THE STABILITY OF TWO-STATION MULTITYPE FLUID NETWORKS

J. G. DAI
School of Industrial and Systems Engineering and School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0205,
dai@isye.gatech.edu

J. H. VANDE VATE
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, john.vandevate@isye.gatech.edu

(Received June 1997; revisions received May 1998, January 1999; accepted January 1999)

Abstract

This paper studies the fluid models of two-station multiclass queueing networks with deterministic routing. A fluid model is globally stable if the fluid network eventually empties under each nonidling dispatch policy. We explicitly characterize the global stability region in terms of the arrival and service rates. We show that the global stability region is defined by the nominal workload conditions and the "virtual workload conditions," and we introduce two intuitively appealing phenomena-virtual stations and push starts-that explain the virtual workload conditions. When any of the workload conditions is violated, we construct a fluid solution that cycles to infinity, showing that the fluid network is unstable. When all the workload conditions are satisfied, we solve a network flow problem to find the coefficients of a piecewise linear Lyapunov function. The Lyapunov function decreases to zero, proving that the fluid level eventually reaches zero under any nonidling dispatch policy. Under certain assumptions on the interarrival and service time distributions, a queueing network is stable or positive Harris recurrent if the corresponding fluid network is stable. Thus, the workload conditions are sufficient to ensure the global stability of two-station multiclass queueing networks with deterministic routing.

1. INTRODUCTION

Queueing networks offer an appealing method for modeling complex manufacturing processes and have been used to model telecommunication networks and manufacturing systems such as wafer fabrication facilities. Unfortunately, they are themselves generally too complex for successful analysis. For example, the primary tool for evaluating the performance of a given dispatch policy is simulation. In fact, we generally resort to simulation even to determine whether a queueing network is stable under a given dispatch policy or whether the servers are unable to manage the workload.

Even very simple queueing networks exhibit surprising and often counterintuitive behavior. Consider the simple two-station re-entrant queueing network depicted in Figure 1, where m_{k} is the average processing time for stage k, and jobs arrive at rate λ. The two rectangles indicate the two stations, Station A and Station B, and the line traces the route the jobs follow between them. In this example, each job passes through five stages of processing: The first, at Station A, lasts an average of m_{1} time units; the second, at Station B, lasts an average of m_{2} time units; the third, again at Station A, lasts an average of m_{3} time units, and so on. At any point in time, Station A, for example, may have jobs waiting in all three of the stages it serves and must decide which job to process next. A strategy for making these decisions at each station constitutes a dispatch policy. Dai and Vande Vate (1996) showed that under certain nonidling (or work-conserving) dispatch policies, the servers are unable to serve jobs as quickly as they arrive, even when the nominal workload at each station is significantly less than
100%, i.e., $\lambda\left(m_{1}+m_{3}+m_{5}\right)<1$ and $\lambda\left(m_{2}+m_{4}\right)<1$. In fact, Dai and Vande Vate (1996) showed that if the servers give highest priority to jobs at stages 2 and 5 , they will be unable to serve the jobs as quickly as they arrive unless the nominal utilization at each station is less than 100% and
$\lambda\left(m_{2}+m_{5}\right)<1$.
For example, if the average service times are
$(0.1,0.6,0.1,0.1,0.6)$,
servers employing this dispatch policy will be able to keep up with the workload only if the arrival rate to the system satisfies $\lambda<1 /\left(m_{2}+m_{5}\right)=5 / 6$. The condition $\lambda\left(m_{2}+m_{5}\right)<1$ reflects the fact that under this dispatch policy Station A and Station B can serve their high-priority stages simultaneously only during a transient initial period. Thus, although they are served by different stations, these two stages can form a bottleneck that determines the capacity of the entire system. We discuss this phenomenon, which we call a "virtual station," in more detail in §3.
This paper focuses on the deterministic fluid network corresponding to a given queueing network. For the fluid network corresponding to the queueing network pictured in Figure 1, fluid arrives continuously from the outside at rate λ. The server at Station A pumps fluid in stages 1, 3, and 5, and the server at Station B pumps fluid in stages 2 and 4. When a server devotes its full effort to stage k fluid, it pumps at a maximum rate of $\mu_{k}=1 / m_{k}$, assuming there is stage k fluid, $k=1, \ldots, 5$. A dispatch policy in the fluid network

Figure 1. A five-class network.

context describes how to allocate each server's pumping capacity at each time among the different stages it serves. A fluid network is stable under a dispatch policy if it will eventually empty no matter what the initial fluid levels are.

Our work is largely motivated by a result of Dai (1995) showing that, under certain distributional assumptions on interarrival and service times, a queueing network is stable or positive Harris recurrent if the corresponding fluid network is stable. Related work can be found in Rybko and Stolyar (1992), Chen (1995), Dai and Meyn (1995), Stolyar (1994), Meyn (1995), Dai (1996), and Bramson (1998).

We develop necessary and sufficient conditions for a twostation fluid network to be globally stable or stable under any nonidling dispatch policy. Determining the global stability region is especially important when it is difficult or impossible to implement a well-studied dispatch policy. In such systems, it is possible for servers to unwittingly employ a policy under which the system is unstable even though the traffic intensity or nominal workload at each station is less than one. Although it is sometimes difficult to avoid such bad policies, we can avoid their consequences by maintaining service times that are in the global stability region. In this way, we can ensure that even under bad policies, the system will remain stable.

We show that a two-station fluid network is globally stable if and only if the processing times satisfy the nominal workload conditions and the "virtual workload conditions." In particular, we introduce two intuitively appealing phenomena, virtual stations and push starts, that give rise to the two classes of virtual workload conditions: "virtual station conditions" and "push start conditions."

Virtual stations affect the global stability of two-station fluid networks because, under some nonidling dispatch policies, certain groups of stages cannot be served simultaneously even though they are served at different stations. Thus, just as at stations, the traffic intensities at these groups must be less than one.

Push starts magnify the influence of virtual stations in fluid networks by giving highest priority to the first few stages. Fluid passes through these stages to the rest of the network as quickly as it arrives, but having focused so much attention on the first few stages, the servers have less capacity to dedicate to the rest of the network. Push starts do not influence the capacity of a single station because the
work required to serve the remaining stages at a station is reduced by exactly the effort required to expedite the first few stages. Push starts do influence the capacity of virtual stations, however, because they involve stages at both stations: The effort spent expediting stages at one station does not reduce the work remaining at the other.

Under certain distributional assumptions, the virtual workload conditions together with the nominal workload conditions are sufficient to ensure the global stability of two-station queueing networks. An independent argument in a companion paper by Dai and Vande Vate (1996) shows that the virtual station conditions are also necessary for the global stability of two-station queueing networks. The push start conditions, however, are not in general necessary. See, for example, Dai and Vande Vate (1996).

There has been a recent surge in the study of stability conditions for multiclass queueing networks. These studies were primarily motivated by Kumar and Seidman (1990), Lu and Kumar (1991), Rybko and Stolyar (1992), Bramson (1994a, 1994b), and Seidman (1994), which demonstrated that a number of nonidling dispatch policies are unstable even if the traffic intensity at each station is less than one. In these unstable examples, the total number of jobs in the system goes to infinity with time. Other recent work on the stability of queueing networks and fluid networks includes Harrison and Nguyen (1995), Bramson (1997, 1999), Bertsimas et al. (1996), Dumas (1996, 1997), Dai and Weiss (1996), Foss and Rybko (1995), Winograd and Kumar (1996), Kumar and Meyn (1995, 1996), Chen and Zhang (1997, 1998), Morrison and Kumar (1998), and Hasenbein (1997).

Recently, Bertsimas et al. (1996) showed that a twostation fluid network is globally stable if and only if a certain linear program has bounded objective value. In this paper we extend the results of Bertsimas et al. by stating explicitly, in terms of the arrival rates and service times, necessary and sufficient conditions for a two-station fluid network to be globally stable.

The explicit description of necessary and sufficient conditions for the global stability of two-station fluid networks provides a number of corollaries not immediately available from the linear programming characterization of Bertsimas et al. (1996). Most important among these is a complete understanding of global stability in two-station fluid networks via virtual stations and push starts. In addition, our conditions demonstrate that the global stable region of a two-station fluid network is monotone, i.e., reducing service times maintains global stability. This is not the case for stability with respect to a given dispatch policy. It is possible for a dispatch policy to be stable for a given fluid network but unstable when the service times are reduced. For fluid networks with more than two stations, even the global stable region need not be monotone (see, for example, Dai et al. 1999).

Our approach relies on the fact that a fluid network is stable if there is a piecewise linear Lyapunov function for it. We formulate the problem of determining the coeffi-
cients of the Lyapunov function as a linear programming problem, which has unbounded objective values only if the coefficients and hence the Lyapunov function exist. Our linear program arises directly from the piecewise linear Lyapunov function introduced in Dai and Weiss (1996), which generalizes that of Botvich and Zamyatin (1992) and is simpler than that independently formulated by Down and Meyn (1994).

We transform our linear program into a parametric network flow problem in an acyclic network. The fluid network is globally stable if there is a value of the parameter for which the minimum flow in this network is sufficiently small. Thus, invoking the Min-Flow Max-Cut Theorem, we see that the fluid network is globally stable if there is a value of the parameter for which the capacity of each cut in the acyclic network is sufficiently small. Finally, we show that these "cut conditions" are equivalent to the more easily understood virtual workload conditions.

In Dai and Vande Vate (1996), we show that the virtual station conditions are necessary for the stability of two-station queueing networks by showing that under certain nonidling dispatch policies, both stations cannot simultaneously serve the classes of a virtual station. This implies that the virtual station conditions are also necessary for the stability of two-station fluid networks. We also provide an example showing that the push start conditions need not be necessary for global stability in these networks. In this paper, we offer a direct construction showing that both the virtual station conditions and the push start conditions are necessary for the stability of two-station fluid networks. In particular, when the service times strictly violate the virtual workload conditions, we construct a nonidling dispatch policy that causes the work-in-process to grow without bound. We are able to construct the policy without knowing the specific service times because it depends only on the violated conditions. In every case, we identify a finite sequence of states through which the fluid network cycles with greater work-in-process in each successive cycle.

The proof in Dai and Vande Vate (1996) that the virtual station conditions are necessary to ensure global stability requires less detailed analysis and applies to a broader class of networks encompassing both queueing networks and fluid networks. The proof presented here is rather detailed and applies only to two-station fluid networks. It does, however, demonstrate the necessity of the push start conditions for two-station fluid networks and shows exactly how the work-in-process in an unstable system swings from class to class as it grows to infinity. Further, it is not apparent how to extend the simpler proof given in Dai and Vande Vate (1996) to certain classes of conditions necessary to ensure the global stability of fluid networks with more than two stations. These larger networks appear to require the more direct proof technique used in this paper (see, for example, Dai et al. 1999).

We show that whenever the fluid network is unstable, there is a static buffer priority dispatch policy under which the work-in-process goes to infinity. Thus, the class of static
buffer priority dispatch policies is "worst" among all nonidling policies in the sense that a two-station fluid network is globally stable if and only if it is stable under all static buffer priority dispatch policies.

We introduce the virtual workload conditions in $\S 3$ and show that they are sufficient for stability in $\S \S 4$ through 7 . Finally, we prove they are necessary for stability in $\S 8$.

2. PRELIMINARIES

Before introducing the virtual workload conditions, we give a brief review of the Minimum Flow Problem and introduce our notation for fluid networks. For an excellent and accessible treatment of network flows, see Ahuja et al. (1993).

2.1. The Minimum Flow Problem

Consider a directed network (N, E) with node set N and edge set E. We distinguish two vertices s, the source, and t, the sink. Given (possibly infinite) lower bounds $l=\left(l_{i j}\right)$ and upper bounds $u=\left(u_{i j}\right)$, we wish to find a minimum flow from the source s to the sink t subject to flow conservation constraints and edge capacity constraints. Thus, the minimum flow problem is:

Minimize v,
subject to
$\sum_{j \in N} x_{s j}-\sum_{j \in N} x_{j s}=v$,
$\sum_{j \in N} x_{i j}-\sum_{j \in N} x_{j i}=0 \quad$ for each node $i \in N \backslash\{s, t\}$,
$\sum_{j \in N} x_{t j}-\sum_{j \in N} x_{j t}=-v$,
$l_{i j} \leqslant x_{i j} \leqslant u_{i j} \quad$ for each edge $(i, j) \in E$.
Suppose (x, v) satisfies (1)-(4). We refer to the vector x as a feasible flow and the value v as the value of the flow x. A minimum flow is a feasible flow with smallest value among all feasible flows.

An s, t-cut in the network (N, E) is a partition of N into two sets S and T with $s \in S$ and $t \in T$. The capacity of the cut (S, T), denoted $c(S, T)$, is
$c(S, T)=\sum_{(i, j) \in E: i \in S, j \in T} l_{i j}-\sum_{(i, j) \in E: i \in T, j \in S} u_{i j}$.
Note that our definition of capacity interchanges the roles of upper and lower bounds in the usual definition as applied to the maximum flow problem. This definition is appropriate for the minimum flow problem and is sometimes referred to as the floor of a cut. A maximum s, t-cut is one with largest capacity among all s, t-cuts. Theorem 1 is a classic result of network flows and can be found in Ahuja et al. (1993, exercise 6.18, p. 202).

Theorem 1. The value of a minimum flow equals the capacity of a maximum s, t-cut.

2.2. Multitype Fluid Networks

We consider fluid networks with two single-server stations, denoted A and B, and a set I of different fluid types. Type i fluid arrives at a constant rate $\lambda_{i}>0$ and follows a prescribed route, visiting one station and then the other a number of times before exiting the system. Different types of fluid may follow different routes. We number the stages fluid i passes through consecutively from 1 to c_{i} and let A_{i} and B_{i} denote the stages in which fluid i is served at $\operatorname{Station} A$ and at Station B, respectively.

We refer to type i fluids waiting for the k th stage as class (i, k) fluids, which reside in buffer (i, k). Each unit of class (i, k) fluid requires service lasting $m_{k}^{i}>0$ units of time. The service time m_{k}^{i} is the time it takes the station to process one unit of class (i, k) fluid. Equivalently, $\mu_{k}^{i}=1 / m_{k}^{i}$ is the rate at which the server depletes class (i, k) fluid from the buffer when it devotes all its efforts to serving that class.

A fluid solution is a vector $(Q(\cdot), T(\cdot))=\left(Q_{k}^{i}(\cdot)\right.$, $\left.T_{k}^{i}(\cdot)\right)_{i \in I, k=1, \ldots, c_{i}}$ of functions of time satisfying

$$
\begin{align*}
& Q_{k}^{i}(t)=Q_{k}^{i}(0)+\mu_{k-1}^{i} T_{k-1}^{i}(t)-\mu_{k}^{i} T_{k}^{i}(t) \geqslant 0 \\
& \quad \text { for } t \geqslant 0, i \in I, k=1, \ldots, c_{i} \tag{5}
\end{align*}
$$

$T_{k}^{i}(0)=0 \quad$ and $\quad T_{k}^{i}(t)$ is nondecreasing for all $i \in I$, and $k=1, \ldots, c_{i}$,
$t-\sum_{i \in I} \sum_{k \in A_{i}} T_{k}^{i}(t) \quad$ is nondecreasing,
$t-\sum_{i \in I} \sum_{k \in B_{i}} T_{k}^{i}(t) \quad$ is nondecreasing,
where $T_{0}^{i}(t)=t$ and $\mu_{0}^{i}=\lambda_{i}$ for each type $i \in I$ to model the exogenous arrival of fluids.

