (i; k) has lower bound)�imi

k .
E.5. An edge from the node for Station A to the root for

each class (i; k) in f[i; 1] served at Station A. These edges
correspond to the variables xik for the classes inf[i; 1] served
at Station A. The edge for class (i; k) has lower bound �imi

k .
E.6. An edge from the root to the node for Station B for

each class (i; k) in f[i; 1] served at Station B. These edges
correspond to the variables xik for the classes inf[i; 1] served
at Station B. The edge for class (i; k) has lower bound)�imi

k .
E.7. An edge from the node for excursion [i; 1] at Station A

to the root. This edge corresponds to the variable si1 and has
lower bound 0.
E.8. An edge from the root to the node for excursion [i; 1]

at Station B. This edge corresponds to the variable si1 and
has lower bound 0.
E.9. An edge from the node for excursion [i; e] at Station A

to the node for excursion [i; e− 1] at Station B. This edge
corresponds to the variable sie and has lower bound 0.
E.10. An edge from the node for excursion [i; e− 1] at

Station A to the node for excursion [i; e] at Station B. This
edge corresponds to the variable sie and has lower bound 0.
E.11. An edge from the node for Station A to the node

for Station B. This edge corresponds to the variable '.

The node for A has a supply of 1 and the node for B has
a demand for). The remaining supply (if)¿1) or demand
(if)¡1) is at the root. The linear program (30)–(35) has
unbounded objective values if and only if there is a value
of)¿0 such that there is a feasible �ow in this network
with '¿0. Figure 4 illustrates this construction for the �uid
network in Figure 5.
Rather than consider separately the two cases)¿1

and)¡1, we model the supply or demand at the root by
changing the supply at the node for A and the demand at the
node for B to max{1;)} and adding two additional edges:
• An edge from the node for A to the root with lower

bound max{0;)− 1} representing any supply at the root.
• An edge from the root to the node for B with lower

bound max{0; 1−)} representing any demand at the root.
The linear program (30)–(35) has unbounded objective

values if and only if there is)¿0 such that there is a feasible
�ow with value max{1;)} and '¿0. Figure 6, illustrates
this construction for the �uid network in Figure 5.
Finally, for given)¿0, there is a �ow of value max{1;)}

from A to B in this network (see, for example, Figure 6) with
a strictly positive �ow on the edge corresponding to ' if and
only if the minimum �ow from the node for A to the node for
B in this network without the edge for ' (see, for example,
Figure 7) is strictly less than max{1;)}—the remaining �ow
can be assigned to '. Thus, we henceforth omit the edge
for ' from the network and consider the resulting Minimum
Flow Problem.
To summarize, given a feasible solution (x; ') to the

linear program (44)–(51) for some)¿0, we can construct
a feasible solution to the minimum �ow problem with value

DAI AND VANDE VATE / 731

Figure 4. Parametric network �ow problem equivalent to the linear program (44)–(51) as applied to the �uid network in
Figure 5.
Note: The source A has supply 1; the sink B has demand); if)¿1, the root has supply) − 1; if)61, the
root has demand 1−).

Figure 5. A 12-class �uid network with two types of
�uid.

max{1;)}− ' by sending max{0;)− 1} on the new edge
from A to the root and max{0; 1−)} on the new edge
from the root to B. Conversely, given a feasible �ow x
for the minimum �ow problem for some)¿0 with value
max{1;)}− '; (x; ') is a feasible solution to the linear
program (44)–(51).

From Theorem 1, the value of a minimum �ow equals the
capacity of a maximum A; B-cut and so, there are weights x
satisfying (45)–(51) if and only if, for some value of)¿0,
each A; B-cut in this network has capacity strictly less than
max{1;)}. Thus, we have proved the following lemma.

LEMMA 1. A two-station)uid network is globally stable
if there is a value of)¿0 for which the capacity of a
maximum A; B-cut is strictly less than max{1;)}.

Given an A; B-cut (L; R), we let LA denote the excur-
sions in L that are served at Station A and LB denote those
served at Station B. Similarly, we let RA denote the ex-
cursions in R served at Station A and RB denote those at
Station B.
We refer to an A; B-cut with the root in L as an L-cut. An

A; B-cut with the root in R is an R-cut. Note that because the
upper bound on each edge is in+nite, an A; B-cut (L; R) in
this network has capacity −∞ if some edge extends from a
node in R to a node in L. That is to say, an A; B-cut (L; R)
in this network has +nite capacity if and only if no edge
extends from a node in R to a node in L, i.e., if and only if
(L; R) satis+es:

732 / DAI AND VANDE VATE

Figure 6. For given)¿0, there is a feasible �ow in the network of Figure 4 if and only if there is a feasible �ow in this
network with value max{1;)} and '¿0.

Rule 1. If [i; e]∈LB, then [i; e+1] is in LA; otherwise the
edge corresponding to the variable sie+1 (see E.9) extends
from a node in R to a node in L.

Rule 2. If [i; e]∈RA, then excursion [i; e + 1] is in RB;
otherwise the edge corresponding to the variable sie+1 (see
E.10) extends from a node in R to a node in L.

Rule 3. If (L; R) is an R-cut, then [i; 1]
∈LB for each type
i; otherwise the edge corresponding to the variable si1 (see
E.8) extends from a node in R to a node in L.

Rule 4. If (L; R) is an L-cut, then [i; 1]
∈RA for each type
i; otherwise the edge corresponding to the variable si1 (see
E.7) extends from a node in R to a node in L.
Thus, we have the following lemma, which allows us to

speak in terms of separating sets rather than cuts.

LEMMA 2. An L-cut (L; R) has $nite capacity if and only
if LB ∪RA is an A-strictly separating set. Similarly; an
R-cut (L; R) has $nite capacity if and only if LB ∪RA is a
B-strictly separating set.

We can express the capacity of a +nite capacity L-cut
(L; R) in terms of the corresponding A-strictly separating set
LB ∪RA and the collection V (LB ∪RA) of classes it generates
as follows:

c(L; R) = �m(VA(LB ∪RA)) +)�m(VB(LB ∪RA))

+max{0; 1−)}:
To see this, observe that every edge contributing a posi-
tive amount to the capacity of an L-cut either starts at A
or ends at B. The +rst term �m(VA(LB ∪RA)) captures the
contributions of edges that start at A, and the second term
)�m(VB(LB ∪RA)) captures the contributions of edges
that end at B except for the edge from the root to B, which
contributes max{0; 1−)}. The edges starting at A that
contribute to the capacity of the cut are:
• The last class of each excursion [i; e]∈RA. These are

the edges corresponding to edges E.1 that cross the cut.
• The +rst classes of each excursion [i; e]∈A such that

[i; e− 1]∈RB. These are the edges corresponding to edges
E.3 that cross the cut.
These are exactly the classes of VA(LB ∪RA). The classes of
the virtual station served at A include all the classes of RA

and the +rst classes of those excursions [i; e] ∈ LA such that
[i; e− 1] =∈LB. If [i; e]∈RA, then, by Rule 1, [i; e− 1]∈RB,
and so all the classes of the excursion cross the cut. If
[i; e]∈LA and [i; e− 1]∈RB, then all the +rst classes of the
excursion cross the cut, but not the last class. Analogous
arguments verify that)�m(VB(LB ∪RA)) is exactly the con-

DAI AND VANDE VATE / 733

Figure 7. For given)¿0, there is a feasible �ow in the network of Figure 6 with value max{1;)} and '¿0 if and only if
the minimum �ow in this network has value + strictly less than max{1;)}.

tribution of edges that end at B crossing the cut except for
the edge from the root to B whose contribution is captured
in the third term.
Thus, assuming the service times satisfy the nominal

workload conditions, each +nite capacity L-cut (L; R) im-
poses the condition

�m(VA(LB ∪RA))
1− �m(VB(LB ∪RA))

¡) (52)

on). One exception to (52) arises when RA is empty and LB

consists of all the excursions at Station B, i.e., when LB ∪RA

is the trivial separating set consisting of all excursions at
Station B. In this case, VA(LB ∪RA)= ∅ and the condition
c(L; R)¡1 reduces to the nominal workload condition at
Station B.
Similarly, we can express the capacity of a +nite capacity

R-cut (L; R) in terms of the corresponding B-strictly sepa-
rating set LB ∪RA and the collection V (LB ∪RA) of classes
it generates as follows:

c(L; R) = �m(VA(LB ∪RA)) +)�m(VB(LB ∪RA))

+max{0;)− 1}:
Thus, each +nite capacity R-cut (L; R) imposes the condition

1− �m(VA(LB ∪RA))
�m(VB(LB ∪RA))

¿) (53)

on). One exception to (53) arises when LB is empty and RA

consists of all the excursions at Station A, i.e., when LB∪RA

is the trivial separating set consisting of all excursions at
Station A. In this case, VB(LB ∪ RA)= ∅ and the condition
c(L; R)¡1 reduces to the nominal workload condition at
Station A.
Combining (52) and (53) with Lemma 2 proves the

following theorem, which provides explicit constraints on
the service times su/cient to ensure the global stability of
a two-station �uid network. In §6, we show that these “cut
conditions” are equivalent to the virtual workload condi-
tions, which we prove are also necessary to ensure global
stability.

THEOREM 3. A two-station)uid network with service times
m and arrival rates �=(�i)i∈I satisfying the nominal work-
load conditions (13) is globally stable if for each nontrivial
A-strictly separating set S ′ and nontrivial B-strictly sepa-
rating set S;

�m(VA(S ′))
1− �m(VB(S ′))

¡
1− �m(VA(S))
�m(VB(S))

: (54)

7. SUFFICIENCY

In §6, we showed that a two-station �uid network satisfying
the nominal workload conditions is globally stable if the
arrival rates and service times satisfy the cut conditions. We
show that the virtual workload conditions are also su/cient
to ensure global stability by showing that the arrival rates

734 / DAI AND VANDE VATE

and service times satisfy the cut conditions if they satisfy
the virtual workload conditions.

THEOREM 4. A two-station)uid network satisfying the
nominal workload conditions (13) is globally stable if for
each vector e=(ei)i∈I of excursions and each separating
set S; we have

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S)\F6B (e))
1− �m(F¡

B (e))
¡1: (55)

PROOF. Each cut condition (54) is de+ned by a pair of non-
trivial separating sets: an A-strictly separating set S ′ and a
B-strictly separating set S. We show that the cut condition
induced by the pair (S ′; S) is implied by a pair of virtual
workload conditions.
For each type i∈ I , let ei be the largest index, such that:
a. Every earlier excursion served at Station B is in S ′ (and

hence no earlier excursion served at Station A is in S ′),
b. Every earlier excursion served at Station A is in S (and

hence no earlier excursion served at Station B is in S).
Note that [i; ei] =∈ S. To see this, observe that if [i; ei]∈ S,
then it must be in Ei

A and because every earlier excursion
served at Station A is in S and every earlier excursion served
at Station B is in S ′, either S is trivial or ei + 1 satis+es (a)
and (b). A similar argument shows that [i; ei] =∈ S ′.
The vector e=(ei)i∈I of excursions and the separating set

S ′ induce the virtual workload condition:

�m(VA(S ′)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S ′)\F6B (e))
1− �m(F¡

B (e))
¡1: (56)

Similarly, the vector e and the separating set S induce the
virtual workload condition

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S)\F6B (e))
1− �m(F¡

B (e))
¡1: (57)

We show that (56) and (57) imply the cut condition for the
pair (S ′; S).
From (56) we have that

�m(VA(S ′)\F6A (e))
1− �m(F¡

B (e))− �m(VB(S ′)\F6B (e))
¡
1− �m(F¡

A (e))
1− �m(F¡

B (e))
;

and from (57) we have that

1− �m(F¡
A (e))− �m(VA(S)\F6A (e))
�m(VB(S)\F6B (e))

¿
1− �m(F¡

A (e))
1− �m(F¡

B (e))
:

Thus,

1− �m(F¡
A (e))− �m(VA(S)\F6A (e))
�m(VB(S)\F6B (e))

¿
�m(VA(S ′)\F6A (e))

1− �m(F¡
B (e))− �m(VB(S ′)\F6B (e))

: (58)

Now, because [i; ei] =∈ S for each i∈ I ,

�m(VA(S)\F6A (e)) + �m(F¡
A (e))¿�m(VA(S)):

Further, because ei satis+es (b),

�m(VB(S)\F6B (e))= �m(VB(S)):

Likewise, because [i; ei] =∈ S ′ for each i∈ I ,

�m(VB(S ′)\F6B (e)) + �m(F¡
B (e))¿�m(VB(S ′)):

And, because ei satis+es (a),

�m(VA(S ′)\F6A (e))= �m(VA(S ′)):

Thus, (58) implies that

1− �m(VA(S))
�m(VB(S))

¿
�m(VA(S ′))

1− �m(VB(S ′))
;

which is exactly the cut condition for the pair S ′ and S.

8. NECESSITY

In this section, we show that the virtual workload conditions
(15) are necessary to ensure the global stability of a two-
station �uid network.
We +rst generalize to virtual stations the argument used

to show the necessity of the nominal workload conditions to
ensure global stability.

LEMMA 3. Let C be a set of classes such that

�m(C)¿1:

Each nonidling)uid solution (Q(·); T (·)) satisfying∑
(i; k)∈C

Ṫ (t)61 (59)

for each regular point t is unstable.

PROOF. Consider a nonidling �uid solution (Q(·); T (·)) sat-
isfying (5)–(10) and (59). De+ne

W (Q(t))=
∑
(i; k)∈C

mi
kZ

i
k(t)=

∑
(i; k)∈C

mi
k

k∑
l=1

Qi
l(t) (60)

to be the total workload for the classes of C. Because

Zi
k(t)=Zi

k(0) + �it − T i
k (t)=m

i
k ;

W (Q(t)) = W (Q(0)) +
∑
(i; k)∈C

�imi
k t −

∑
(i; k)∈C

T i
k (t)

¿W (Q(0)) + (�m(C)− 1)t:
Hence the workload for the classes of C grows linearly with
time, and the �uid solution diverges.

The classes of any set C satisfying (59) can be viewed
as being served by a single “virtual” server, which allocates
its e4orts among them. We show that under the appropri-
ate static bu4er priority policy, a virtual station as de+ned
in De+nition 4 satis+es (59), hence the moniker “virtual
station.”