We interpret $Q_{k}^{i}(t)$ as the volume of class (i, k) fluid in the buffer at time t, and $T_{k}^{i}(t)$ as the cumulative time spent serving class (i, k) fluids up to time t. The relationship between the buffer levels and the cumulative allocations of effort is given by (5) for each class of fluid. These equations simply relate the buffer levels to the initial buffer levels and the total volume of fluid entering and leaving each buffer. Conditions (6) ensure that no work is completed before time 0. Conditions (7) and (8) ensure that each server divides its time between serving the various classes and accumulating idle time.

Each fluid solution $(Q(\cdot), T(\cdot))$ has derivatives at almost all times $t>0$ (with respect Lebesgue measure on $[0, \infty)$); see Dai and Weiss (1996). A point $t \in[0, \infty)$ is a regular point of the fluid solution (Q, T) if T is differentiable at t. We henceforth use $\dot{f}(t)$ to denote the derivative of f at t.

We consider fluid networks under nonidling dispatch policies or policies that do not allow a server to be idle when there is work for it to do. We can express this restriction via the "complementarity" conditions on fluid solutions $(Q(\cdot), T(\cdot))$:
$\sum_{i \in I} \sum_{k \in A_{i}} \dot{T}_{k}^{i}(t)=1 \quad$ whenever $\sum_{i \in I} \sum_{k \in A_{i}} Q_{k}^{i}(t)>0$,
and
$\sum_{i \in I} \sum_{k \in B_{i}} \dot{T}_{k}^{i}(t)=1 \quad$ whenever $\sum_{i \in I} \sum_{k \in B_{i}} Q_{k}^{i}(t)>0$,
for each regular point t of $(Q(\cdot), T(\cdot))$. The cumulative idle time at Station A up to time t is simply
$t-\sum_{i \in I} \sum_{k \in A_{i}} T_{k}^{i}(t)$,
and Condition (7) ensures that it is nondecreasing. Condition (9) further ensures that when Station A is accumulating idle time, the buffers it serves are empty. The cumulative idle time at Station B is defined similarly. Henceforth, we consider only fluid solutions satisfying (5)-(10). When there is only a single type of fluid, we omit references to the type and speak of class k fluid as having buffer levels $Q_{k}(t)$, etc.

A buffer priority is a one-to-one mapping π from the set of buffers onto $\{1, \ldots, c\}$, where c is the total number of classes in the network. When $\pi(i, k)>\pi(j, l)$ for two classes both served at the same station, class (i, k) has higher priority than class (j, l). A static buffer priority discipline with buffer priorities π stipulates that, in addition to (5)-(10), every fluid solution $(Q(\cdot), T(\cdot))$ must also satisfy

$$
\begin{align*}
& \sum_{i \in I, k \in A_{i}, \pi(i, k) \geqslant \pi(j, l)} \dot{T}_{k}^{i}(t)=1 \\
& \text { whenever } \sum_{i \in I, k \in A_{i}, \pi(i, k) \geqslant \pi(j, l)} Q_{k}^{i}(t)>0 \tag{11}
\end{align*}
$$

for each $j \in I$ and $l \in A_{j}$, and regular point t of $(Q(\cdot), T(\cdot))$ and

$$
\begin{align*}
& \sum_{i \in I, k \in B_{i}, \pi(i, k) \geqslant \pi(j, l)} \dot{T}_{k}^{i}(t)=1 \\
& \text { whenever } \sum_{i \in I, k \in B_{i}, \pi(i, k) \geqslant \pi(j, l)} Q_{k}^{i}(t)>0 \tag{12}
\end{align*}
$$

for each $j \in I$ and $l \in B_{j}$ and regular point t of $(Q(\cdot), T(\cdot))$. Equations (11) and (12) dictate that whenever a buffer accumulates fluid, no lower priority buffer at the same station can receive service.

The fluid network is said to be stable under nonidling dispatch policies, or simply globally stable, if there is some finite time $\tau>0$ beyond which any fluid solution $(Q(\cdot), T(\cdot))$ that begins with one unit of work-in-process or WIP, i.e., with
$\sum_{i \in I} \sum_{k=1}^{c_{i}} Q_{k}^{i}(0)=1$,
will have no WIP, i.e.,
$\sum_{i \in I} \sum_{k=1}^{c_{i}} Q_{k}^{i}(t)=0$,
for all $t \geqslant \tau$. Dai (1995) showed if a fluid network is stable, the corresponding queueing network is positive Harris recurrent under some distributional assumptions.

A fluid solution $(Q(\cdot), T(\cdot))$ is said to be unstable if there exists $\left\{t_{n}\right\}$ with $t_{n} \rightarrow \infty$ such that $Q\left(t_{n}\right) \neq 0$ for each n. A fluid solution $(Q(\cdot), T(\cdot))$ is said to diverge to infinity if the WIP goes to infinity as time $t \rightarrow \infty$. A divergent fluid solution is clearly unstable.

The traffic intensities or nominal workloads at the stations are
$\rho_{A}=\sum_{i \in I} \sum_{k \in A_{i}} \lambda_{i} m_{k}^{i} \quad$ and $\quad \rho_{B}=\sum_{i \in I} \sum_{k \in B_{i}} \lambda_{i} m_{k}^{i}$.
It is well known (see, for example, Dai 1996) that the fluid network can only be stable if the traffic intensities are less than one, i.e.,
$\rho_{A}<1 \quad$ and $\quad \rho_{B}<1$.

3. VIRTUAL WORKLOAD CONDITIONS

The stability conditions for a two-station fluid network take two forms: (1) the nominal workload conditions (13) that arise because classes at the same station must share the server's time, and (2) the virtual workload conditions, generalizing condition $\lambda\left(m_{2}+m_{5}\right)<1$ for the fluid network in Figure 1, that arise through the interactions between virtual stations and push starts.

Two intuitively appealing phenomena give rise to the virtual workload conditions. The intuition behind the first of these phenomena is best described in the context of queueing networks. The second phenomenon is most easily understood in the context of fluid networks.

Figure 1 illustrates a simple single-type queueing network. If we give highest priority to class 5 at Station A and to class 2 at Station B, these two classes can be served simultaneously only during a transient initial period, see Dai and Vande Vate (1996, lemma 3.1). Thus, these two classes form a "virtual station," and although they are served at different stations, the workload at these two classes cannot exceed 1 . This virtual station gives rise to the virtual workload condition
$\lambda\left(m_{2}+m_{5}\right)<1$,
which we refer to as a "virtual station condition." These conditions also apply to fluid networks.

The fluid network of Figure 2 illustrates the second phenomenon giving rise to virtual workload conditions. Assume that the nominal workload conditions (13) hold. If we give highest priority to class 1 at Station A and to class 2 at Station B in this network, the fluid levels in these two buffers will reach zero and remain zero thereafter. For the sake of our discussion, we assume that these two buffers are always empty. Then, the server at Station A will constantly devote a fraction λm_{1} of its time to class 1 to keep the buffer empty, and hence have only a fraction $1-\lambda m_{1}$ of its time left for other classes at Station A. Similarly, the server at Station B will constantly devote a fraction λm_{2} of its time to class 2 and have only a fraction $1-\lambda m_{2}$ of its time left for the other classes at Station B. Note that in a queueing network

Figure 2. A seven-class network.

we cannot anticipate a constant, uninterrupted devotion of time to these classes, but we can in a fluid network. The fact that the servers are slowed by their efforts on classes 1 and 2 magnifies the time required to serve each unit of fluid in the remaining classes. In particular, the server at Station A will require $m_{7} /\left(1-\lambda m_{1}\right)$ units of time to complete one unit of class 7 fluid and the server at Station B will require $m_{4} /\left(1-\lambda m_{2}\right)$ units of time to complete one unit of class 4 fluid. Because buffers 1 and 2 remain empty, fluid passes through them as quickly as it arrives, and hence arrives at buffer 3 at rate λ. Thus, push starting the first two classes magnifies the virtual station condition
$\lambda\left(m_{4}+m_{7}\right)<1$,
in the induced network to give the virtual workload condition
$\frac{\lambda m_{4}}{1-\lambda m_{2}}+\frac{\lambda m_{7}}{1-\lambda m_{1}}<1$,
ensuring that the virtual station can divide its time between serving the two classes. We refer to this condition as a "push start condition."

Together, these two phenomena explain all the virtual workload conditions of two-station fluid networks. Although these ideas are intuitively appealing, formalizing them is more involved. We formalize the conditions under which classes at different stations cannot receive service simultaneously in the following way.

The first notion in our charaterization of virtual stations is the idea of an excursion or set of consecutive classes at the same station. In the network of Figure 3 each type makes four excursions at Station A and four excursions at Station B. For example, the second excursion for type 2 consists of classes $(2,2)$ and $(2,3)$.

We let E denote the set of excursions and, for each type $i \in I$, we let E^{i} denote the set of excursions for type i customers, which we number consecutively from 1 to n_{i}. We partition E^{i} into E_{A}^{i}, the set of excursions at Station A, and E_{B}^{i}, those at Station B. Because an excursion at one station must be followed by an excursion at the other (unless it is the last excursion), one of these is the set of odd numbered excursions and the other is the set of even numbered excursions depending on where type i customers first enter the

Figure 3. A 28 -class fluid network with two types of fluid.

network. We use $[i, e]$ to denote the e th excursion for type i fluid. Recall that (i, k) denotes the type i fluid that is waiting for its k th service.

We let $E[i, e]$ denote the classes of excursion $[i, e]$ and we partition these classes into the last class and all the rest, which we call first classes of the excursion. We let $l[i, e]$ denote the last class and $f[i, e]$ the set of first classes in $E[i, e]$. If an excursion consists of only one class, that class is the last class and the excursion has no first classes. For example, in the 28 -class network of Figure $3, l[1,1]=(1,1), f[1,1]=\emptyset, l[1,2]=(1,3), f[1,2]=$ $\{(1,2)\}, \ldots, l[1,8]=(1,14)$ and $f[1,8]=\emptyset$. When $e>n_{i}$, both $E[i, e]$ and $f[i, e]$ are empty. To simplify notation, we sometimes use $l[i, e]$ to denote the stage number of the last class and $f[i, e]$ to denote the set of stage numbers of the first classes in excursion $E[i, e]$.

Definition 1. The neighbors of a set X of excursions is the set
$\Gamma(X)=\{[i, e] \in E:[i, e-1]$ or $[i, e+1]$ is in $X\}$.
Definition 2. A set S of excursions is said to be separating if it contains no consecutive excursions. Thus, a set S of excursions is separating if $S \cap \Gamma(S)=\emptyset$.

Definition 3. A separating set S is said to be A-strictly separating if it contains no first excursion at $\operatorname{Station} A$, i.e., if $S \cap\left\{[i, 1] \in E_{A}^{i}: i \in I\right\}=\emptyset$. Similarly, a separating set S is said to be B-strictly separating if it contains no first excursion at Station B, i,e., if $S \cap\left\{[i, 1] \in E_{B}^{i}: i \in I\right\}=\emptyset$. A separating set S is said to be strictly separating if it contains no first excursion, i.e., if $S \subseteq\left\{[i, e]: i \in I, e=2, \ldots, n_{i}\right\}$.

The set of excursions at Station A, for example, is B-strictly separating. Likewise, the set of excursions at Station B is A-strictly separating. We refer to these two separating sets as trivial separating sets.

Each strictly separating set S of excursions induces a virtual station $V(S)$ or maximal collection of classes with the property that if we give highest priority to these classes the two servers can simultaneously serve classes of $V(S)$ only during a transient initial period.

Definition 4. Each separating set S of excursions induces a collection $V(S)$ consisting of the classes in excursions of S together with the first classes of excursions whose immediate predecessor is not in S. Thus,
$V(S)=\left(\bigcup_{[i, e] \in S} E[i, e]\right) \cup\left(\bigcup_{[i, e] \in E^{i} \backslash S} f[i, e+1]\right)$.
When S is strictly separating we refer to $V(S)$ as a virtual station.

A virtual station V, then, is a set of classes satisfying:

1. No class of a first excursion is in V, i.e., $E[i, 1] \cap V=\emptyset$ for each type i.
2. If the last class of an excursion is in V, then every class of that excursion is in V and if a first class of an excursion is in V, then every first class of that excursion is in V. Thus, a virtual station must have either none of the classes, all of the classes, or all but the last class of each excursion.
3. The last class of an excursion (except a last excursion) is in V if and only if no class of the next excursion is in V, i.e., for each excursion $e<n_{i}, l[i, e] \in V$ if and only if $E[i, e+1] \cap V=\emptyset$.

In the network of Figure 1, the separating set $S=\{2,5\}$ of excursions gives rise to the virtual station $V(S)$ consisting of classes 2 and 5 (there are no first classes in excursion 3). This is the only virtual station that is not itself a subset of the classes at a station.

The second phenomenon determining the global stability of a two-station fluid network is push starting. Giving highest priority to the first few classes of each type can magnify the
effects of virtual stations in the subnetwork consisting of the remaining classes.

Definition 5. Let $\mathbf{e}=\left(e_{i}\right)_{i \in I}$ be a vector with $1 \leqslant e_{i} \leqslant n_{i}$ for each type i. We let $F^{<}(\mathbf{e})$ denote the push start set consisting of the collection of all classes up to but not including the last class of excursion $\left[i, e_{i}\right.$] for each type $i \in I$ and we let $R(\mathbf{e})$ denote all the remaining classes. Thus,
$F^{<}(\mathbf{e})=\left\{(i, k): i \in I, 1 \leqslant k<l\left[i, e_{i}\right]\right\}$
and
$R(\mathbf{e})=\left\{(i, k): i \in I, l\left[i, e_{i}\right] \leqslant k \leqslant c_{i}\right\}$.
We let $F \leqslant(\mathbf{e})$ denote the collection of all classes up to and including the last class of excursion $\left[i, e_{i}\right]$ for each type $i \in I$. Thus,
$F^{\leqslant}(\mathbf{e})=\left\{(i, k): i \in I, 1 \leqslant k \leqslant l\left[i, e_{i}\right]\right\}$.
Note that if $V(S)$ is a virtual station and $F^{<}(\mathbf{e})$ is a push start set, then $V(S) \backslash F \leqslant(\mathbf{e})$ is the classes of a virtual station in the subnetwork consisting of the classes of $R(\mathbf{e})$.

Given a set X of classes, we define X_{A} to be the classes of X served at Station A and X_{B} to be those served at Station B. For example, we use $V_{A}(S)$ to denote the classes of the virtual station $V(S)$ at Station A, and we use $F_{A}<(\mathbf{e})$ to denote the classes of $F^{<}(\mathbf{e})$ at Station A. Further, to simplify our notation, we adopt the convention that for each set X of classes,
$\lambda m(X)=\sum_{(i, k) \in X} \lambda_{i} m_{k}^{i}$.
Theorem 2. A two-station fluid network is globally stable if and only if
$\rho_{A}<1, \quad \rho_{B}<1$,
and for each vector $\mathbf{e}=\left(e_{i}\right)_{i \in I}$ of excursions and each separating set S, we have
$\frac{\lambda m\left(V_{A}(S) \backslash F_{A}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)}<1$.
Furthermore, if some vector $\mathbf{e}=\left(e_{i}\right)_{i \in I}$ of excursions and separating set S satisfy
$\frac{\lambda m\left(V_{A}(S) \backslash F_{A}{ }^{〔}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}<(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B}{ }^{\lessgtr}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)}>1$,
then there exists a nonidling fluid solution such that the WIP diverges to infinity with time.

We refer to the conditions (15) as the virtual workload conditions. When $F^{<}(\mathbf{e})=\emptyset$, we refer to the virtual workload condition (15) as a virtual station condition. Otherwise, the condition involves push starting $F^{<}(\mathbf{e})$, and we refer to it as a push start condition. For example, the virtual work-
load conditions of the fluid network in Figure 2 are

$$
\begin{array}{r}
\lambda\left(m_{2}+m_{5}+m_{7}\right)<1, \\
\lambda\left(m_{2}+m_{4}+m_{7}\right)<1, \\
\frac{\lambda m_{3}}{1-\lambda m_{1}}+\lambda m_{6}<1, \\
\frac{\lambda m_{4}}{1-\lambda m_{2}}+\frac{\lambda m_{7}}{1-\lambda m_{1}}<1 .
\end{array}
$$

The remainder of this paper is devoted to proving that the nominal workload conditions and the virtual workload conditions are necessary and sufficient to ensure the global stability of two-station fluid networks. We argue in $\S \S 4$ and 5 that we can construct a certain piecewise linear Lyapunov function showing that the WIP will eventually go to zero and remain zero if the arrival rates and service rates satisfy certain constraints. We then argue in $\S \S 6$ and 7 that these rather complicated constraints are equivalent to the virtual workload conditions.

In $\S 8$, we show that the virtual workload conditions (15) are necessary to ensure the global stability of the fluid network. We offer a direct proof that explicitly demonstrates a nonidling dispatch policy under which, if some vector $\mathbf{e}=\left(e_{i}\right)_{i \in I}$ of excursions and separating set S satisfy (16), WIP levels grow without bound. In fact, we demonstrate the trajectory of the fluid network through a finite sequence of states with greater and greater WIP in each successive cycle.

4. A PIECEWISE-LINEAR LYAPUNOV FUNCTION

We show that the virtual workload conditions of Theorem 2 are sufficient to ensure global stability of a two-station fluid network by showing that when they are satisfied there is a potential function or Lyapunov function G proving that the WIP drains to zero regardless of the initial conditions. Consider a fluid solution $(Q(\cdot), T(\cdot))$. We let $Z_{k}^{i}(t)$ denote the volume of fluid i that has already entered the network by time t, but has not yet received class (i, k) service, i.e.,
$Z_{k}^{i}(t)=Z_{k}^{i}(0)+\lambda_{i} t-\mu_{k}^{i} T_{k}^{i}(t)=\sum_{l \leqslant k} Q_{l}^{i}(t)$.
We define G to be the maximum of two linear functions of $\left(Z_{k}^{i}(t)\right)$-one for each station-and so it is a piecewiselinear function of the buffer levels $\left(Q_{k}^{i}(t)\right)$. In particular, given weights $x=\left(x_{k}^{i}\right)$ for the classes, we define the linear functions at Station A and Station B to be
$G_{A}(x, t)=\sum_{i \in I} \sum_{k \in A_{i}} x_{k}^{i} Z_{k}^{i}(t) / \lambda_{i}$,
and
$G_{B}(x, t)=\sum_{i \in I} \sum_{k \in B_{i}} x_{k}^{i} Z_{k}^{i}(t) / \lambda_{i}$.
Let
$G(x, t)=\max \left\{G_{A}(x, t), G_{B}(x, t)\right\}$.

If there is $\varepsilon>0$ such that

- $G(x, t)>0$, and
- $\dot{G}(x, t) \equiv \partial G(x, t) / \partial t \leqslant-\varepsilon$,
whenever the WIP is not zero at time t and $Q(\cdot)$ and $G(x, \cdot)$ are differentiable at t, then after time $\tau=G(x, 0) / \varepsilon$ all buffers will have drained to zero, proving that the fluid network is globally stable. Dai and Weiss (1996) showed that G will satisfy these conditions if there is $\varepsilon>0$ and weights $x>0$ such that:
$G_{A}(x, t) \leqslant G_{B}(x, t) \quad$ whenever $\sum_{i \in I} \sum_{k \in A_{i}} Q_{k}^{i}(t)=0$,
$G_{B}(x, t) \leqslant G_{A}(x, t) \quad$ whenever $\sum_{i \in I} \sum_{k \in B_{i}} Q_{k}^{i}(t)=0$,
$\frac{\partial G_{A}(x, t)}{\partial t} \leqslant-\varepsilon \quad$ whenever $\sum_{i \in I} \sum_{k \in A_{i}} Q_{k}^{i}(t)>0$,
and
$\frac{\partial G_{B}(x, t)}{\partial t} \leqslant-\varepsilon \quad$ whenever $\sum_{i \in I} \sum_{k \in B_{i}} Q_{k}^{i}(t)>0$,
where conditions (17) and (18) apply for all t and conditions (19) and (20) apply only when t is a regular point of $(Q(\cdot), T(\cdot))$. Thus, we have the following proposition.

Proposition 1. If there exists $\varepsilon>0$ and $x>0$ such that (17)-(20) hold, the fluid network is stable under nonidling dispatch policies.

5. A LINEAR PROGRAMMING FORMULATION

We transform the problem of finding weights x such that $G_{A}(x, t)$ and $G_{B}(x, t)$ satisfy (17)-(20) into a linear programming problem. The linear program has a solution with strictly positive objective value if and only if the desired weights x exist and any solution with strictly positive objective value provides weights satisfying the desired conditions.

We first transform (17) into linear constraints on x. When

$$
\begin{equation*}
\sum_{i \in I} \sum_{k \in A_{i}} Q_{k}^{i}(t)=0 \tag{21}
\end{equation*}
$$

G_{A} reduces to

$$
\begin{align*}
& \sum_{i \in I} \sum_{k \in A_{i}}\left(x_{k}^{i} \sum_{l \in B_{i}, l<k} Q_{l}^{i}(t) / \lambda_{i}\right) \\
& \quad=\sum_{i \in I} \sum_{l \in B_{i}}\left(Q_{l}^{i}(t) \sum_{k \in A_{i}, k>l} x_{k}^{i} / \lambda_{i}\right), \tag{22}
\end{align*}
$$

and G_{B} reduces to:

$$
\begin{align*}
& \sum_{i \in I} \sum_{k \in B_{i}}\left(x_{k}^{i} \sum_{l \in B_{i}, l \leqslant k} Q_{l}^{i}(t) / \lambda_{i}\right) \\
& =\sum_{i \in I} \sum_{l \in B_{i}}\left(Q_{l}^{i}(t) \sum_{k \in B_{i}, k \geqslant l} x_{k}^{i} / \lambda_{i}\right) \tag{23}
\end{align*}
$$

It follows that (17) is satisfied if:

$$
\begin{equation*}
\sum_{k \in A_{i}, k>l} x_{k}^{i} \leqslant \sum_{k \in B_{i}, k \geqslant l} x_{k}^{i} \tag{24}
\end{equation*}
$$

for each $i \in I$ and $l \in B_{i}$. Because the weights x are nonnegative, we can restrict attention to those constraints of (24) where $l \in B_{i}$, but $l+1 \notin B_{i}$. In other words, (24) is equivalent to
$\sum_{k \in A_{i}, k>l[i, e]} x_{k}^{i} \leqslant \sum_{k \in B_{i}, k \geqslant l[i, e]} x_{k}^{i}$
for each excursion $[i, e]$ at Station B.
Similar analysis leads to the conclusion that G_{A} and G_{B} satisfy (18) if
$\sum_{k \in B_{i}, k>l[i, e]} x_{k}^{i} \leqslant \sum_{k \in A_{i}, k \geqslant l[i, e]} x_{k}^{i}$,
for each excursion $[i, e]$ at Station A.
We next transform (19) into linear conditions on x. When
$\sum_{i \in I} \sum_{k \in A_{i}} Q_{k}^{i}(t)>0$,
the nonidling condition (9) ensures that Station A is not accumulating idle time, and so
$\sum_{i \in I} \sum_{k \in A_{i}} \dot{T}_{k}^{i}(t)=1$.
Now,

$$
\begin{aligned}
\dot{G}_{A}(t) & =\sum_{i \in I} \sum_{k \in A_{i}} x_{k}^{i} \dot{Z}_{k}^{i}(t) / \lambda_{i} \\
& =\sum_{i \in I} \sum_{k \in A_{i}} x_{k}^{i}\left(1-\mu_{k}^{i} \dot{T}_{k}^{i}(t) / \lambda_{i}\right) \\
& =\sum_{i \in I} \sum_{k \in A_{i}} x_{k}^{i}-\sum_{i \in I} \sum_{k \in A_{i}} x_{k}^{i} \mu_{k}^{i} \dot{T}_{k}^{i}(t) / \lambda_{i}
\end{aligned}
$$

Thus, (19) is satisfied if
$\sum_{j \in I} \sum_{k \in A_{j}} x_{k}^{j}+\varepsilon \leqslant x_{l}^{i} \mu_{l}^{i} / \lambda_{i}$
for each $i \in I$ and $l \in A_{i}$.
Similar analysis shows that (20) is satisfied if:
$\sum_{j \in I} \sum_{k \in B_{j}} x_{k}^{j}+\varepsilon \leqslant x_{l}^{i} \mu_{l}^{i} / \lambda_{i}$
for each $i \in I$ and $l \in B_{i}$.

Finding the largest possible value of ε for which there are weights x satisfying (25)-(26) and (28)-(29) reduces to solving the following linear program for ε and x :

Maximize ε,
subject to:
$\sum_{k \in A_{i}, k>l[i, e]} x_{k}^{i}-\sum_{k \in B_{i}, k \geqslant l[i, e]} x_{k}^{i} \leqslant 0$
for each $i \in I$ and $[i, e] \in E_{B}^{i}$,
$\sum_{k \in B_{i}, k>l[i, e]} x_{k}^{i}-\sum_{k \in A_{i}, k \geqslant l[i, e]} x_{k}^{i} \leqslant 0$
for each $i \in I$ and $[i, e] \in E_{A}^{i}$,
$\left(\sum_{j \in I} \sum_{k \in A_{j}} x_{k}^{j}\right)-x_{l}^{i} \mu_{l}^{i} / \lambda_{i}+\varepsilon \leqslant 0 \quad$ for $i \in I$ and $l \in A_{i}$,
$\left(\sum_{j \in I} \sum_{k \in B_{j}} x_{k}^{j}\right)-x_{l}^{i} \mu_{l}^{i} / \lambda_{i}+\varepsilon \leqslant 0 \quad$ for $i \in I$ and $l \in B_{i}$,
$x, \varepsilon \geqslant 0$.
The constraints (31)-(35) define a cone with the single extreme point given by $x=0$ and $\varepsilon=0$. Thus, we have Proposition 2.

Proposition 2. If the linear program (30)-(35) has unbounded objective values, then each solution (x, ε) with $\varepsilon>0$ provides weights $x>0$ such that $G(x, t)$ is a piecewise-linear Lyapunov function proving that the fluid network is stable.

In $\S 6$, we transform the linear program (30)-(35) into a parametric network flow problem and, by exploiting a dual formulation, derive sufficient conditions for stability of a two-station fluid network. In $\S 7$, we show that these conditions are equivalent to the conditions of Theorem 2.

6. A NETWORK FLOWS FORMULATION

The linear program (30)-(35) offers a computationally attractive method for determining whether or not a twostation fluid network with specified service times is globally stable. A network with given arrival rates and service times is globally stable if the linear program (30)-(35) has unbounded objective values. Otherwise, as we show in $\S 8$, it is not. The linear program does not, however, provide a theoretically attractive characterization of the global stability region for a two-station fluid network.

To obtain an explicit characterization of the arrival rates and service times under which a two-station fluid network is globally stable, we translate the linear program (30)-(35) into an equivalent parametric network flow problem. The parametric network flow problem is equivalent to the linear program in the sense that the linear program has unbounded
objective values if and only if there is a value of the parameter for which the network flow problem has strictly positive objective value.

To transform (30)-(35) into an equivalent network flow problem, we first observe that because (31)-(35) defines a cone, there is a solution (x, ε) to $(31)-(35)$ with $\varepsilon>0$ if and only if there is a solution with $\varepsilon>0$ and

$$
\begin{equation*}
\sum_{i \in I} \sum_{k \in A_{i}} x_{k}^{i}+\varepsilon=1 \tag{36}
\end{equation*}
$$

Although we can arbitrarily scale the sum of the weights on classes at one station (we have chosen Station A) to 1 , we cannot simultaneously scale the sum of the weights on classes at the other station to a fixed value. Thus, we let β denote the sum of the weights on the classes served at Station B :

$$
\begin{equation*}
\sum_{i \in I} \sum_{k \in B_{i}} x_{k}^{i}+\varepsilon=\beta \tag{37}
\end{equation*}
$$

We do not know a priori a value of β at which ε is maximized, but by treating it as a parameter rather than a variable, we can express the constraints (33)-(34) as lower bounds:
$\lambda_{i} m_{k}^{i} \leqslant x_{k}^{i} \quad$ for $i \in I$ and $k \in A_{i}$,
$\beta \lambda_{i} m_{k}^{i} \leqslant x_{k}^{i} \quad$ for $i \in I$ and $k \in B_{i}$.
Next, we add slack variables $s=\left(s_{e}^{i}\right)$ and write the constraints (31)-(32) as
$\sum_{k \in A_{i}, k>l[i, e]} x_{k}^{i}-\sum_{k \in B_{i}, k \geqslant l[i, e]} x_{k}^{i}+s_{e}^{i}=0$
for each $i \in I$ and $[i, e] \in E_{B}^{i}$,

$$
\begin{equation*}
\sum_{k \in B_{i}, k>l[i, e]} x_{k}^{i}-\sum_{k \in A_{i}, k \geqslant l[i, e]} x_{k}^{i}+s_{e}^{i}=0 \tag{40}
\end{equation*}
$$

for each $i \in I$ and $[i, e] \in E_{A}^{i}$.
Adding (40) for an excursion $[i, e]$ at Station B and (41) for excursion $[i, e+1]$ at Station A and multiplying by -1 , we obtain

$$
\begin{equation*}
-\sum_{k \in f[i, e+1]} x_{k}^{i}+x_{l[i, e]}^{i}-s_{e}^{i}-s_{e+1}^{i}=0 . \tag{42}
\end{equation*}
$$

Similarly, adding (41) for excursion $[i, e]$ at $\operatorname{Station} A$ and (40) for excursion $[i, e+1]$ at Station B, we obtain

$$
\begin{equation*}
\sum_{k \in f[i, e+1]} x_{k}^{i}-x_{l[i, e]}^{i}+s_{e}^{i}+s_{e+1}^{i}=0 \tag{43}
\end{equation*}
$$

Adopting the convention that $s_{n_{i}+1}^{i}=0$, we can write (40) for a last excursion $\left[i, n_{i}\right] \in E_{B}^{i}$ as
$-\sum_{k \in f\left[i, n_{i}+1\right]} x_{k}^{i}+x_{l\left[i, n_{i}\right]}^{i}-s_{n_{i}}^{i}-s_{n_{i}+1}^{i}=0$
and we can write (41) for a last excursion $\left[i, n_{i}\right] \in E_{A}^{i}$ as
$\sum_{k \in f\left[i, n_{i}+1\right]} x_{k}^{i}-x_{l\left[i, n_{i}\right]}^{i}+s_{n_{i}}^{i}+s_{n_{i}+1}^{i}=0$.