DAI AND VANDE VATE / 735

We next show how expediting the +rst few classes magni-
+es the in�uence of virtual stations in the remaining network.
This concept was originally introduced under the rubric of
push starting in Dai and Vande Vate (1996).
Let e=(ei)i∈I be a vector of excursions, one for each

type. The vector e partitions the classes of the network into
the classes of F¡(e) and the remainder of the classes, which
we denote by R(e).
Let

m̃i
k =mi

k=(1− �m(F¡
A (e))) for (i; k)∈RA(e); (61)

m̃i
k =mi

k=(1− �m(F¡
B (e))) for (i; k)∈RB(e): (62)

Consider the induced �uid model on the classes of R(e):

Qi
k(t)=Qi

k(0) +
̃i
k−1T

i
k−1(t)−
̃i

kT
i
k (t)¿0;

t¿0; (i; k)∈R(e); (63)

T i
k (0)= 0 and T i

k (·) is nondecreasing; (i; k)∈R(e);

(64)

t −
∑

(i; k)∈ RA(e)

T i
k (t) is nondecreasing; (65)

t −
∑

(i; k)∈ RB(e)

T i
k (t) is nondecreasing; (66)

∑
(i; k)∈ RA(e)

Ṫ i
k (t)= 1 whenever

∑
(i; k)∈ RA(e)

Qi
k(t)¿0

and t is a regular point; (67)

∑
(i; k)∈ RB(e)

Ṫ i
k (t)= 1 whenever

∑
(i; k)∈ RB(e)

Qi
k(t)¿0

and t is a regular point; (68)

where
̃i
k =1=m̃

i
k for (i; k)∈R(e). Note that for each type

i∈ I , l[i; ei] is the index of the +rst class of type i in
R(e). Thus, for each type i∈ I; we let
̃i

l[i;ei−1] = �i and
T i
l[i;ei−1](t)= t to model the arrivals to the induced �uid
network.

LEMMA 4. If the)uid model (63)–(68) is unstable; then the
)uid model (5)–(10) is unstable.

We leave the proof of this lemma to the appendix.

PROOF OF THEOREM 2. In light of Lemma 4, it is enough to
show that if the virtual station V (S) corresponding to some
strictly separating set S satis+es

�m(V (S))¿1; (69)

then there is an unstable �uid solution. Because V (S) is a vir-
tual station in the corresponding queueing network, there is
a static bu4er priority discipline under which no two classes
in V (S) can be served simultaneously; see Dai and Vande

Vate (1996). Therefore, any �uid limit (Q(·); T (·)) as de-
+ned in Dai (1996) is a �uid solution that satis+es (59). By
Lemma 3, the �uid network is not globally stable. When
(16) is satis+ed or (69) is strictly satis+ed, the same argu-
ment shows that the WIP goes to in+nity.

9. UNSTABLE CYCLES

Although the preceding proof of Theorem 2 is succinct, it
involves a rather circuitous argument via queueing networks
and �uid limits. We provide a more direct, but somewhat
longer argument establishing the necessity of the virtual
workload conditions to ensure stability of a two-station �uid
network. When the arrival rates and service times satisfy the
nominal workload conditions but do not satisfy the virtual
workload conditions, we provide an explicit construction of
a nonidling �uid solution (Q(·); T (·)) that is unstable. This
argument is not only more direct but also illustrates how
the work-in-process in an unstable system swings from sta-
tion to station as it grows to in+nity. Iterations like those
presented here are indispensable when studying the stabil-
ity of �uid networks with more than two stations. See, for
example, Dai et al. (1999).
Suppose the arrival rates and service times satisfy the

nominal workload conditions but do not satisfy the virtual
workload conditions. We choose a strictly separating set S
and a push start set F¡(e) so that among all such pairs,

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S)\F6B (e))
1− �m(F¡

B (e))

is maximum. Thus, we assume that

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S)\F6B (e))
1− �m(F¡

B (e))
¿1; (70)

and for each strictly separating set S ′ and push start set
F¡(e′);

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S)\F6B (e))
1− �m(F¡

B (e))

¿
�m(VA(S ′)\F6A (e′))
1− �m(F¡

A (e′))
+

�m(VB(S ′)\F6B (e′))
1− �m(F¡

B (e′))
: (71)

Note that because ei¿1 for each type i, the set F6(e) will
include all the classes of every +rst excursion. Thus we
may, without loss of generality, restrict attention to strictly
separating sets S as we have above.
To construct an unstable �uid solution, we must consider

in greater detail the structure of the strictly separating set S.
The notation required to describe this dissection of strictly
separating sets in full generality is somewhat involved, but
the ideas are relatively straightforward. We +rst partition S
into monotype separating sets or separating sets consisting
of excursions for a single type of �uid. In particular, we let
Si= S ∩Ei, be the excursions of S for �uid type i.
We further partition the union of each monotype sepa-

rating set and its neighbors into intervals or sets of con-
secutive excursions. We use [i; s; t) to denote the interval

736 / DAI AND VANDE VATE

{[i; e]∈Ei : s6e¡t} and (i; s; t) to denote the interval
{[i; e]∈Ei : s¡e¡t}.
A maximal interval with the property that all its excur-

sions at one station are in Si and, consequently, none of its
excursions at the other station are in Si is called a section of
Si. We refer to a section X of Si with XA ⊆ Si and X ∩ Si

B= ∅
as an A-section of Si. Similarly, we refer to a section Y of
Si with YB ⊆ Si and Y ∩ Si

A= ∅ as a B-section of Si. A typi-
cal A-section is of the form [i; s; t) with s∈Ei

B. The ending
excursion t is either in Ei

A or t= ni + 1. Similarly a typical
B-section is of the form [i; s; t) with s∈Ei

A, and t ∈Ei
B or

t= ni + 1. In either case, the end excursions s and t are not
in the separating set S and s− 1
∈ S.
For example, consider the strictly separating set

S = {[1; 2]; [1; 7]; [2; 3]; [2; 5]; [2; 8]} (72)

in Figure 3. Following the de+nition of virtual station in
De+nition 4,

V (S) = {(1; 2); (1; 3); (1; 6); (1; 8); (1; 10); (1; 12); (1; 13);
(2; 2); (2; 4); (2; 5); (2; 8); (2; 9); (2; 12); (2; 14)}:

The intervals [1; 1; 4)= {[1; 1]; [1; 2]; [1; 3]} and [2; 2; 7)=
{[2; 2]; [2; 3]; [2; 4]; [2; 5]; [2; 6]} of excursions are the
A-sections of this separating set. The B-sections are
[1; 6; 9)= {[1; 6]; [1; 7]; [1; 8]} and [2; 7; 9)= {[2; 7]; [2; 8]}.
The sections of Si partition Si ∪V(Si) into intervals. We

partition the remaining excursions of Ei into trivial sections.
In particular, each excursion of Ei\(Si ∪V(Si)) forms a
trivial section of Si. Each excursion [i; e]∈Ei

A\(Si ∪V(Si))
forms a trivial B-section of Si (because {[i; e]}∩Ei

B= ∅⊆ Si

and {[i; e]}∩ Si
A= ∅). Likewise, each excursion [i; e]∈Ei

B\
(Si ∪V(Si)) forms a trivial A-section of Si. For ex-
ample, [1; 5; 6)= {[1; 5]} is a trivial A-section and
[1; 4; 5)= {[1; 4]} and [2; 1; 2)= {[2; 1]} are the trivial
B-sections of the separating set (72) in Figure 3.
When we include the trivial sections, the sections of Si

partition the excursions of Ei into intervals and, if we order
these intervals in the natural way, they alternate between
A-sections and B-sections.
Our construction relies on coordinating the activities of

the servers across classes related to, but o4set from, the
classes of each section. In particular, we associate with each
section [i; s; t) the collection of classes

C([i; s; t))= {l[i; s]}
⋃

e∈(i; s; t)
E[i; e]∪f[i; t]

called a block. Note that the block C([i; s; t)) di4ers from
the classes of the section [i; s; t) in that we omit the +rst
classes of the +rst excursion in [i; s; t) and we add the +rst
classes of the +rst excursion of the next section. In the
example of Figure 3, C([1; 1; 4))= {(1; k) : 16k66} and
C([2; 2; 7))= {(2; k) : 36k612}.
The following lemma should help motivate our de+ni-

tion of sections and blocks. Its proof is postponed to the
appendix.