Combining these transformations gives the following linear program:

Maximize ε,
subject to:

$$
\begin{align*}
& \sum_{k \in f[i, e+1]} x_{k}^{i}-x_{l[i, e]}^{i}+s_{e}^{i}+s_{e+1}^{i}=0 \\
& \quad \text { for } i \in I \text { and }[i, e] \in E_{A}^{i}, \tag{45}\\
& -\sum_{k \in f[i, e+1]} x_{k}^{i}+x_{l[i, e]}^{i}-s_{e}^{i}-s_{e+1}^{i}=0 \\
& \quad \text { for } i \in I \text { and }[i, e] \in E_{B}^{i}, \tag{46}\\
& \quad \sum_{i \in I} \sum_{k \in A_{i}} x_{k}^{i}+\varepsilon=1, \tag{47}\\
& -\sum_{i \in I} \sum_{k \in B_{i}} x_{k}^{i}-\varepsilon=-\beta, \tag{48}\\
& \lambda_{i} m_{k}^{i} \leqslant x_{k}^{i} \text { for } i \in I \text { and } k \in A_{i}, \tag{49}\\
& \beta \lambda_{i} m_{k}^{i} \leqslant x_{k}^{i} \quad \text { for } i \in I \text { and } k \in B_{i}, \tag{50}\\
& x, s, \varepsilon \geqslant 0 . \tag{51}
\end{align*}
$$

There is a value of the parameter β such that the linear program (44)-(51) has optimum objective value $\varepsilon>0$ if and only if the linear program (30)-(35) has unbounded objective values.

The linear program (44)-(51) is a network flow problem with right-hand sides and lower bounds that depend on the parameter β. The nodes of the network are:

- A node for each excursion $[i, e]$ corresponding to the constraints (45) and (46).
- A node for each Station A and B corresponding to the constraints (47) and (48).
- A node called the root corresponding to the redundant constraint

$$
\begin{aligned}
& \sum_{i \in I}\left(\sum_{k \in B_{i} \cap f[i, 1]} x_{k}^{i}-\sum_{k \in A_{i} \cap f[i, 1]} x_{k}^{i}\right) \\
& \quad+\sum_{i \in I: l[i, 1] \in B_{i}} s_{1}^{i}-\sum_{i \in I: l[i, 1] \in A_{i}} s_{1}^{i}=\beta-1,
\end{aligned}
$$

obtained by adding (45)-(48) and multiplying by -1 . The edges of the network are:
E.1. An edge from the node for Station A to the node for excursion $[i, e]$ at Station A. This edge corresponds to the variable $x_{l[i, e]}^{i}$ and has lower bound $\lambda_{i} m_{l[i, e]}^{i}$.
E.2. An edge from the node for excursion $[i, e]$ at Station B to the node for Station B. This edge corresponds to the variable $x_{[[i, e]}^{i}$ and has lower bound $\beta \lambda_{i} m_{[[i, e]}^{i}$.
E.3. An edge from the node for Station A to the node for excursion $[i, e]$ at Station B for each class (i, k) in $f[i, e+1]$. These edges correspond to the variables x_{k}^{i} for the classes in $f[i, e+1]$. The edge for class (i, k) has lower bound $\lambda_{i} m_{k}^{i}$.
E.4. An edge from the node for excursion $[i, e]$ at Station A to the node for Station B for each class (i, k) in $f[i, e+1]$. These edges correspond to the variables x_{k}^{i} for the classes in $f[i, e+1]$. The edge for class (i, k) has lower bound $\beta \lambda_{i} m_{k}^{i}$.
E.5. An edge from the node for Station A to the root for each class (i, k) in $f[i, 1]$ served at Station A. These edges correspond to the variables x_{k}^{i} for the classes in $f[i, 1]$ served at Station A. The edge for class (i, k) has lower bound $\lambda_{i} m_{k}^{i}$.
E.6. An edge from the root to the node for Station B for each class (i, k) in $f[i, 1]$ served at Station B. These edges correspond to the variables x_{k}^{i} for the classes in $f[i, 1]$ served at Station B. The edge for class (i, k) has lower bound $\beta \lambda_{i} m_{k}^{i}$.
E.7. An edge from the node for excursion $[i, 1]$ at Station A to the root. This edge corresponds to the variable s_{1}^{i} and has lower bound 0 .
E.8. An edge from the root to the node for excursion $[i, 1]$ at Station B. This edge corresponds to the variable s_{1}^{i} and has lower bound 0 .
E.9. An edge from the node for excursion $[i, e]$ at $\operatorname{Station} A$ to the node for excursion $[i, e-1]$ at Station B. This edge corresponds to the variable s_{e}^{i} and has lower bound 0 .
E.10. An edge from the node for excursion $[i, e-1]$ at Station A to the node for excursion $[i, e]$ at Station B. This edge corresponds to the variable s_{e}^{i} and has lower bound 0 .
E.11. An edge from the node for Station A to the node for Station B. This edge corresponds to the variable ε.

The node for A has a supply of 1 and the node for B has a demand for β. The remaining supply (if $\beta>1$) or demand (if $\beta<1$) is at the root. The linear program (30)-(35) has unbounded objective values if and only if there is a value of $\beta>0$ such that there is a feasible flow in this network with $\varepsilon>0$. Figure 4 illustrates this construction for the fluid network in Figure 5.

Rather than consider separately the two cases $\beta>1$ and $\beta<1$, we model the supply or demand at the root by changing the supply at the node for A and the demand at the node for B to $\max \{1, \beta\}$ and adding two additional edges:

- An edge from the node for A to the root with lower bound $\max \{0, \beta-1\}$ representing any supply at the root.
- An edge from the root to the node for B with lower bound $\max \{0,1-\beta\}$ representing any demand at the root.

The linear program (30)-(35) has unbounded objective values if and only if there is $\beta>0$ such that there is a feasible flow with value $\max \{1, \beta\}$ and $\varepsilon>0$. Figure 6 , illustrates this construction for the fluid network in Figure 5.

Finally, for given $\beta>0$, there is a flow of value $\max \{1, \beta\}$ from A to B in this network (see, for example, Figure 6) with a strictly positive flow on the edge corresponding to ε if and only if the minimum flow from the node for A to the node for B in this network without the edge for ε (see, for example, Figure 7) is strictly less than $\max \{1, \beta\}$-the remaining flow can be assigned to ε. Thus, we henceforth omit the edge for ε from the network and consider the resulting Minimum Flow Problem.

To summarize, given a feasible solution (x, ε) to the linear program (44)-(51) for some $\beta>0$, we can construct a feasible solution to the minimum flow problem with value

Figure 4. Parametric network flow problem equivalent to the linear program (44)-(51) as applied to the fluid network in Figure 5.
Note: The source A has supply 1 ; the sink B has demand β; if $\beta>1$, the root has supply $\beta-1$; if $\beta \leqslant 1$, the root has demand $1-\beta$.

Figure 5. A 12-class fluid network with two types of fluid.

Station A
Station B

$\max \{1, \beta\}-\varepsilon$ by sending $\max \{0, \beta-1\}$ on the new edge from A to the root and $\max \{0,1-\beta\}$ on the new edge from the root to B. Conversely, given a feasible flow x for the minimum flow problem for some $\beta>0$ with value $\max \{1, \beta\}-\varepsilon,(x, \varepsilon)$ is a feasible solution to the linear program (44)-(51).

From Theorem 1, the value of a minimum flow equals the capacity of a maximum A, B-cut and so, there are weights x satisfying (45)-(51) if and only if, for some value of $\beta>0$, each A, B-cut in this network has capacity strictly less than $\max \{1, \beta\}$. Thus, we have proved the following lemma.

Lemma 1. A two-station fluid network is globally stable if there is a value of $\beta>0$ for which the capacity of a maximum A, B-cut is strictly less than $\max \{1, \beta\}$.

Given an A, B-cut (L, R), we let L_{A} denote the excursions in L that are served at Station A and L_{B} denote those served at Station B. Similarly, we let R_{A} denote the excursions in R served at Station A and R_{B} denote those at Station B.

We refer to an A, B-cut with the root in L as an L-cut. An A, B-cut with the root in R is an R-cut. Note that because the upper bound on each edge is infinite, an A, B-cut (L, R) in this network has capacity $-\infty$ if some edge extends from a node in R to a node in L. That is to say, an A, B-cut (L, R) in this network has finite capacity if and only if no edge extends from a node in R to a node in L, i.e., if and only if (L, R) satisfies:

Figure 6. For given $\beta>0$, there is a feasible flow in the network of Figure 4 if and only if there is a feasible flow in this network with value $\max \{1, \beta\}$ and $\varepsilon>0$.

Rule 1. If $[i, e] \in L_{B}$, then $[i, e+1]$ is in L_{A}; otherwise the edge corresponding to the variable s_{e+1}^{i} (see E.9) extends from a node in R to a node in L.

Rule 2. If $[i, e] \in R_{A}$, then excursion $[i, e+1]$ is in R_{B}; otherwise the edge corresponding to the variable s_{e+1}^{i} (see E.10) extends from a node in R to a node in L.

Rule 3. If (L, R) is an R-cut, then $[i, 1] \notin L_{B}$ for each type i; otherwise the edge corresponding to the variable s_{1}^{i} (see E.8) extends from a node in R to a node in L.

Rule 4. If (L, R) is an L-cut, then $[i, 1] \notin R_{A}$ for each type i; otherwise the edge corresponding to the variable s_{1}^{i} (see E.7) extends from a node in R to a node in L.

Thus, we have the following lemma, which allows us to speak in terms of separating sets rather than cuts.

Lemma 2. An L-cut (L, R) has finite capacity if and only if $L_{B} \cup R_{A}$ is an A-strictly separating set. Similarly, an R-cut (L, R) has finite capacity if and only if $L_{B} \cup R_{A}$ is a B-strictly separating set.

We can express the capacity of a finite capacity L-cut (L, R) in terms of the corresponding A-strictly separating set $L_{B} \cup R_{A}$ and the collection $V\left(L_{B} \cup R_{A}\right)$ of classes it generates as follows:

$$
\begin{aligned}
c(L, R)= & \lambda m\left(V_{A}\left(L_{B} \cup R_{A}\right)\right)+\beta \lambda m\left(V_{B}\left(L_{B} \cup R_{A}\right)\right) \\
& +\max \{0,1-\beta\}
\end{aligned}
$$

To see this, observe that every edge contributing a positive amount to the capacity of an L-cut either starts at A or ends at B. The first term $\lambda m\left(V_{A}\left(L_{B} \cup R_{A}\right)\right)$ captures the contributions of edges that start at A, and the second term $\beta \lambda m\left(V_{B}\left(L_{B} \cup R_{A}\right)\right)$ captures the contributions of edges that end at B except for the edge from the root to B, which contributes $\max \{0,1-\beta\}$. The edges starting at A that contribute to the capacity of the cut are:

- The last class of each excursion $[i, e] \in R_{A}$. These are the edges corresponding to edges E. 1 that cross the cut.
- The first classes of each excursion $[i, e] \in A$ such that $[i, e-1] \in R_{B}$. These are the edges corresponding to edges E. 3 that cross the cut.

These are exactly the classes of $V_{A}\left(L_{B} \cup R_{A}\right)$. The classes of the virtual station served at A include all the classes of R_{A} and the first classes of those excursions $[i, e] \in L_{A}$ such that $[i, e-1] \notin L_{B}$. If $[i, e] \in R_{A}$, then, by Rule $1,[i, e-1] \in R_{B}$, and so all the classes of the excursion cross the cut. If $[i, e] \in L_{A}$ and $[i, e-1] \in R_{B}$, then all the first classes of the excursion cross the cut, but not the last class. Analogous arguments verify that $\beta \lambda m\left(V_{B}\left(L_{B} \cup R_{A}\right)\right)$ is exactly the con-

Figure 7. For given $\beta>0$, there is a feasible flow in the network of Figure 6 with value $\max \{1, \beta\}$ and $\varepsilon>0$ if and only if the minimum flow in this network has value v strictly less than $\max \{1, \beta\}$.

tribution of edges that end at B crossing the cut except for the edge from the root to B whose contribution is captured in the third term.

Thus, assuming the service times satisfy the nominal workload conditions, each finite capacity L-cut (L, R) imposes the condition
$\frac{\lambda m\left(V_{A}\left(L_{B} \cup R_{A}\right)\right)}{1-\lambda m\left(V_{B}\left(L_{B} \cup R_{A}\right)\right)}<\beta$
on β. One exception to (52) arises when R_{A} is empty and L_{B} consists of all the excursions at Station B, i.e., when $L_{B} \cup R_{A}$ is the trivial separating set consisting of all excursions at Station B. In this case, $V_{A}\left(L_{B} \cup R_{A}\right)=\emptyset$ and the condition $c(L, R)<1$ reduces to the nominal workload condition at Station B.

Similarly, we can express the capacity of a finite capacity R-cut (L, R) in terms of the corresponding B-strictly separating set $L_{B} \cup R_{A}$ and the collection $V\left(L_{B} \cup R_{A}\right)$ of classes it generates as follows:

$$
\begin{aligned}
c(L, R)= & \lambda m\left(V_{A}\left(L_{B} \cup R_{A}\right)\right)+\beta \lambda m\left(V_{B}\left(L_{B} \cup R_{A}\right)\right) \\
& +\max \{0, \beta-1\} .
\end{aligned}
$$

Thus, each finite capacity R-cut (L, R) imposes the condition
$\frac{1-\lambda m\left(V_{A}\left(L_{B} \cup R_{A}\right)\right)}{\lambda m\left(V_{B}\left(L_{B} \cup R_{A}\right)\right)}>\beta$
on β. One exception to (53) arises when L_{B} is empty and R_{A} consists of all the excursions at Station A, i.e., when $L_{B} \cup R_{A}$
is the trivial separating set consisting of all excursions at Station A. In this case, $V_{B}\left(L_{B} \cup R_{A}\right)=\emptyset$ and the condition $c(L, R)<1$ reduces to the nominal workload condition at Station A.

Combining (52) and (53) with Lemma 2 proves the following theorem, which provides explicit constraints on the service times sufficient to ensure the global stability of a two-station fluid network. In $\S 6$, we show that these "cut conditions" are equivalent to the virtual workload conditions, which we prove are also necessary to ensure global stability.

Theorem 3. A two-station fluid network with service times m and arrival rates $\lambda=\left(\lambda_{i}\right)_{i \in I}$ satisfying the nominal workload conditions (13) is globally stable if for each nontrivial A-strictly separating set S^{\prime} and nontrivial B-strictly separating set S,
$\frac{\lambda m\left(V_{A}\left(S^{\prime}\right)\right)}{1-\lambda m\left(V_{B}\left(S^{\prime}\right)\right)}<\frac{1-\lambda m\left(V_{A}(S)\right)}{\lambda m\left(V_{B}(S)\right)}$.

7. SUFFICIENCY

In $\S 6$, we showed that a two-station fluid network satisfying the nominal workload conditions is globally stable if the arrival rates and service times satisfy the cut conditions. We show that the virtual workload conditions are also sufficient to ensure global stability by showing that the arrival rates
and service times satisfy the cut conditions if they satisfy the virtual workload conditions.

Theorem 4. A two-station fluid network satisfying the nominal workload conditions (13) is globally stable if for each vector $\mathbf{e}=\left(e_{i}\right)_{i \in I}$ of excursions and each separating set S, we have
$\frac{\lambda m\left(V_{A}(S) \backslash F_{A}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)}<1$.
Proof. Each cut condition (54) is defined by a pair of nontrivial separating sets: an A-strictly separating set S^{\prime} and a B-strictly separating set S. We show that the cut condition induced by the pair $\left(S^{\prime}, S\right)$ is implied by a pair of virtual workload conditions.

For each type $i \in I$, let e_{i} be the largest index, such that:
a. Every earlier excursion served at Station B is in S^{\prime} (and hence no earlier excursion served at Station A is in S^{\prime}),
b. Every earlier excursion served at Station A is in S (and hence no earlier excursion served at Station B is in S).
Note that $\left[i, e_{i}\right] \notin S$. To see this, observe that if $\left[i, e_{i}\right] \in S$, then it must be in E_{A}^{i} and because every earlier excursion served at Station A is in S and every earlier excursion served at Station B is in S^{\prime}, either S is trivial or $e_{i}+1$ satisfies (a) and (b). A similar argument shows that $\left[i, e_{i}\right] \notin S^{\prime}$.

The vector $\mathbf{e}=\left(e_{i}\right)_{i \in I}$ of excursions and the separating set S^{\prime} induce the virtual workload condition:

$$
\begin{equation*}
\frac{\lambda m\left(V_{A}\left(S^{\prime}\right) \backslash F_{A}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}\left(S^{\prime}\right) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)}<1 . \tag{56}
\end{equation*}
$$

Similarly, the vector e and the separating set S induce the virtual workload condition

$$
\begin{equation*}
\frac{\lambda m\left(V_{A}(S) \backslash F_{A}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)}<1 . \tag{57}
\end{equation*}
$$

We show that (56) and (57) imply the cut condition for the pair $\left(S^{\prime}, S\right)$.

From (56) we have that

$$
\frac{\lambda m\left(V_{A}\left(S^{\prime}\right) \backslash F_{A}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)-\lambda m\left(V_{B}\left(S^{\prime}\right) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}<\frac{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)},
$$

and from (57) we have that

$$
\frac{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)-\lambda m\left(V_{A}(S) \backslash F_{A}^{\leqslant} \leqslant(\mathbf{e})\right)}{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}>\frac{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)} .
$$

Thus,

$$
\begin{align*}
& \frac{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)-\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant(\mathbf{e})\right)}{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)} \\
& \quad>\frac{\lambda m\left(V_{A}\left(S^{\prime}\right) \backslash F_{A} \leqslant(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)-\lambda m\left(V_{B}\left(S^{\prime}\right) \backslash F_{B}^{\leqslant} \leqslant(\mathbf{e})\right)} . \tag{58}
\end{align*}
$$

Now, because $\left[i, e_{i}\right] \notin S$ for each $i \in I$,

$$
\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant(\mathbf{e})\right)+\lambda m\left(F_{A}^{<}(\mathbf{e})\right) \geqslant \lambda m\left(V_{A}(S)\right)
$$

Further, because e_{i} satisfies (b),
$\lambda m\left(V_{B}(S) \backslash F_{B} \leqslant(\mathbf{e})\right)=\lambda m\left(V_{B}(S)\right)$.
Likewise, because $\left[i, e_{i}\right] \notin S^{\prime}$ for each $i \in I$,
$\lambda m\left(V_{B}\left(S^{\prime}\right) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)+\lambda m\left(F_{B}^{<}(\mathbf{e})\right) \geqslant \lambda m\left(V_{B}\left(S^{\prime}\right)\right)$.
And, because e_{i} satisfies (a),
$\lambda m\left(V_{A}\left(S^{\prime}\right) \backslash F_{A} \leqslant(\mathbf{e})\right)=\lambda m\left(V_{A}\left(S^{\prime}\right)\right)$.
Thus, (58) implies that
$\frac{1-\lambda m\left(V_{A}(S)\right)}{\lambda m\left(V_{B}(S)\right)}>\frac{\lambda m\left(V_{A}\left(S^{\prime}\right)\right)}{1-\lambda m\left(V_{B}\left(S^{\prime}\right)\right)}$,
which is exactly the cut condition for the pair S^{\prime} and S.

8. NECESSITY

In this section, we show that the virtual workload conditions (15) are necessary to ensure the global stability of a twostation fluid network.

We first generalize to virtual stations the argument used to show the necessity of the nominal workload conditions to ensure global stability.

Lemma 3. Let C be a set of classes such that

$\lambda m(C) \geqslant 1$.
Each nonidling fluid solution $(Q(\cdot), T(\cdot))$ satisfying

$$
\begin{equation*}
\sum_{(i, k) \in C} \dot{T}(t) \leqslant 1 \tag{59}
\end{equation*}
$$

for each regular point t is unstable.
Proof. Consider a nonidling fluid solution $(Q(\cdot), T(\cdot))$ satisfying (5)-(10) and (59). Define

$$
\begin{equation*}
W(Q(t))=\sum_{(i, k) \in C} m_{k}^{i} Z_{k}^{i}(t)=\sum_{(i, k) \in C} m_{k}^{i} \sum_{l=1}^{k} Q_{l}^{i}(t) \tag{60}
\end{equation*}
$$

to be the total workload for the classes of C. Because

$$
Z_{k}^{i}(t)=Z_{k}^{i}(0)+\lambda_{i} t-T_{k}^{i}(t) / m_{k}^{i}
$$

$$
\begin{aligned}
W(Q(t)) & =W(Q(0))+\sum_{(i, k) \in C} \lambda_{i} m_{k}^{i} t-\sum_{(i, k) \in C} T_{k}^{i}(t) \\
& \geqslant W(Q(0))+(\lambda m(C)-1) t
\end{aligned}
$$

Hence the workload for the classes of C grows linearly with time, and the fluid solution diverges.

The classes of any set C satisfying (59) can be viewed as being served by a single "virtual" server, which allocates its efforts among them. We show that under the appropriate static buffer priority policy, a virtual station as defined in Definition 4 satisfies (59), hence the moniker "virtual station."

We next show how expediting the first few classes magnifies the influence of virtual stations in the remaining network. This concept was originally introduced under the rubric of push starting in Dai and Vande Vate (1996).

Let $\mathbf{e}=\left(e_{i}\right)_{i \in I}$ be a vector of excursions, one for each type. The vector e partitions the classes of the network into the classes of $F^{<}(\mathbf{e})$ and the remainder of the classes, which we denote by $R(\mathbf{e})$.

Let
$\tilde{m}_{k}^{i}=m_{k}^{i} /\left(1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)\right) \quad$ for $(i, k) \in R_{A}(\mathbf{e})$,
$\tilde{m}_{k}^{i}=m_{k}^{i} /\left(1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)\right) \quad$ for $(i, k) \in R_{B}(\mathbf{e})$.
Consider the induced fluid model on the classes of $R(\mathbf{e})$:

$$
\begin{align*}
Q_{k}^{i}(t) & =Q_{k}^{i}(0)+\tilde{\mu}_{k-1}^{i} T_{k-1}^{i}(t)-\tilde{\mu}_{k}^{i} T_{k}^{i}(t) \geqslant 0 \\
t & \geqslant 0,(i, k) \in R(\mathbf{e}) \tag{63}\\
T_{k}^{i}(0) & =0 \quad \text { and } \quad T_{k}^{i}(\cdot) \text { is nondecreasing, } \quad(i, k) \in R(\mathbf{e}) \tag{64}
\end{align*}
$$

$t-\sum_{(i, k) \in R_{A}(\mathbf{e})} T_{k}^{i}(t) \quad$ is nondecreasing,
$t-\sum_{(i, k) \in R_{B}(\mathbf{e})} T_{k}^{i}(t) \quad$ is nondecreasing,
$\sum_{(i, k) \in R_{A}(\mathbf{e})} \dot{T}_{k}^{i}(t)=1 \quad$ whenever $\quad \sum_{(i, k) \in R_{A}(\mathbf{e})} Q_{k}^{i}(t)>0$
and t is a regular point,
$\sum_{(i, k) \in R_{B}(\mathbf{e})} \dot{T}_{k}^{i}(t)=1 \quad$ whenever $\quad \sum_{(i, k) \in R_{B}(\mathbf{e})} Q_{k}^{i}(t)>0$ and t is a regular point,
where $\tilde{\mu}_{k}^{i}=1 / \tilde{m}_{k}^{i}$ for $(i, k) \in R(\mathbf{e})$. Note that for each type $i \in I, l\left[i, e_{i}\right]$ is the index of the first class of type i in $R(\mathbf{e})$. Thus, for each type $i \in I$, we let $\tilde{\mu}_{l\left[i, e_{i}-1\right]}^{i}=\lambda_{i}$ and $T_{l\left[i, e_{i}-1\right]}^{i}(t)=t$ to model the arrivals to the induced fluid network.

Lemma 4. If the fluid model (63)-(68) is unstable, then the fluid model (5)-(10) is unstable.

We leave the proof of this lemma to the appendix.
Proof of Theorem 2. In light of Lemma 4, it is enough to show that if the virtual station $V(S)$ corresponding to some strictly separating set S satisfies
$\lambda m(V(S)) \geqslant 1$,
then there is an unstable fluid solution. Because $V(S)$ is a virtual station in the corresponding queueing network, there is a static buffer priority discipline under which no two classes in $V(S)$ can be served simultaneously; see Dai and Vande

Vate (1996). Therefore, any fluid limit $(Q(\cdot), T(\cdot))$ as defined in Dai (1996) is a fluid solution that satisfies (59). By Lemma 3, the fluid network is not globally stable. When (16) is satisfied or (69) is strictly satisfied, the same argument shows that the WIP goes to infinity.

9. UNSTABLE CYCLES

Although the preceding proof of Theorem 2 is succinct, it involves a rather circuitous argument via queueing networks and fluid limits. We provide a more direct, but somewhat longer argument establishing the necessity of the virtual workload conditions to ensure stability of a two-station fluid network. When the arrival rates and service times satisfy the nominal workload conditions but do not satisfy the virtual workload conditions, we provide an explicit construction of a nonidling fluid solution $(Q(\cdot), T(\cdot))$ that is unstable. This argument is not only more direct but also illustrates how the work-in-process in an unstable system swings from station to station as it grows to infinity. Iterations like those presented here are indispensable when studying the stability of fluid networks with more than two stations. See, for example, Dai et al. (1999).

Suppose the arrival rates and service times satisfy the nominal workload conditions but do not satisfy the virtual workload conditions. We choose a strictly separating set S and a push start set $F^{<}(\mathbf{e})$ so that among all such pairs,

$$
\frac{\lambda m\left(V_{A}(S) \backslash F_{A}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B} \leqslant(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)}
$$

is maximum. Thus, we assume that

$$
\begin{equation*}
\frac{\lambda m\left(V_{A}(S) \backslash F_{A}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)} \geqslant 1 \tag{70}
\end{equation*}
$$

and for each strictly separating set S^{\prime} and push start set $F^{<}\left(\mathbf{e}^{\prime}\right)$,

$$
\begin{align*}
& \frac{\lambda m\left(V_{A}(S) \backslash F_{A}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)} \\
& \quad \geqslant \frac{\lambda m\left(V_{A}\left(S^{\prime}\right) \backslash F_{A}^{\leqslant}\left(\mathbf{e}^{\prime}\right)\right)}{1-\lambda m\left(F_{A}^{<}<\left(\mathbf{e}^{\prime}\right)\right)}+\frac{\lambda m\left(V_{B}\left(S^{\prime}\right) \backslash F_{B}^{\leqslant}\left(\mathbf{e}^{\prime}\right)\right)}{1-\lambda m\left(F_{B}^{<}\left(\mathbf{e}^{\prime}\right)\right)} \tag{71}
\end{align*}
$$

Note that because $e_{i} \geqslant 1$ for each type i, the set $F \leqslant(\mathbf{e})$ will include all the classes of every first excursion. Thus we may, without loss of generality, restrict attention to strictly separating sets S as we have above.

To construct an unstable fluid solution, we must consider in greater detail the structure of the strictly separating set S. The notation required to describe this dissection of strictly separating sets in full generality is somewhat involved, but the ideas are relatively straightforward. We first partition S into monotype separating sets or separating sets consisting of excursions for a single type of fluid. In particular, we let $S^{i}=S \cap E^{i}$, be the excursions of S for fluid type i.

We further partition the union of each monotype separating set and its neighbors into intervals or sets of consecutive excursions. We use $[i, s, t)$ to denote the interval
$\left\{[i, e] \in E^{i}: s \leqslant e<t\right\}$ and (i,s,t) to denote the interval $\left\{[i, e] \in E^{i}: s<e<t\right\}$.

A maximal interval with the property that all its excursions at one station are in S^{i} and, consequently, none of its excursions at the other station are in S^{i} is called a section of S^{i}. We refer to a section X of S^{i} with $X_{A} \subseteq S^{i}$ and $X \cap S_{B}^{i}=\emptyset$ as an A-section of S^{i}. Similarly, we refer to a section Y of S^{i} with $Y_{B} \subseteq S^{i}$ and $Y \cap S_{A}^{i}=\emptyset$ as a B-section of S^{i}. A typical A-section is of the form $[i, s, t)$ with $s \in E_{B}^{i}$. The ending excursion t is either in E_{A}^{i} or $t=n_{i}+1$. Similarly a typical B-section is of the form $[i, s, t)$ with $s \in E_{A}^{i}$, and $t \in E_{B}^{i}$ or $t=n_{i}+1$. In either case, the end excursions s and t are not in the separating set S and $s-1 \notin S$.