LEMMA 5. Let S be a strictly separating set and F¡(e)
a push-start set satisfying (70) and (71). Then for each
A-section X = [i; s; t) of Si; where s∈Ei

B and t ∈Ei
A;

�m(CA(X)\F¡
A (e))

1− �m(F¡
A (e))

¿
�m(CB(X)\F¡

B (e))
1− �m(F¡

B (e))
: (73)

Likewise; for each B-section Y = [i; s; t) of Si; where s∈Ei
A

and t ∈Ei
B;

�m(CB(Y)\F¡
B (e))

1− �m(F¡
B (e))

¿
�m(CA(Y)\F¡

A (e))
1− �m(F¡

A (e))
: (74)

The transformations (61)–(62) allow us to assume, with-
out loss of generality, that F¡(e) is empty. Implicit in this
is the assumption that for each type i∈ I; ei=1 and the +rst
excursion consists only of the class (i; 1).
Let IA be the set of types with +rst excursion [i; 1]∈Ei

A
and IB the types with +rst excursion [i; 1]∈Ei

B. For i∈ IA, the
sections of Si alternate between B-sections and A-sections
beginning with a B-section. We denote these sections as

Y i
1; X

i
2 ; Y

i
3; X

i
4 ; : : : ; Y

i
2bi−1; X

i
2bi ;

where bi is the total number of B-sections and X i
2bi is pos-

sibly empty. Similarly, for i∈ IB, the sections of Si alter-
nate between A-sections and B-sections beginning with an
A-section. We denote these sections as

X i
1 ; Y

i
2; X

i
3 ; Y

i
4; : : : ; X

i
2bi−1; Y

i
2bi ;

with Y i
2bi possibly empty. The sections Y

i
1 and X i

1 are called
input sections.
In the example of Figure 3, type 1 is in IB and type 2 is

in IA. The sections for type 1 are

X 1
1 = [1; 1; 4); Y 12 = [1; 4; 5);

X 1
3 = [1; 5; 6); Y 14 = [1; 6; 9):

The sections for type 2 are

Y 21 = [2; 1; 2); X 2
2 = [2; 2; 7); Y 23 = [2; 7; 9):

Therefore,

C(X 1
1) = {(1; k) : k =1; : : : ; 6};

C(Y 12) = {(1; 7); (1; 8)};
C(X 1

3) = {(1; 9); (1; 10)};
C(Y 14) = {(1; 11); (1; 12); (1; 13); (1; 14)};
C(Y 21) = {(2; 1); (2; 2)};
C(X 2

2) = {(2; k) : k =3; : : : ; 12};
C(Y 23) = {(2; 13); (2; 14)}:

The following lemma is a direct consequence of our de+ni-
tions.

DAI AND VANDE VATE / 737

LEMMA 6. The virtual station V (S) has the following
decomposition.

V (S) =
⋃
i∈IA

bi⋃
r=1

(CB(Y i
2r−1)∪CA(X i

2r))

⋃
i∈IB

bi⋃
r=1

(CA(X i
2r−1)∪CB(Y i

2r)):

Let us restate part of Theorem 2.

THEOREM 5. Assume that there is a strictly separating
set S and push start set F¡(e) such that (70) and (71)
hold. One can construct an unstable nonidling)uid solu-
tion (Q(·); T (·)). Furthermore; the unstable)uid solution
satis$es the static bu+er priority conditions (11)–(12).

PROOF. In light of Lemma 4, we may assume that the push
start set F¡(e) is empty. This would be the case, for exam-
ple, if ei=1 and f[i; 1]= ∅ for each type i∈ I , which is true
of the induced network on R(e) obtained from the construc-
tion used in the proof of Lemma 4. Thus, we assume that the
arrival rates and service times satisfy the nominal workload
conditions but violate the virtual workload condition for a
strictly separating set S, i.e.,

�m(V (S))¿1:

Under this transformation, (73) reduces to

�m(CA(X))¿�m(CB(X)) (75)

for each A-section X , and (74) reduces to

�m(CB(Y))¿�m(CA(Y)) (76)

for each B-section Y .
For the example in Figure 3, we have

�1(m12 + m13 + m16 + m18 + m110 + m112 + m113)

+�2(m22 + m24 + m25 + m28 + m29 + m212 + m214)¿1;

and

m12 + m13 + m16¿m11 + m14 + m15;

m18¿m17;

m19¿m110;

m112 + m113¿m111 + m114;

m22¿m21;

m24 + m25 + m28 + m29 + m212¿m23 + m26 + m27 + m210 + m211;

m214¿m213:

We now construct a nonidling �uid solution (Q(·); T (·))
such that∑
(i; k)∈V (S)

Ṫ i
k (t)61

for each regular point t. Let

1i
k = Ṫ i

k (t):

We intentionally drop the variable t from 1i
k since, in our

construction, T i
k (·) is piecewise linear and hence 1i

k is piece-
wise constant. If the �uid solution (Q(·); T (·)) is linear in an
interval [a; b], it is enough to specify Q(a); T (a) and (1i

k)
to completely characterize the �uid solution throughout the
interval. In fact, for t ∈ [a; b],

T i
k (t) = T i

k (a) + 1i
k(t − a); (77)

Qi
k(t) =Qi

k(a) +
i
k−11

i
k−1(t − a)−
i

k1
i
k(t − a): (78)

Note that 1i
k is the fraction of its e4ort the server allocates

to class (i; k) and
i
k1

i
k is the rate at which �uid leaves

the bu4er and hence the rate at which it enters the next
bu4er. Throughout our construction we show that not only
must

∑
i∈I; k∈Ai

Ṫ i
k (t)=

∑
i∈I; k∈Ai

1i
k61;

and

∑
i∈I; k∈Bi

Ṫ i
k (t)=

∑
i∈I; k∈Bi

1i
k61;

at each time t, but also the two stations cannot serve classes
in V (S) simultaneously. Thus, we show that whenever
1(VA(S))¿0, 1(VB(S))= 0 and whenever 1(VB(S))¿0,
1(VA(S))= 0, from which it immediately follows that

∑
(i; k)∈V (S)

Ṫ i
k (t)61;

for each regular point t. Again, for a set X of classes, we
let 1(X)=X(i; k)∈X 1i

k .
We begin with ui

r units in the +rst bu4er of C(X i
r)

for each A-section X i
r so that all the WIP is initially at

Station B. So, in the example of Figure 3, we begin with u11
units in bu4er (1; 1) (the +rst class of the block C(X 1

1)), u
1
3

units in bu4er (1; 9) (the +rst class of the block C(X 1
3)) and

u22 units in bu4er (2; 3) (the +rst class of the block C(X 2
2)).

Step 1. One at a time, for each noninput A-section
X i
r = [i; s; t) drain the contents of l[i; s], the +rst bu4er of

C(X i
r), into the +rst bu4er of CA(X i

r) and the +rst bu4er
l[i; t] of C(Y i

r+1) (or out of the system if X i
r is the last

section for type i) both at Station A. This process continues
until the +rst bu4er of C(X i

r) is empty. Figure 8 illustrates
this step for the A-sections X 1

3 and X 2
2 in the example of

Figure 3.
At the end of this step all the bu4ers at Station B in the

blocks of non-input sections are empty. To see that this is
consistent with a nonidling dispatch policy, observe that the

738 / DAI AND VANDE VATE

Figure 8. Depiction of the �ows when Step 1 is applied to X 1
3 , shown in part (a), and to X

2
2 , shown in part (b), in the example

of Figure 3.
Note: Only the relevant classes are shown. Arrows depict the �ows, and an open box in front of a class denotes
a bu4er that may contain a positive quantity of �uid during the step. Plus signs inside a bu4er indicate
that it is accumulating �uid, and minus signs indicate that it is draining. All other indicated bu4ers remain empty
throughout the step.

system de+ning the �ows is:
1(CA(X i

r)) = 1 Because work is accumulating at
Station A,

1(CB(X i
r)) = 1 Because there is work accumulated

at Station B,

i
k1

i
k −
i

k−11
i
k−1 = 0 For each class (i; k) in C(X i

r) ex-
cept the +rst two. The +rst class’s
bu4er is draining, so the rate of
�ow out is faster than the rate of
�ow in. The second class’s bu4er
is accumulating �uid, so the rate of
�ow in is greater than the rate of
�ow out.