For example, consider the strictly separating set
$S=\{[1,2],[1,7],[2,3],[2,5],[2,8]\}$
in Figure 3. Following the definition of virtual station in Definition 4,

$$
\begin{aligned}
V(S)=\{ & (1,2),(1,3),(1,6),(1,8),(1,10),(1,12),(1,13), \\
& (2,2),(2,4),(2,5),(2,8),(2,9),(2,12),(2,14)\}
\end{aligned}
$$

The intervals $[1,1,4)=\{[1,1],[1,2],[1,3]\}$ and $[2,2,7)=$ $\{[2,2],[2,3],[2,4],[2,5],[2,6]\}$ of excursions are the A-sections of this separating set. The B-sections are $[1,6,9)=\{[1,6],[1,7],[1,8]\}$ and $[2,7,9)=\{[2,7],[2,8]\}$.

The sections of S^{i} partition $S^{i} \cup \Gamma\left(S^{i}\right)$ into intervals. We partition the remaining excursions of E^{i} into trivial sections. In particular, each excursion of $E^{i} \backslash\left(S^{i} \cup \Gamma\left(S^{i}\right)\right)$ forms a trivial section of S^{i}. Each excursion $[i, e] \in E_{A}^{i} \backslash\left(S^{i} \cup \Gamma\left(S^{i}\right)\right)$ forms a trivial B-section of S^{i} (because $\{[i, e]\} \cap E_{B}^{i}=\emptyset \subseteq S^{i}$ and $\{[i, e]\} \cap S_{A}^{i}=\emptyset$). Likewise, each excursion $[i, e] \in E_{B}^{i} \backslash$ ($S^{i} \cup \Gamma\left(S^{i}\right)$) forms a trivial A-section of S^{i}. For example, $[1,5,6)=\{[1,5]\}$ is a trivial A-section and $[1,4,5)=\{[1,4]\}$ and $[2,1,2)=\{[2,1]\}$ are the trivial B-sections of the separating set (72) in Figure 3.

When we include the trivial sections, the sections of S^{i} partition the excursions of E^{i} into intervals and, if we order these intervals in the natural way, they alternate between A-sections and B-sections.

Our construction relies on coordinating the activities of the servers across classes related to, but offset from, the classes of each section. In particular, we associate with each section $[i, s, t)$ the collection of classes

$$
C([i, s, t))=\{l[i, s]\} \bigcup_{e \in(i, s, t)} E[i, e] \cup f[i, t]
$$

called a block. Note that the block $C([i, s, t))$ differs from the classes of the section $[i, s, t)$ in that we omit the first classes of the first excursion in $[i, s, t)$ and we add the first classes of the first excursion of the next section. In the example of Figure 3, $C([1,1,4))=\{(1, k): 1 \leqslant k \leqslant 6\}$ and $C([2,2,7))=\{(2, k): 3 \leqslant k \leqslant 12\}$.

The following lemma should help motivate our definition of sections and blocks. Its proof is postponed to the appendix.

Lemma 5. Let S be a strictly separating set and $F^{<}(\mathbf{e})$ a push-start set satisfying (70) and (71). Then for each A-section $X=[i, s, t)$ of S^{i}, where $s \in E_{B}^{i}$ and $t \in E_{A}^{i}$,
$\frac{\lambda m\left(C_{A}(X) \backslash F_{A}^{<}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)} \geqslant \frac{\lambda m\left(C_{B}(X) \backslash F_{B}^{<}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)}$.
Likewise, for each B-section $Y=[i, s, t)$ of S^{i}, where $s \in E_{A}^{i}$ and $t \in E_{B}^{i}$,
$\frac{\lambda m\left(C_{B}(Y) \backslash F_{B}^{<}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)} \geqslant \frac{\lambda m\left(C_{A}(Y) \backslash F_{A}^{<}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}$.
The transformations (61)-(62) allow us to assume, without loss of generality, that $F^{<}(\mathbf{e})$ is empty. Implicit in this is the assumption that for each type $i \in I, e_{i}=1$ and the first excursion consists only of the class $(i, 1)$.

Let I_{A} be the set of types with first excursion $[i, 1] \in E_{A}^{i}$ and I_{B} the types with first excursion $[i, 1] \in E_{B}^{i}$. For $i \in I_{A}$, the sections of S^{i} alternate between B-sections and A-sections beginning with a B-section. We denote these sections as
$Y_{1}^{i}, X_{2}^{i}, Y_{3}^{i}, X_{4}^{i}, \ldots, Y_{2 b_{i}-1}^{i}, X_{2 b_{i}}^{i}$,
where b_{i} is the total number of B-sections and $X_{2 b_{i}}^{i}$ is possibly empty. Similarly, for $i \in I_{B}$, the sections of S^{i} alternate between A-sections and B-sections beginning with an A-section. We denote these sections as
$X_{1}^{i}, Y_{2}^{i}, X_{3}^{i}, Y_{4}^{i}, \ldots, X_{2 b_{i}-1}^{i}, Y_{2 b_{i}}^{i}$,
with $Y_{2 b_{i}}^{i}$ possibly empty. The sections Y_{1}^{i} and X_{1}^{i} are called input sections.

In the example of Figure 3, type 1 is in I_{B} and type 2 is in I_{A}. The sections for type 1 are
$X_{1}^{1}=[1,1,4), \quad Y_{2}^{1}=[1,4,5)$,
$X_{3}^{1}=[1,5,6), \quad Y_{4}^{1}=[1,6,9)$.
The sections for type 2 are
$Y_{1}^{2}=[2,1,2), \quad X_{2}^{2}=[2,2,7), \quad Y_{3}^{2}=[2,7,9)$.
Therefore,
$C\left(X_{1}^{1}\right)=\{(1, k): k=1, \ldots, 6\}$,
$C\left(Y_{2}^{1}\right)=\{(1,7),(1,8)\}$,
$C\left(X_{3}^{1}\right)=\{(1,9),(1,10)\}$,
$C\left(Y_{4}^{1}\right)=\{(1,11),(1,12),(1,13),(1,14)\}$,
$C\left(Y_{1}^{2}\right)=\{(2,1),(2,2)\}$,
$C\left(X_{2}^{2}\right)=\{(2, k): k=3, \ldots, 12\}$,
$C\left(Y_{3}^{2}\right)=\{(2,13),(2,14)\}$.
The following lemma is a direct consequence of our definitions.

Lemma 6. The virtual station $V(S)$ has the following decomposition.

$$
\begin{aligned}
V(S)= & \bigcup_{i \in I_{A}} \bigcup_{r=1}^{b_{i}}\left(C_{B}\left(Y_{2 r-1}^{i}\right) \cup C_{A}\left(X_{2 r}^{i}\right)\right) \\
& \bigcup_{i \in I_{B}} \bigcup_{r=1}^{b_{i}}\left(C_{A}\left(X_{2 r-1}^{i}\right) \cup C_{B}\left(Y_{2 r}^{i}\right)\right)
\end{aligned}
$$

Let us restate part of Theorem 2.
Theorem 5. Assume that there is a strictly separating set S and push start set $F^{<}$(e) such that (70) and (71) hold. One can construct an unstable nonidling fluid solution $(Q(\cdot), T(\cdot))$. Furthermore, the unstable fluid solution satisfies the static buffer priority conditions (11)-(12).

Proof. In light of Lemma 4, we may assume that the push start set $F^{<}(\mathbf{e})$ is empty. This would be the case, for example, if $e_{i}=1$ and $f[i, 1]=\emptyset$ for each type $i \in I$, which is true of the induced network on $R(\mathbf{e})$ obtained from the construction used in the proof of Lemma 4. Thus, we assume that the arrival rates and service times satisfy the nominal workload conditions but violate the virtual workload condition for a strictly separating set S, i.e.,
$\lambda m(V(S)) \geqslant 1$.
Under this transformation, (73) reduces to
$\lambda m\left(C_{A}(X)\right) \geqslant \lambda m\left(C_{B}(X)\right)$
for each A-section X, and (74) reduces to
$\lambda m\left(C_{B}(Y)\right) \geqslant \lambda m\left(C_{A}(Y)\right)$
for each B-section Y.
For the example in Figure 3, we have

$$
\begin{aligned}
& \lambda_{1}\left(m_{2}^{1}+m_{3}^{1}+m_{6}^{1}+m_{8}^{1}+m_{10}^{1}+m_{12}^{1}+m_{13}^{1}\right) \\
& \quad+\lambda_{2}\left(m_{2}^{2}+m_{4}^{2}+m_{5}^{2}+m_{8}^{2}+m_{9}^{2}+m_{12}^{2}+m_{14}^{2}\right) \geqslant 1,
\end{aligned}
$$

and

$$
\begin{aligned}
& m_{2}^{1}+m_{3}^{1}+m_{6}^{1} \geqslant m_{1}^{1}+m_{4}^{1}+m_{5}^{1}, \\
& m_{8}^{1} \geqslant m_{7}^{1}, \\
& m_{9}^{1} \geqslant m_{10}^{1}, \\
& m_{12}^{1}+m_{13}^{1} \geqslant m_{11}^{1}+m_{14}^{1}, \\
& m_{2}^{2} \geqslant m_{1}^{2}, \\
& m_{4}^{2}+m_{5}^{2}+m_{8}^{2}+m_{9}^{2}+m_{12}^{2} \geqslant m_{3}^{2}+m_{6}^{2}+m_{7}^{2}+m_{10}^{2}+m_{11}^{2}, \\
& m_{14}^{2} \geqslant m_{13}^{2} .
\end{aligned}
$$

We now construct a nonidling fluid solution $(Q(\cdot), T(\cdot))$ such that

$$
\sum_{(i, k) \in V(S)} \dot{T}_{k}^{i}(t) \leqslant 1
$$

for each regular point t. Let
$\theta_{k}^{i}=\dot{T}_{k}^{i}(t)$.
We intentionally drop the variable t from θ_{k}^{i} since, in our construction, $T_{k}^{i}(\cdot)$ is piecewise linear and hence θ_{k}^{i} is piecewise constant. If the fluid solution $(Q(\cdot), T(\cdot))$ is linear in an interval $[a, b]$, it is enough to specify $Q(a), T(a)$ and $\left(\theta_{k}^{i}\right)$ to completely characterize the fluid solution throughout the interval. In fact, for $t \in[a, b]$,
$T_{k}^{i}(t)=T_{k}^{i}(a)+\theta_{k}^{i}(t-a)$,
$Q_{k}^{i}(t)=Q_{k}^{i}(a)+\mu_{k-1}^{i} \theta_{k-1}^{i}(t-a)-\mu_{k}^{i} \theta_{k}^{i}(t-a)$.

Note that θ_{k}^{i} is the fraction of its effort the server allocates to class (i, k) and $\mu_{k}^{i} \theta_{k}^{i}$ is the rate at which fluid leaves the buffer and hence the rate at which it enters the next buffer. Throughout our construction we show that not only must

$$
\sum_{i \in I, k \in A_{i}} \dot{T}_{k}^{i}(t)=\sum_{i \in I, k \in A_{i}} \theta_{k}^{i} \leqslant 1
$$

and
$\sum_{i \in I, k \in B_{i}} \dot{T}_{k}^{i}(t)=\sum_{i \in I, k \in B_{i}} \theta_{k}^{i} \leqslant 1$,
at each time t, but also the two stations cannot serve classes in $V(S)$ simultaneously. Thus, we show that whenever $\theta\left(V_{A}(S)\right)>0, \quad \theta\left(V_{B}(S)\right)=0$ and whenever $\theta\left(V_{B}(S)\right)>0$, $\theta\left(V_{A}(S)\right)=0$, from which it immediately follows that

$$
\sum_{(i, k) \in V(S)} \dot{T}_{k}^{i}(t) \leqslant 1
$$

for each regular point t. Again, for a set X of classes, we let $\theta(X)=\Sigma_{(i, k) \in X} \theta_{k}^{i}$.

We begin with u_{r}^{i} units in the first buffer of $C\left(X_{r}^{i}\right)$ for each A-section X_{r}^{i} so that all the WIP is initially at Station B. So, in the example of Figure 3, we begin with u_{1}^{1} units in buffer $(1,1)$ (the first class of the block $\left.C\left(X_{1}^{1}\right)\right), u_{3}^{1}$ units in buffer $(1,9)$ (the first class of the block $C\left(X_{3}^{1}\right)$) and u_{2}^{2} units in buffer $(2,3)$ (the first class of the block $C\left(X_{2}^{2}\right)$).

Step 1. One at a time, for each noninput A-section $X_{r}^{i}=[i, s, t)$ drain the contents of $l[i, s]$, the first buffer of $C\left(X_{r}^{i}\right)$, into the first buffer of $C_{A}\left(X_{r}^{i}\right)$ and the first buffer $l[i, t]$ of $C\left(Y_{r+1}^{i}\right)$ (or out of the system if X_{r}^{i} is the last section for type i) both at Station A. This process continues until the first buffer of $C\left(X_{r}^{i}\right)$ is empty. Figure 8 illustrates this step for the A-sections X_{3}^{1} and X_{2}^{2} in the example of Figure 3.

At the end of this step all the buffers at Station B in the blocks of non-input sections are empty. To see that this is consistent with a nonidling dispatch policy, observe that the

Figure 8. Depiction of the flows when Step 1 is applied to X_{3}^{1}, shown in part (a), and to X_{2}^{2}, shown in part (b), in the example of Figure 3.
Note: Only the relevant classes are shown. Arrows depict the flows, and an open box in front of a class denotes a buffer that may contain a positive quantity of fluid during the step. Plus signs inside a buffer indicate that it is accumulating fluid, and minus signs indicate that it is draining. All other indicated buffers remain empty throughout the step.

system defining the flows is:
$\theta\left(C_{A}\left(X_{r}^{i}\right)\right)=1 \quad$ Because work is accumulating at Station A,
$\theta\left(C_{B}\left(X_{r}^{i}\right)\right)=1 \quad$ Because there is work accumulated at Station B,
$\mu_{k}^{i} \theta_{k}^{i}-\mu_{k-1}^{i} \theta_{k-1}^{i}=0 \quad$ For each class (i, k) in $C\left(X_{r}^{i}\right)$ except the first two. The first class's buffer is draining, so the rate of flow out is faster than the rate of flow in. The second class's buffer is accumulating fluid, so the rate of flow in is greater than the rate of flow out.
This system has the unique solution
$\theta_{k}^{i}=\frac{m_{k}^{i}}{m\left(C_{A}\left(X_{r}^{i}\right)\right)}$
for each class in $C\left(X_{r}^{i}\right)$ except the first one. This class, $l[s, i]$, has
$\theta_{l[s, i]}^{i}=\frac{m_{l[s, i]}^{i}}{m\left(C_{A}\left(X_{r}^{i}\right)\right)}+\frac{m\left(C_{A}\left(X_{r}^{i}\right)\right)-m\left(C_{B}\left(X_{r}^{i}\right)\right)}{m\left(C_{A}\left(X_{r}^{i}\right)\right)}$,
which, by (75), is at least as great as
$\frac{m_{l[s, i]}^{i}}{m\left(C_{A}\left(X_{r}^{i}\right)\right)}$.
Thus,
$\mu_{l[i, s]}^{i} \theta_{l[s, i]}^{i} \geqslant \frac{1}{m\left(C_{A}\left(X_{r}^{i}\right)\right)}=\mu_{l[s, i]+1}^{i} \theta_{l[s, i]+1}^{i}$,
and so fluid is arriving at the second buffer of $C\left(X_{r}^{i}\right)$ at least as fast as the server at Station A processes it. Thus, both stations are busy until the first buffer in $C\left(X_{r}^{i}\right)$ is emptied. The contents of the buffer have moved to the first buffer of
the next excursion and the first buffer of $C\left(Y_{r+1}^{i}\right)$ - both at Station A.