This system has the unique solution

1i
k =

mi
k

m(CA(X i
r))

for each class in C(X i
r) except the +rst one. This class, l[s; i],

has

1i
l[s; i] =

mi
l[s; i]

m(CA(X i
r))

+
m(CA(X i

r))− m(CB(X i
r))

m(CA(X i
r))

;

which, by (75), is at least as great as

mi
l[s; i]

m(CA(X i
r))

:

Thus,

i
l[i; s]1

i
l[s; i]¿

1
m(CA(X i

r))
=
i

l[s; i]+11
i
l[s; i]+1;

and so �uid is arriving at the second bu4er of C(X i
r) at least

as fast as the server at Station A processes it. Thus, both
stations are busy until the +rst bu4er in C(X i

r) is emptied.
The contents of the bu4er have moved to the +rst bu4er of

the next excursion and the +rst bu4er of C(Y i
r+1)—both at

Station A.
Both servers are fully busy during this entire step, so

any �uids arriving to the system during this period simply
accumulate at their +rst bu4ers.

Step 2. Next, for each noninput A-section X i
r = [i; s; t) one

at a time in any order, drain the +rst bu4er of CA(X i
r) into

the +rst bu4er of C(Y i
r+1) (or out of the system if this is a

last section).
When the +rst bu4er of CA(X i

r) is emptied, we have accu-
mulated in the +rst bu4er of C(Y i

r+1) (if there is one) all the
�ow originally in the +rst bu4er of C(X i

r). Figure 9 illus-
trates this step for the A-sections X 1

3 and X 2
2 in the example

of Figure 3.
The system de+ning the �ows for each of these A-sections

is
1(CA(X i

r)) = 1 Since work is accumulated at
Station A,

i
k1

i
k −
i

k−11
i
k−1 = 0 For each class (i; k) in C(X i

r) ex-
cept the +rst two. We emptied the
bu4er of the +rst class in Step 1
and we are draining the bu4er of the
second class.

This system has the unique solution

1i
k =

mi
k

m(CA(X i
r))

for each class in the block except the +rst, which has
1i
l[s; i] = 0.
These �ows keep the server at Station A busy, but by

Lemma 5 may not keep the server at Station B busy. When-
ever these �ows do not keep the server at Station B busy,
it can process �uids that have accumulated at classes (1; i)
for i∈ IB. However, because the server at Station A is busy,

DAI AND VANDE VATE / 739

Figure 9. Depiction of the �ows when Step 2 is applied to X 1
3 , shown in part (a), and to X 2

2 , shown in part (b), in the
example of Figure 3.
Note: Only the relevant classes are shown. Arrows depict the �ows, and an open box in front of a class denotes
a bu4er that may contain a positive quantity of �uid during the step. Plus signs inside a bu4er indicate
that it is accumulating �uid, and minus signs indicate that it is draining. The ± inside a bu4er indicates that it
may either accumulate �uid or drain during the step, depending on the balance of �ows into and out of the
bu4er. The ⊕ inside a bu4er indicates that it may either accumulate �uid or be empty. All other
indicated bu4ers remain empty throughout the step.

these �uids will accumulate at the +rst bu4er of their second
excursion.
At the end of Step 2, all the �uid initially in the +rst bu4er

of C(X i
r) for each noninput A-section X i

r has been moved
to the +rst bu4er of C(Y i

r+1). For the example in Figure 3,
�uid in bu4ers (1; 9) and (2; 3) has been moved to bu4ers
(1; 11) and (2; 13). For each A-section X i

r , moving ui
r units

through the classes of C(X i
r) requires times ui

rm(CA(X i
r)).

Thus, we spend

�1 =
∑
i∈IA

bi∑
r=1

ui
2rm(CA(X i

2r)) +
∑
i∈IB

bi∑
r=2

ui
2r−1m(CA(X i

2r−1))

(79)

on Steps 1 and 2.
Note that these two steps are consistent with a static

bu4er priority dispatch policy, which uses the last-bu4er-
+rst-served dispatch policy within the block of each nonin-
put A-section.

Step 3. One at a time, for each type i∈ IB in order, drain
the �uid that has accumulated in class (i; 1) of C(X i

1) into
(i; 2), the +rst bu4er of CA(X i

1), and the +rst bu4er of C(Y
i
2)

(or out of the system if X i
1 is the last section for type i),

while keeping the bu4ers of C(X j
1) empty for all earlier

types j∈ IB, with j¡i. This process continues until bu4er
(i; 1) is empty. Figure 10(a) illustrates this step for type 1
in the example of Figure 3.
At the end of this step all the bu4ers at Station B are

empty. To see that this is consistent with a nonidling dispatch
policy, observe that the system de+ning the �ows for each
type i∈ IB is

∑
j∈IB; j6i

1(CA(X
j
1)) = 1 Because work is accumulating

at Station A,∑
j∈IB; j6i

1(CB(X
j
1)) = 1 Because there is work accumu-

lated at Station B,

j
11

j
1 = �j For each type j∈ IB with j¡i,

j
k1

j
k −
j

k−11
j
k−1 = 0 For each class (j; k) in C(X j

1)
where j∈ IB; j¡i and k¿1;

i
k1

i
k −
i

k−11
i
k−1 = 0 For each class (i; k) in C(X i

1) ex-
cept the +rst two. The +rst class’s
bu4er is draining, so the rate of
�ow out is faster than the rate of
�ow in. The second class’s bu4er
is accumulating �uid, so the rate
of �ow in is greater than the rate
of �ow out.

This system has the unique solution

1j
k = �j

km
j
k for each class (j; k)∈C(X j

1)
where j∈ IB and j¡i;

1i
k =

mi
k(1−

∑
j∈IB; j¡i �m(CA(X

j
1)))

m(CA(X i
1))

for each class (i; k)∈C(X i
1) except class (i; 1);

1i
1 =

mi
1(1−

∑
j∈IB; j¡i �m(CA(X

j
1)))

m(CA(X i
1))

+
∑

j∈IB; j¡i

(�m(CA(X
j
1))− �m(CB(X

j
1)));

which by (75) is at least as great as

mi
1(1−

∑
j∈IB; j¡i �m(CA(X

j
1)))

m(CA(X i
1))

:

740 / DAI AND VANDE VATE

Figure 10. Depiction of the �ows when Steps 3 and 4 are applied to the example in Figure 3.
Note: Only the relevant classes are shown. Arrows depict the �ows, and an open box in front of a class
denotes a bu4er that may contain a positive quantity of �uid during the step. Plus signs inside a bu4er
indicate that it is accumulating �uid, and minus signs indicate that it is draining. All other indicated bu4ers
remain empty throughout the step.

Thus,

i
11

i
1¿

1−∑
j∈IB; j¡i �m(CA(X

j
1))

m(CA(X i
1))

=
i
21

i
2;

so �uid is arriving at class (i; 2) at least as fast as the server
at Station A processes it. Thus, both stations are busy un-
til bu4er (i; 1) is emptied. The contents of the bu4er have
moved to bu4er (i; 2) and the +rst bu4er of C(Y i

2)—both at
Station A.
Both servers are fully busy during this entire step, so

any �uids arriving to Station A during this period simply
accumulate at their +rst bu4ers.

Step 4. One at a time, for each type i∈ IB in order,
empty bu4er (i; 2) while keeping empty both bu4er (i; 1) and
the bu4ers of C(X j

1) for all earlier types j∈ IB, with j¡i.
Figure 10(b) illustrates this step for type 1 in the example
of Figure 3.
The system de+ning the �ows is∑

j∈IB; j6i

1(CA(X
j
1)) = 1 Because work is accumulating

at Station A,

j
11

j
1 = �j For each type j∈IB with j6i;

j
k1

j
k −
j

k−11
j
k−1 = 0 For each class (j; k) in C(X j

1)
where j∈ IB; j¡i and k¿1;

i
k1

i
k −
i

k−11
i
k−1 = 0 For each class (i; k) in C(X i

1) ex-
cept the +rst two. The +rst class’s
bu4er is empty and, to keep it that
way, its output rate must match
the rate of exogenous arrivals. The
second class’s bu4er is draining,
so the rate of �ow out is greater
than the rate of �ow in.

This system has the unique solution

1j
k = �j

km
j
k for each class (j; k)∈C(X j

1)

where j∈ IB and j¡i;

1i
k =

mi
k(1−

∑
j∈IB; j¡i �m(CA(X

j
1)))

m(CA(X i
1))

for each class (i; k)∈C(X i
1) except class (i; 1);

1i
1 = �imi

1:

Note that because the arrival rates and service times sat-
isfy the nominal workload conditions, 1 is between 0 and
1. Further, as in Step 2, the server at Station A is fully busy
during this entire step, but the server at Station B may not
be. To see this, observe that

1(EB) =
∑

j∈IB; j¡i

�m(CB(X
j
1))

+
(m(CB(X i

1))−mi
1))(1−

∑
j∈IB; j¡i �m(CA(X

j
1)))

m(CA(X i
1))

+ �mi
1:

By (75),

m(CB(X i
1))

m(CA(X i
i))
61;

and because the arrival rates and service times satisfy the
nominal workload conditions,

1−∑
j∈IB; j¡i �m(CB(X

j
1))

m(CA(X i
1))

¿�i:

Thus,

1(EB)¡1:

Whenever the server at Station B has remaining capacity,
he again drains the contents of subsequent bu4ers (j; 1) with

DAI AND VANDE VATE / 741

j∈ IB and j¿i. Because the server at Station A is busy,
however, these �uids accumulate in their second bu4ers.
Continue in this way until all bu4ers in C(X i

1); i∈ IB,
are empty. Let �2 be the additional time needed to complete
Steps 3 and 4, then

�2 = (�1 + �2)
∑
j∈IB

�m(CA(X
j
1))+

∑
j∈IB

u j
1m(CA(X

j
1));

or

�2 =
�1

∑
j∈IB �m(CA(X

j
1))+

∑
j∈IB u

j
1m(CA(X

j
1))

1−∑
j∈IB �m(CA(X

j
1))

:

At the end of this step, the bu4ers of each block C(X i
r) are

empty and only the +rst bu4er of each block C(Y i
r) has any

accumulated �uid. Thus, all the WIP is at Station A.
Let

� = �1 + �2

=

∑
i∈IA

∑bi
r=1

ui2rm(CA(X i
2r))+

∑
i∈IB

∑bi
r=1

ui2r−1m(CA(X i
2r−1))

1−
∑

j∈IB
�m(CA(X

j
1))

:

(80)

For each i∈ IA, the +rst bu4er in the block C(Y i
1); (i; 1),

has accumulated �i� �uid, i.e., Qi
1(�)= �i�. For each i∈ IB,

the +rst bu4er in the block C(Y i
2) has accumulated �i�+ ui

1
�uid. For each remaining B-section, the +rst bu4er of C(Y i

r)
has accumulated the ui

r−1 �uids that were initially in the +rst
bu4er of C(X i

r−1).
It is easy to check that the �uid solution (Q(·); T (·))

constructed in (77)–(78) satis+es (5)–(10) for t ∈ [0; �].
Furthermore, none of the classes in blocks of B-sections
has ever been worked on. That is, 1(C(Yr))= 0 for each
B-section Yr . Therefore, (Q(·); T (·)) satis+es (59) for t in
[0; �], and by Lemma 3 there is more work at the virtual
station V (S) at time � than at time 0.
We next repeat Steps 1–4, interchanging the roles of Sta-

tion A and Station B. The �uid network completes the four
steps at time t1 in a state very similar to its initial state: There
are ũi

r units in the +rst bu4er of C(X
i
r) for each A-section

X i
r , and all the other bu4ers are empty. Further, the resulting
�uid solution (Q(·); T (·)) satis+es (5)–(10) and (59) for all
times t ∈ [0; t1].
To complete the argument, we would like to conclude that

repeating these eight steps over and over produces a �uid
solution (Q(·); T (·)) that satis+es (5)–(10) and (59) for all
times t¿0. We could then invoke Lemma 3 to argue that the
workload for the classes of V (S) grows linearly with time
and the �uid solution diverges. To reach this conclusion,
however, we must +rst show that X∞

n=1tn →∞, where tn
is the time required to complete the nth iteration of these
eight steps. Otherwise, X∞

n=1tn → t∗ for some +nite t∗ and
repeating these eight steps only produces a �uid solution for
times t ∈ [0; t∗].
To this end, let u be an arbitrary nonnegative vector of

initial �uid levels for the +rst bu4ers in the blocks of the
A-sections X i

r . From Equation (80) it is clear that the time

required to complete the eight steps is a positive linear com-
bination of the initial bu4er levels u, i.e.,

t1(u)=
∑

ciru
i
r ;

where each coe/cient cir¿0. Similarly, the initial total
workload at the virtual station V (S) (as de+ned in (60) with
C =V (S)) is a positive linear combination of the initial
bu4er levels u, i.e.,

W (u)=
∑

ai
ru

i
r ;

where each coe/cient ai
r¿0.

Thus, the shortest time t∗1 to complete the eight steps given
an initial workload W (u)¿1 can be found by solving the
simple linear program

t∗1 =min
∑

ciru
i
r ;

s:t:
∑

ai
ru

i
r¿1;

ui
r¿0:

Because all the data are positive, t∗1 = min{cir=ai
r}¿0.

Thus, if we begin with initial �uid levels u with W (u)¿1,
we know from Lemma 3 that the workload at the virtual
station V (S) will not decrease and so each iteration will
require at least time t∗1 . Hence, X

∞
n=1 tn →∞ and repeating

the eight steps over and over produces a �uid solution with
bu4er levels that cycle to in+nity.

10. CONCLUDING REMARKS

This paper not only provides an explicit characterization of
the global stability region of two-station multiclass �uid net-
works, it also o4ers intuitive explanations of how the con-
straints de+ning the global stability region arise. Namely,
the two phenomena of virtual stations and push starts
explain all the global stability conditions of two-station
�uid networks.
Under certain assumptions on the interarrival and service

time distributions as speci+ed in Dai (1995), a queueing net-
work is stable or positive Harris recurrent if the correspond-
ing �uid network is stable. Thus, the workload conditions are
su/cient to ensure the global stability of two-station multi-
class queueing networks with deterministic routing. In Dai
and Vande Vate (1996), we show that under some weaker
distributional assumptions, the virtual station conditions are
also necessary to ensure the global stability of the queueing
network. The push start conditions, on the other hand, are
not generally necessary for global stability of the queueing
network.
Weak stability, also called rate stability, is a less

restrictive form of stability in queueing networks (see for
example El-Taha and Stidham 1994). Chen (1995) and
Dai and Vande Vate (1996) show that weak stability of
the �uid model implies weak stability of the queueing net-
work. A �uid network is said to be weakly stable under

742 / DAI AND VANDE VATE

nonidling dispatch policies, or simply globally weakly sta-
ble, if any �uid solution (Q(·); T (·)) with initial WIP zero
will never have any WIP. The following theorem is a weak
stability version of Theorem 2. Its proof is parallel to the
development in this paper.