Both servers are fully busy during this entire step, so any fluids arriving to the system during this period simply accumulate at their first buffers.

Step 2. Next, for each noninput A-section $X_{r}^{i}=[i, s, t)$ one at a time in any order, drain the first buffer of $C_{A}\left(X_{r}^{i}\right)$ into the first buffer of $C\left(Y_{r+1}^{i}\right)$ (or out of the system if this is a last section).

When the first buffer of $C_{A}\left(X_{r}^{i}\right)$ is emptied, we have accumulated in the first buffer of $C\left(Y_{r+1}^{i}\right)$ (if there is one) all the flow originally in the first buffer of $C\left(X_{r}^{i}\right)$. Figure 9 illustrates this step for the A-sections X_{3}^{1} and X_{2}^{2} in the example of Figure 3.

The system defining the flows for each of these A-sections is
$\theta\left(C_{A}\left(X_{r}^{i}\right)\right)=1$ Since work is accumulated at Station A,
$\mu_{k}^{i} \theta_{k}^{i}-\mu_{k-1}^{i} \theta_{k-1}^{i}=0 \quad$ For each class (i, k) in $C\left(X_{r}^{i}\right)$ except the first two. We emptied the buffer of the first class in Step 1 and we are draining the buffer of the second class.
This system has the unique solution

$$
\theta_{k}^{i}=\frac{m_{k}^{i}}{m\left(C_{A}\left(X_{r}^{i}\right)\right)}
$$

for each class in the block except the first, which has $\theta_{l[s, i]}^{i}=0$.

These flows keep the server at Station A busy, but by Lemma 5 may not keep the server at Station B busy. Whenever these flows do not keep the server at Station B busy, it can process fluids that have accumulated at classes $(1, i)$ for $i \in I_{B}$. However, because the server at Station A is busy,

Figure 9. Depiction of the flows when Step 2 is applied to X_{3}^{1}, shown in part (a), and to X_{2}^{2}, shown in part (b), in the example of Figure 3.
Note: Only the relevant classes are shown. Arrows depict the flows, and an open box in front of a class denotes a buffer that may contain a positive quantity of fluid during the step. Plus signs inside a buffer indicate that it is accumulating fluid, and minus signs indicate that it is draining. The \pm inside a buffer indicates that it may either accumulate fluid or drain during the step, depending on the balance of flows into and out of the buffer. The \oplus inside a buffer indicates that it may either accumulate fluid or be empty. All other indicated buffers remain empty throughout the step.

these fluids will accumulate at the first buffer of their second excursion.

At the end of Step 2, all the fluid initially in the first buffer of $C\left(X_{r}^{i}\right)$ for each noninput A-section X_{r}^{i} has been moved to the first buffer of $C\left(Y_{r+1}^{i}\right)$. For the example in Figure 3, fluid in buffers $(1,9)$ and $(2,3)$ has been moved to buffers $(1,11)$ and $(2,13)$. For each A-section X_{r}^{i}, moving u_{r}^{i} units through the classes of $C\left(X_{r}^{i}\right)$ requires times $u_{r}^{i} m\left(C_{A}\left(X_{r}^{i}\right)\right)$. Thus, we spend

$$
\begin{equation*}
\tau_{1}=\sum_{i \in I_{A}} \sum_{r=1}^{b_{i}} u_{2 r}^{i} m\left(C_{A}\left(X_{2 r}^{i}\right)\right)+\sum_{i \in I_{B}} \sum_{r=2}^{b_{i}} u_{2 r-1}^{i} m\left(C_{A}\left(X_{2 r-1}^{i}\right)\right) \tag{79}
\end{equation*}
$$

on Steps 1 and 2.
Note that these two steps are consistent with a static buffer priority dispatch policy, which uses the last-buffer-first-served dispatch policy within the block of each noninput A-section.

Step 3. One at a time, for each type $i \in I_{B}$ in order, drain the fluid that has accumulated in class $(i, 1)$ of $C\left(X_{1}^{i}\right)$ into $(i, 2)$, the first buffer of $C_{A}\left(X_{1}^{i}\right)$, and the first buffer of $C\left(Y_{2}^{i}\right)$ (or out of the system if X_{1}^{i} is the last section for type i), while keeping the buffers of $C\left(X_{1}^{j}\right)$ empty for all earlier types $j \in I_{B}$, with $j<i$. This process continues until buffer $(i, 1)$ is empty. Figure 10 (a) illustrates this step for type 1 in the example of Figure 3.

At the end of this step all the buffers at Station B are empty. To see that this is consistent with a nonidling dispatch policy, observe that the system defining the flows for each type $i \in I_{B}$ is

$$
\begin{aligned}
\sum_{j \in I_{B}, j \leqslant i} \theta\left(C_{A}\left(X_{1}^{j}\right)\right)=1 & \begin{array}{l}
\text { Because work is accumulating } \\
\text { at Station } A,
\end{array} \\
\sum_{j \in I_{B}, j \leqslant i} \theta\left(C_{B}\left(X_{1}^{j}\right)\right)=1 & \begin{array}{l}
\text { Because there is work accumu- } \\
\text { lated at Station } B,
\end{array} \\
\mu_{k}^{j} \theta_{k}^{j}-\mu_{k-1}^{j} \theta_{k-1}^{j} \theta_{1}^{j}=\lambda_{j} & \text { For each type } j \in I_{B} \text { with } j<i, \\
\mu_{k}^{i} \theta_{k}^{i}-\mu_{k-1}^{i} \theta_{k-1}^{i}=0 & \begin{array}{l}
\text { For each class }(j, k) \text { in } C\left(X_{1}^{j}\right) \\
\text { where } j \in I_{B}, j<i \text { and } k>1, \\
\text { cept the first two. The first class’s }
\end{array} \\
& \begin{array}{l}
\text { buffer is draining, so the rate of } \\
\text { flow out is faster than the rate of }
\end{array} \\
& \begin{array}{l}
\text { flow in. The second class’s buffer } \\
\text { is accumulating fluid, so the rate } \\
\text { of flow in is greater than the rate } \\
\text { of flow out. }
\end{array}
\end{aligned}
$$

This system has the unique solution

$$
\begin{aligned}
\theta_{k}^{j}= & \lambda_{k}^{j} m_{k}^{j} \quad \begin{array}{l}
\text { for each class }(j, k) \in C\left(X_{1}^{j}\right) \\
\text { where } j \in I_{B} \text { and } j<i,
\end{array} \\
\theta_{k}^{i}= & \frac{m_{k}^{i}\left(1-\sum_{j \in I_{B}, j<i} \lambda m\left(C_{A}\left(X_{1}^{j}\right)\right)\right)}{m\left(C_{A}\left(X_{1}^{i}\right)\right)} \\
& \text { for each class }(i, k) \in C\left(X_{1}^{i}\right) \text { except class }(i, 1), \\
\theta_{1}^{i}= & \frac{m_{1}^{i}\left(1-\sum_{j \in I_{B}, j<i} \lambda m\left(C_{A}\left(X_{1}^{j}\right)\right)\right)}{m\left(C_{A}\left(X_{1}^{i}\right)\right)} \\
& +\sum_{j \in I_{B}, j<i}\left(\lambda m\left(C_{A}\left(X_{1}^{j}\right)\right)-\lambda m\left(C_{B}\left(X_{1}^{j}\right)\right)\right)
\end{aligned}
$$

which by (75) is at least as great as
$\frac{m_{1}^{i}\left(1-\sum_{j \in I_{B}, j<i} \lambda m\left(C_{A}\left(X_{1}^{j}\right)\right)\right)}{m\left(C_{A}\left(X_{1}^{i}\right)\right)}$.

Figure 10. Depiction of the flows when Steps 3 and 4 are applied to the example in Figure 3.
Note: Only the relevant classes are shown. Arrows depict the flows, and an open box in front of a class denotes a buffer that may contain a positive quantity of fluid during the step. Plus signs inside a buffer indicate that it is accumulating fluid, and minus signs indicate that it is draining. All other indicated buffers remain empty throughout the step.

Thus,
$\mu_{1}^{i} \theta_{1}^{i} \geqslant \frac{1-\sum_{j \in I_{B}, j<i} \lambda m\left(C_{A}\left(X_{1}^{j}\right)\right)}{m\left(C_{A}\left(X_{1}^{i}\right)\right)}=\mu_{2}^{i} \theta_{2}^{i}$,
so fluid is arriving at class $(i, 2)$ at least as fast as the server at Station A processes it. Thus, both stations are busy until buffer $(i, 1)$ is emptied. The contents of the buffer have moved to buffer $(i, 2)$ and the first buffer of $C\left(Y_{2}^{i}\right)$-both at Station A.

Both servers are fully busy during this entire step, so any fluids arriving to Station A during this period simply accumulate at their first buffers.

Step 4. One at a time, for each type $i \in I_{B}$ in order, empty buffer $(i, 2)$ while keeping empty both buffer $(i, 1)$ and the buffers of $C\left(X_{1}^{j}\right)$ for all earlier types $j \in I_{B}$, with $j<i$. Figure $10(\mathrm{~b})$ illustrates this step for type 1 in the example of Figure 3.
The system defining the flows is
$\sum_{j \in I_{B}, j \leqslant i} \theta\left(C_{A}\left(X_{1}^{j}\right)\right)=1 \quad \begin{aligned} & \text { Because work is accumulating } \\ & \text { at Station } A,\end{aligned}$
$\quad \mu_{1}^{j} \theta_{1}^{j}=\lambda_{j} \quad$ For each type $j \in I_{B}$ with $j \leqslant i$,
$\mu_{k}^{j} \theta_{k}^{j}-\mu_{k-1}^{j} \theta_{k-1}^{j}=0 \quad$ For each class (j, k) in $C\left(X_{1}^{j}\right)$
where $j \in I_{B}, j<i$ and $k>1$,
$\mu_{k}^{i} \theta_{k}^{i}-\mu_{k-1}^{i} \theta_{k-1}^{i}=0 \quad$ For each class (i, k) in $C\left(X_{1}^{i}\right)$ except the first two. The first class's buffer is empty and, to keep it that way, its output rate must match the rate of exogenous arrivals. The second class's buffer is draining, so the rate of flow out is greater than the rate of flow in.
This system has the unique solution
$\theta_{k}^{j}=\lambda_{k}^{j} m_{k}^{j} \quad$ for each class $(j, k) \in C\left(X_{1}^{j}\right)$
where $j \in I_{B}$ and $j<i$,
$\theta_{k}^{i}=\frac{m_{k}^{i}\left(1-\sum_{j \in I_{B}, j<i} \lambda m\left(C_{A}\left(X_{1}^{j}\right)\right)\right)}{m\left(C_{A}\left(X_{1}^{i}\right)\right)}$
for each class $(i, k) \in C\left(X_{1}^{i}\right)$ except class $(i, 1)$, $\theta_{1}^{i}=\lambda_{i} m_{1}^{i}$.

Note that because the arrival rates and service times satisfy the nominal workload conditions, θ is between 0 and 1. Further, as in Step 2, the server at Station A is fully busy during this entire step, but the server at Station B may not be. To see this, observe that

$$
\begin{aligned}
\theta\left(E_{B}\right)= & \sum_{j \in I_{B}, j<i} \lambda m\left(C_{B}\left(X_{1}^{j}\right)\right) \\
& +\frac{\left.\left(m\left(C_{B}\left(X_{1}^{i}\right)\right)-m_{1}^{i}\right)\right)\left(1-\sum_{j \in I_{B}, j<i} \lambda m\left(C_{A}\left(X_{1}^{j}\right)\right)\right)}{m\left(C_{A}\left(X_{1}^{i}\right)\right)} \\
& +\lambda m_{1}^{i} .
\end{aligned}
$$

By (75),

$$
\frac{m\left(C_{B}\left(X_{1}^{i}\right)\right)}{m\left(C_{A}\left(X_{i}^{i}\right)\right)} \leqslant 1,
$$

and because the arrival rates and service times satisfy the nominal workload conditions,
$\frac{1-\sum_{j \in I_{B}, j<i} \lambda m\left(C_{B}\left(X_{1}^{j}\right)\right)}{m\left(C_{A}\left(X_{1}^{i}\right)\right)}>\lambda_{i}$.
Thus,
$\theta\left(E_{B}\right)<1$.
Whenever the server at Station B has remaining capacity, he again drains the contents of subsequent buffers $(j, 1)$ with
$j \in I_{B}$ and $j>i$. Because the server at Station A is busy, however, these fluids accumulate in their second buffers.

Continue in this way until all buffers in $C\left(X_{1}^{i}\right), i \in I_{B}$, are empty. Let τ_{2} be the additional time needed to complete Steps 3 and 4, then

$$
\tau_{2}=\left(\tau_{1}+\tau_{2}\right) \sum_{j \in I_{B}} \lambda m\left(C_{A}\left(X_{1}^{j}\right)\right)+\sum_{j \in I_{B}} u_{1}^{j} m\left(C_{A}\left(X_{1}^{j}\right)\right),
$$

or

$$
\tau_{2}=\frac{\tau_{1} \sum_{j \in I_{B}} \lambda m\left(C_{A}\left(X_{1}^{j}\right)\right)+\sum_{j \in I_{B}} u_{1}^{j} m\left(C_{A}\left(X_{1}^{j}\right)\right)}{1-\sum_{j \in I_{B}} \lambda m\left(C_{A}\left(X_{1}^{j}\right)\right)} .
$$

At the end of this step, the buffers of each block $C\left(X_{r}^{i}\right)$ are empty and only the first buffer of each block $C\left(Y_{r}^{i}\right)$ has any accumulated fluid. Thus, all the WIP is at Station A.