THEOREM 6. A two-station)uid network is globally weakly
stable if and only if

�A61; �B61;

and for each vector e=(ei)i∈I of excursions and each
strictly separating set S; we have

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S)\F6B (e))
1− �m(F¡

B (e))
61: (81)

This paper characterizes the global stability region for
�uid models of two-station queueing networks with deter-
ministic routing. Hasenbein (1998) extended these results
to the �uid models of certain two-station queueing networks
with probabilistic routing.
Theorem 2 demonstrates that the global stability region

of a two-station �uid network is monotone, i.e., reducing
service times or arrival rates maintains global stability.

COROLLARY 1. The global stability region of a two-station
)uid network is monotone.

This is not the case for �uid networks with more than two
stations. Humes (1994) and Dai et al. (1999) showed that
the global stability region is not monotone. Dumas (1997)
showed that the stability region of a priority network is not
monotone. These examples indicate a daunting challenge
inherent in managing complex re-entrant manufacturing sys-
tems like wafer fabrication plants: Increasing the processing
rate for a class can reduce the capacity of the system!
The fact that the global stability region of a �uid network

with more than two stations can be non-monotone suggests
that determining the global stability region for these net-
works will be considerably more di/cult. For example, the
problem of determining the coe/cients of a piecewise lin-
ear Lyapunov function for a �uid network with more than
two stations does not generally reduce to a linear program.
Nevertheless, the example studied in Dai et al. (1999) is
one of an important family of n-station �uid networks for
which this problem is linear and, in fact, does reduce to a
parametric network �ow problem. Thus, the piecewise lin-
ear Lyapunov function of this paper does lead to su/cient
conditions for global stability for this family of n-station
networks.
The four steps of §9 prove that the static bu4er priority

policies are the “worst” dispatch policies for two-station
�uid networks.

COROLLARY 2. A two-station)uid network is globally
stable if and only if it is stable under every static bu+er
priority policy.

This is not the case for n-station �uid networks. Dai
et al. (1999) demonstrated arrival rates and service times
for which their three-station �uid network is not globally
stable even though it is stable under all static bu4er priority
disciplines.

ACKNOWLEDGMENTS

This research was initiated when J. G. Dai was visiting the
Institute of Mathematics and Its Applications at the Uni-
versity of Minnesota in the winter quarter of 1994. Partial
+nancial support from the Institute is acknowledged. This
research is supported in part by National Science Foun-
dation grants DDM-9215233, DMI-94-57336, US-Israel
Binational Science Foundation grant 94-00196. Airforce
O/ce of Scienti+c Research grant F49620-95-1-0121 and
a grant from Harris Semiconductor.

APPENDIX

PROOF OF LEMMA 4. Assume that the �uid model (63)–
(68) is unstable. Then there is a �uid solution (Q̃i

k(·);
T̃ i
k (·))(i; k)∈R(e) satisfying (63)–(68) that is unstable. That
is, there is a sequence {tn} with tn →∞ such that Q̃(tn)
=0
for each n. For (i; k)∈RA(e), let Qi

k(t)= Q̃i
k(t) and

T i
k (t)= (1− �m(F¡

A (e)))T̃ i
k (t):

For (i; k)∈RB(e), let Qi
k(t)= Q̃i

k(t) and

T i
k (t)= (1− �m(F¡

B (e)))T̃ i
k (t):

For (i; k)∈F¡(e), letQi
k(t)= 0 and T

i
k (t)= �imi

k t. We show
that

(Q(·); T (·))= (Qi
k(·); T i

k (·))i∈I; k=1;:::; ci

is a �uid solution to (5)–(10).
First, it is easy to check that (5) and (6) hold for

(Q(·); T (·)). Second, notice that

t −
∑

i∈I; k∈Ai

T i
k (t) = t −

∑
(i; k)∈F¡

A (e)

�imi
k t −

∑
(i; k)∈RA(e)

T i
k (t)

= (1− �m(F¡
A (e)))t

−(1− �m(F¡
A (e)))

∑
(i; k)∈RA(e)

T̃ i
k (t)

= (1− �m(F¡
A (e)))

t −

∑
(i; k)∈RA(e)

T̃ i
k (t)

;

which is nondecreasing, and hence (7) holds. Similarly, we
see that

t −
∑

i∈I; k∈Bi

T i
k (t)

is nondecreasing.

DAI AND VANDE VATE / 743

Assume that t is a regular point of (Q(·); T (·)). When∑
i∈I; k∈Ai

Qi
k(t)¿0;

we have∑
(i; k)∈RA(e)

Q̃i
k(t)¿0:

Hence∑
(i; k)∈RA(e)

˙̃T i
k (t)= 1;

or∑
(i; k)∈RA(e)

Ṫ i
k (t)= 1−

∑
(i; k)∈F¡

A (e)

�imi
k :

The last equation is equivalent to∑
i∈I; k∈Ai

Ṫ i
k (t)= 1:

Hence we have proved (9). Similarly, we can show that (8)
and (10) hold. Therefore, (Q(·); T (·)) is a �uid solution to
(5)–(10). It is obvious that (Q(·); T (·)) is unstable.

PROOF OF LEMMA 5. Consider an A-section X = [i; s; t) of Si

with s¿ei. Let S ⊕X =(S\X)∪ (X \S) be the symmetric
di4erence of S and X . Because s − 1 =∈ S and t =∈ S; S ⊕X
is a strictly separating set. Thus, by (71)
(
�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S)\F6B (e))
1− �m(F¡

B (e))

)
−

(
�m(VA(S ⊕X)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S ⊕X)\F6B (e))
1− �m(F¡

B (e))

)
=

�m(CA(X))
1− �m(F¡

A (e))
− �m(CB(X))
1− �m(F¡

B (e))
¿0:

From which (73) follows immediately. The proof for
B-sections Y = [i; s; t) of Si, where s¿ei is similar.
The argument for sections [i; s; t), where s6ei is more

involved. Rather than change the separating set S, we change
the push start set F¡(e). Consider an A-section X = [i; s; t)
of Si where s6ei, and let e′=(e′j)j∈I , where e′i = t and for
each j
= i; e′j = ej.
By (71)

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S)\F6B (e))
1− �m(F¡

B (e))

¿
�m(VA(S)\F6A (e′))
1− �m(F¡

A (e′))
+

�m(VB(S)\F6B (e′))
1− �m(F¡

B (e′))
;

and so

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
− �m(VA(S)\F6A (e′))

1− �m(F¡
A (e′))

¿
�m(VB(S)\F6B (e′))
1− �m(F¡

B (e′))
− �m(VB(S)\F6B (e))

1− �m(F¡
B (e))

: (A.1)

Now because

�m(VA(S)\F6A (e′))

= �m(VA(S)\F6A (e))− �m(CA(X)\F6A (e));

and

�m(F¡
A (e′))= �m(F¡

A (e)) + �m(CA(X)\F¡
A (e));

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
− �m(VA(S)\F6A (e′))

1− �m(F¡
A (e′))

¿
�m(CA(X)\F6A (e))(1− �m(F¡

A (e))− �m(VA(S)\F6A (e)))
(1− �m(F¡

A (e′)))(1− �m(F¡
A (e)))

:

Similarly, because

�m(VB(S)\F6B (e′)) = �m(VB(S)\F6B (e));

and

�m(F¡
B (e′))= �m(F¡

B (e)) + �m(CB(X)\F¡
B (e));

�m(VB(S)\F6B (e′))
1− �m(F¡

B (e′))
− �m(VB(S)\F6B (e))

1− �m(F¡
B (e))

=
�m(CB(X)\F¡

B (e))�m(VB(S)\F6B (e))
(1− �m(F¡

B (e′)))(1− �m(F¡
B (e)))

:

Thus, by (A.1)

�m(CA(X)\F6A (e))(1− �m(F¡
A (e))− �m(VA(S)\F6A (e)))

(1− �m(F¡
A (e′)))(1− �m(F¡

A (e)))

¿
�m(CB(X)\F¡

B (e))�m(VB(S)\F6B (e))
(1− �m(F¡

B (e′)))(1− �m(F¡
B (e)))

: (A.2)

Because

�m(VA(S)\F6A (e))
1− �m(F¡

A (e))
+

�m(VB(S)\F6B (e))
1− �m(F¡

B (e))
¿1;

1− �m(F¡
A (e))− �m(VA(S)\F6A (e))
1− �m(F¡

A (e))

6
�m(VB(S)\F6B (e))
1− �m(F¡

B (e))
;

so from (A.2),

�m(CA(X)\F6A (e))
1− �m(F¡

A (e′))
¿

�m(CB(X)\F¡
B (e))

1− �m(F¡
B (e′))

;

from which it follows that

�m(CA(X)\F¡
B (e))

1− �m(F¡
A (e))

¿
�m(CB(X)\F¡

B (e))
1− �m(F¡

B (e))
:

The argument for B-sections Y = [i; s; t) with s6ei is
similar.

744 / DAI AND VANDE VATE

REFERENCES

Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network
Flows: Theory, Algorithms, and Applications. Prentice-Hall,
Englewood Cli4s, NJ.

Bertsimas, D., D. Gamarnik, J. N. Tsitsiklis. 1996. Stability
conditions for multiclass �uid queueing networks. IEEE
Trans. Automatic Control 41 1618–1631. (Correction: 1997.
42 128.)

Botvich, D. D., A. A. Zamyatin. 1992. Ergodicity of conservative
communication networks. Rapport de recherche 1772,
INRIA.

Bramson, M. 1994a. Instability of FIFO queueing networks. Ann.
Appl. Probab. 4 414–431.

——. 1994b. Instability of FIFO queueing networks with quick
service times. Ann. Appl. Probab. 4 693–718.

——. 1997. Convergence to equilibria for �uid models of head-
of-the-line proportional processor sharing queueing networks.
Queueing Systems: Theory Appl. 23 1–26.

——. 1998. Stability of two families of queueing networks and a
discussion of �uid limits. Queueing Systems: Theory Appl.
28 7–31.

——. 1999. A stable queueing network with unstable �uid
network. Ann. Appl. Probab. 9 818–853.

Chen, H. 1995. Fluid approximations and stability of multiclass
queueing networks I: Work-conserving disciplines. Ann.
Appl. Probab. 5 637–665.

——, H. Zhang. 1997. Stability of multiclass queueing networks
under FIFO service discipline.Math. Oper. Res. 22 691–725.

——, ——. 1998. Stability of multiclass queueing networks under
priority service disciplines. Oper. Res. Forthcoming.

Dai, J. G. 1995. Stability of open multiclass queueing networks
via �uid models. In Stochastic Networks. F. Kelly,
R. J. Williams (eds.), The IMA Volumes in Mathematics and
its Applications. Springer, New York, 71–90.

——. 1996. A �uid-limit model criterion for instability of
multiclass queueing networks. Ann. Appl. Probab. 6
751–757.

——, J. Hasenbein, J. H. Vande Vate. 1999. Stability of a three-
station �uid network. Queueing Systems: Theory Appl. 33,
293–325.

——, S. P. Meyn. 1995. Stability and convergence of moments for
multiclass queueing networks via �uid limit models. IEEE
Trans. Automatic Control 40 1889–1904.

——, J. Vande Vate. 1996. Virtual stations and the capacity of
two-station queueing networks. Under revision forOper. Res.

——, G. Weiss. 1996. Stability and instability of �uid models for
re-entrant lines. Math. Oper. Res. 21 115–134.

Down, D., S. Meyn. 1994. Piecewise linear test functions for
stability of queueing networks. Proc. 33rd Conference on
Decision and Control, 2069–2074.

Dumas, V. 1996. Essential faces and stability conditions of
multiclass networks with priorities. Rapport de recherche
3030, INRIA.

——. 1997. A multiclass network with non-linear, non-convex,
non-monotonic stability conditions. Queueing Systems:
Theory Appl. 25 1–43.

El-Taha, M., S. Stidham, Jr. 1994. Sample-path stability conditions
for multiserver input–output processes. J. Appl. Math.
Stochastic Anal. 7 437–456.

Foss, S., A. Rybko. 1995. Stability of multiclass Jackson-type
networks. Preprint.

Harrison, J. M., V. Nguyen. 1995. Some badly behaved
closed queueing networks. Stochastic Networks. F. P.
Kelly, R. J. Williams, eds. 71 of The IMA volumes in
Mathematics and its Applications. Springer, New York,
117–124.

Hasenbein, J. 1998. Capacity and Scheduling of Multiclass
Queueing Networks. Ph.D. Thesis, School of Industrial and
Systems Engineering, Georgia Institute of Technology.

——. 1997. Necessary conditions for global stability of multiclass
queueing networks. Oper. Res. Lett. 21 87–94.

Humes, C. Jr. 1994. A regulator stabilization technique: Kumar-
Seidman revisited. IEEE Trans. Automatic Control 39
191–196.

Kumar, P. R., S. Meyn. 1996. Duality and linear programs for
stability and performance analysis of queueing networks and
scheduling policies. IEEE Trans. Automatic Control 41
4–17.

——, ——. 1995. Stability of queueing networks and scheduling
policies. IEEE Trans. Automatic Control 40 251–260.

——, T. I. Seidman. 1990. Dynamic instabilities and stabilization
methods in distributed real-time scheduling of manufacturing
systems. IEEE Trans. Automatic Control AC-35 289–298.

Lu, S. H., P. R. Kumar. 1991. Distributed scheduling based on due
dates and bu4er priorities. IEEE Trans. Automatic Control
36 1406–1416.

Meyn, S. P. 1995. Transience of multiclass queueing networks via
�uid limit models. Ann. Appl. Probab. 5 946–957.

Morrison, J. R., P. R. Kumar. 1998. On the guaranteed throughput
and e/ciency of closed re-entrant lines. Queueing Systems:
Theory Appl. 28 33–54.

Rybko, A. N., A. L. Stolyar. 1992. Ergodicity of stochastic
processes describing the operation of open queueing
networks. Problems Inform. Transmission 28 199–220.

Seidman, T. I., 1994. “First come, +rst served” can be unstable!
IEEE Trans. Automatic Control 39 2166–2171.

Stolyar, A., 1994. On the stability of multiclass queueing
networks. Proceeding of the 2nd International Conference
on Telecommunication Systems-Modeling and Analysis,
Nashville, TN, 23–35.

Winograd, G. L., P. R. Kumar. 1996. The FCFS service discipline:
Stable network topologies, bounds on tra/c burstiness and
delay, and control by regulators. Math. Comput. Modeling
23 115–129.