Let

$$
\begin{align*}
& \tau=\frac{\sum_{1}+\tau_{2}}{\sum_{i \in I_{A}} \sum_{r=1}^{b_{i}} u_{2 r}^{i} m\left(C_{A}\left(X_{2 r}^{i}\right)\right)+\sum_{i \in I_{B}} \sum_{r=1}^{b_{i}} u_{2 r-1}^{i} m\left(C_{A}\left(X_{2 r-1}^{i}\right)\right)} \\
& 1-\sum_{j \in I_{B}} \lambda m\left(C_{A}\left(X_{1}^{j}\right)\right) \tag{80}
\end{align*} .
$$

For each $i \in I_{A}$, the first buffer in the block $C\left(Y_{1}^{i}\right),(i, 1)$, has accumulated $\lambda_{i} \tau$ fluid, i.e., $Q_{1}^{i}(\tau)=\lambda_{i} \tau$. For each $i \in I_{B}$, the first buffer in the block $C\left(Y_{2}^{i}\right)$ has accumulated $\lambda_{i} \tau+u_{1}^{i}$ fluid. For each remaining B-section, the first buffer of $C\left(Y_{r}^{i}\right)$ has accumulated the u_{r-1}^{i} fluids that were initially in the first buffer of $C\left(X_{r-1}^{i}\right)$.

It is easy to check that the fluid solution $(Q(\cdot), T(\cdot))$ constructed in (77)-(78) satisfies (5)-(10) for $t \in[0, \tau]$. Furthermore, none of the classes in blocks of B-sections has ever been worked on. That is, $\theta\left(C\left(Y_{r}\right)\right)=0$ for each B-section Y_{r}. Therefore, $(Q(\cdot), T(\cdot))$ satisfies (59) for t in $[0, \tau]$, and by Lemma 3 there is more work at the virtual station $V(S)$ at time τ than at time 0 .

We next repeat Steps 1-4, interchanging the roles of Station A and Station B. The fluid network completes the four steps at time t_{1} in a state very similar to its initial state: There are \tilde{u}_{r}^{i} units in the first buffer of $C\left(X_{r}^{i}\right)$ for each A-section X_{r}^{i}, and all the other buffers are empty. Further, the resulting fluid solution $(Q(\cdot), T(\cdot))$ satisfies (5)-(10) and (59) for all times $t \in\left[0, t_{1}\right]$.

To complete the argument, we would like to conclude that repeating these eight steps over and over produces a fluid solution $(Q(\cdot), T(\cdot))$ that satisfies (5)-(10) and (59) for all times $t \geqslant 0$. We could then invoke Lemma 3 to argue that the workload for the classes of $V(S)$ grows linearly with time and the fluid solution diverges. To reach this conclusion, however, we must first show that $\Sigma_{n=1}^{\infty} t_{n} \rightarrow \infty$, where t_{n} is the time required to complete the nth iteration of these eight steps. Otherwise, $\Sigma_{n=1}^{\infty} t_{n} \rightarrow t^{*}$ for some finite t^{*} and repeating these eight steps only produces a fluid solution for times $t \in\left[0, t^{*}\right]$.

To this end, let u be an arbitrary nonnegative vector of initial fluid levels for the first buffers in the blocks of the A-sections X_{r}^{i}. From Equation (80) it is clear that the time
required to complete the eight steps is a positive linear combination of the initial buffer levels u, i.e.,
$t_{1}(u)=\sum c_{r}^{i} u_{r}^{i}$,
where each coefficient $c_{r}^{i}>0$. Similarly, the initial total workload at the virtual station $V(S)$ (as defined in (60) with $C=V(S))$ is a positive linear combination of the initial buffer levels u, i.e.,
$W(u)=\sum a_{r}^{i} u_{r}^{i}$,
where each coefficient $a_{r}^{i}>0$.
Thus, the shortest time t_{1}^{*} to complete the eight steps given an initial workload $W(u) \geqslant 1$ can be found by solving the simple linear program

$$
\begin{aligned}
t_{1}^{*}=\min & \sum c_{r}^{i} u_{r}^{i}, \\
\text { s.t. } & \sum a_{r}^{i} u_{r}^{i} \geqslant 1, \\
& u_{r}^{i} \geqslant 0 .
\end{aligned}
$$

Because all the data are positive, $t_{1}^{*}=\min \left\{c_{r}^{i} / a_{r}^{i}\right\}>0$. Thus, if we begin with initial fluid levels u with $W(u) \geqslant 1$, we know from Lemma 3 that the workload at the virtual station $V(S)$ will not decrease and so each iteration will require at least time t_{1}^{*}. Hence, $\Sigma_{n=1}^{\infty} t_{n} \rightarrow \infty$ and repeating the eight steps over and over produces a fluid solution with buffer levels that cycle to infinity.

10. CONCLUDING REMARKS

This paper not only provides an explicit characterization of the global stability region of two-station multiclass fluid networks, it also offers intuitive explanations of how the constraints defining the global stability region arise. Namely, the two phenomena of virtual stations and push starts explain all the global stability conditions of two-station fluid networks.

Under certain assumptions on the interarrival and service time distributions as specified in Dai (1995), a queueing network is stable or positive Harris recurrent if the corresponding fluid network is stable. Thus, the workload conditions are sufficient to ensure the global stability of two-station multiclass queueing networks with deterministic routing. In Dai and Vande Vate (1996), we show that under some weaker distributional assumptions, the virtual station conditions are also necessary to ensure the global stability of the queueing network. The push start conditions, on the other hand, are not generally necessary for global stability of the queueing network.

Weak stability, also called rate stability, is a less restrictive form of stability in queueing networks (see for example El-Taha and Stidham 1994). Chen (1995) and Dai and Vande Vate (1996) show that weak stability of the fluid model implies weak stability of the queueing network. A fluid network is said to be weakly stable under
nonidling dispatch policies, or simply globally weakly stable, if any fluid solution $(Q(\cdot), T(\cdot))$ with initial WIP zero will never have any WIP. The following theorem is a weak stability version of Theorem 2. Its proof is parallel to the development in this paper.

Theorem 6. A two-station fluid network is globally weakly stable if and only if
$\rho_{A} \leqslant 1, \quad \rho_{B} \leqslant 1$,
and for each vector $\mathbf{e}=\left(e_{i}\right)_{i \in I}$ of excursions and each strictly separating set S, we have
$\frac{\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)} \leqslant 1$.
This paper characterizes the global stability region for fluid models of two-station queueing networks with deterministic routing. Hasenbein (1998) extended these results to the fluid models of certain two-station queueing networks with probabilistic routing.

Theorem 2 demonstrates that the global stability region of a two-station fluid network is monotone, i.e., reducing service times or arrival rates maintains global stability.

Corollary 1. The global stability region of a two-station fluid network is monotone.

This is not the case for fluid networks with more than two stations. Humes (1994) and Dai et al. (1999) showed that the global stability region is not monotone. Dumas (1997) showed that the stability region of a priority network is not monotone. These examples indicate a daunting challenge inherent in managing complex re-entrant manufacturing systems like wafer fabrication plants: Increasing the processing rate for a class can reduce the capacity of the system!

The fact that the global stability region of a fluid network with more than two stations can be non-monotone suggests that determining the global stability region for these networks will be considerably more difficult. For example, the problem of determining the coefficients of a piecewise linear Lyapunov function for a fluid network with more than two stations does not generally reduce to a linear program. Nevertheless, the example studied in Dai et al. (1999) is one of an important family of n-station fluid networks for which this problem is linear and, in fact, does reduce to a parametric network flow problem. Thus, the piecewise linear Lyapunov function of this paper does lead to sufficient conditions for global stability for this family of n-station networks.

The four steps of $\S 9$ prove that the static buffer priority policies are the "worst" dispatch policies for two-station fluid networks.

Corollary 2. A two-station fluid network is globally stable if and only if it is stable under every static buffer priority policy.

This is not the case for n-station fluid networks. Dai et al. (1999) demonstrated arrival rates and service times for which their three-station fluid network is not globally stable even though it is stable under all static buffer priority disciplines.

ACKNOWLEDGMENTS

This research was initiated when J. G. Dai was visiting the Institute of Mathematics and Its Applications at the University of Minnesota in the winter quarter of 1994. Partial financial support from the Institute is acknowledged. This research is supported in part by National Science Foundation grants DDM-9215233, DMI-94-57336, US-Israel Binational Science Foundation grant 94-00196. Airforce Office of Scientific Research grant F49620-95-1-0121 and a grant from Harris Semiconductor.

APPENDIX

Proof of Lemma 4. Assume that the fluid model (63)(68) is unstable. Then there is a fluid solution $\left(\tilde{Q}_{k}^{i}(\cdot)\right.$, $\left.\tilde{T}_{k}^{i}(\cdot)\right)_{(i, k) \in R(\mathbf{e})}$ satisfying (63)-(68) that is unstable. That is, there is a sequence $\left\{t_{n}\right\}$ with $t_{n} \rightarrow \infty$ such that $\tilde{Q}\left(t_{n}\right) \neq 0$ for each n. For $(i, k) \in R_{A}(\mathbf{e})$, let $Q_{k}^{i}(t)=\tilde{Q}_{k}^{i}(t)$ and
$T_{k}^{i}(t)=\left(1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)\right) \tilde{T}_{k}^{i}(t)$.
For $(i, k) \in R_{B}(\mathbf{e})$, let $Q_{k}^{i}(t)=\tilde{Q}_{k}^{i}(t)$ and
$T_{k}^{i}(t)=\left(1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)\right) \tilde{T}_{k}^{i}(t)$.
For $(i, k) \in F^{<}(\mathbf{e})$, let $Q_{k}^{i}(t)=0$ and $T_{k}^{i}(t)=\lambda_{i} m_{k}^{i} t$. We show that
$(Q(\cdot), T(\cdot))=\left(Q_{k}^{i}(\cdot), T_{k}^{i}(\cdot)\right)_{i \in I, k=1, \ldots, c_{i}}$
is a fluid solution to (5)-(10).
First, it is easy to check that (5) and (6) hold for $(Q(\cdot), T(\cdot))$. Second, notice that

$$
\begin{aligned}
t-\sum_{i \in I, k \in A_{i}} T_{k}^{i}(t)= & t-\sum_{(i, k) \in F_{A}^{<}(\mathbf{e})} \lambda_{i} m_{k}^{i} t-\sum_{(i, k) \in R_{A}(\mathbf{e})} T_{k}^{i}(t) \\
= & \left(1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)\right) t \\
& -\left(1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)\right) \sum_{(i, k) \in R_{A}(\mathbf{e})} \tilde{T}_{k}^{i}(t) \\
= & \left(1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)\right)\left(t-\sum_{(i, k) \in R_{A}(\mathbf{e})} \tilde{T}_{k}^{i}(t)\right),
\end{aligned}
$$

which is nondecreasing, and hence (7) holds. Similarly, we see that
$t-\sum_{i \in I, k \in B_{i}} T_{k}^{i}(t)$
is nondecreasing.

Assume that t is a regular point of $(Q(\cdot), T(\cdot))$. When
$\sum_{i \in I, k \in A_{i}} Q_{k}^{i}(t)>0$,
we have
$\sum_{(i, k) \in R_{A}(\mathbf{e})} \tilde{Q}_{k}^{i}(t)>0$.
Hence
$\sum_{(i, k) \in R_{A}(\mathbf{e})} \dot{\tilde{T}}_{k}^{i}(t)=1$,
or
$\sum_{(i, k) \in R_{A}(\mathbf{e})} \dot{T}_{k}^{i}(t)=1-\sum_{(i, k) \in F_{A}^{<}(\mathbf{e})} \lambda_{i} m_{k}^{i}$.
The last equation is equivalent to

$$
\sum_{i \in I, k \in A_{i}} \dot{T}_{k}^{i}(t)=1
$$

Hence we have proved (9). Similarly, we can show that (8) and (10) hold. Therefore, $(Q(\cdot), T(\cdot))$ is a fluid solution to (5)-(10). It is obvious that $(Q(\cdot), T(\cdot))$ is unstable.

Proof of Lemma 5. Consider an A-section $X=[i, s, t)$ of S^{i} with $s>e_{i}$. Let $S \oplus X=(S \backslash X) \cup(X \backslash S)$ be the symmetric difference of S and X. Because $s-1 \notin S$ and $t \notin S, S \oplus X$ is a strictly separating set. Thus, by (71)

$$
\begin{aligned}
& \left(\frac{\lambda m\left(V_{A}(S) \backslash F_{A}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)}\right)- \\
& \left(\frac{\lambda m\left(V_{A}(S \oplus X) \backslash F_{A} \leqslant(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S \oplus X) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)}\right)= \\
& \quad \frac{\lambda m\left(C_{A}(X)\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}-\frac{\lambda m\left(C_{B}(X)\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)} \geqslant 0 .
\end{aligned}
$$

From which (73) follows immediately. The proof for B-sections $Y=[i, s, t)$ of S^{i}, where $s>e_{i}$ is similar.

The argument for sections [i,s,t), where $s \leqslant e_{i}$ is more involved. Rather than change the separating set S, we change the push start set $F^{<}(\mathbf{e})$. Consider an A-section $X=[i, s, t)$ of S^{i} where $s \leqslant e_{i}$, and let $\mathbf{e}^{\prime}=\left(e_{j}^{\prime}\right)_{j \in I}$, where $e_{i}^{\prime}=t$ and for each $j \neq i, e_{j}^{\prime}=e_{j}$.

By (71)

$$
\begin{aligned}
& \frac{\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}<(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)} \\
& \quad \geqslant \frac{\lambda m\left(V_{A}(S) \backslash F_{A}^{\leqslant} \leqslant\left(\mathbf{e}^{\prime}\right)\right)}{1-\lambda m\left(F_{A}^{<}<\left(\mathbf{e}^{\prime}\right)\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B} \leqslant\left(\mathbf{e}^{\prime}\right)\right)}{1-\lambda m\left(F_{B}^{<}<\left(\mathbf{e}^{\prime}\right)\right)},
\end{aligned}
$$

and so

$$
\begin{align*}
& \frac{\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}<(\mathbf{e})\right)}-\frac{\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant\left(\mathbf{e}^{\prime}\right)\right)}{1-\lambda m\left(F_{A}^{<}\left(\mathbf{e}^{\prime}\right)\right)} \\
& \quad \geqslant \frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}\left(\mathbf{e}^{\prime}\right)\right)}{1-\lambda m\left(F_{B}^{<}\left(\mathbf{e}^{\prime}\right)\right)}-\frac{\lambda m\left(V_{B}(S) \backslash F_{B} \leqslant(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)} . \tag{A.1}
\end{align*}
$$

Now because

$$
\begin{aligned}
& \lambda m\left(V_{A}(S) \backslash F_{A} \leqslant\left(\mathbf{e}^{\prime}\right)\right) \\
& \quad=\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant(\mathbf{e})\right)-\lambda m\left(C_{A}(X) \backslash F_{A} \leqslant(\mathbf{e})\right),
\end{aligned}
$$

and

$$
\lambda m\left(F_{A}^{<}\left(\mathbf{e}^{\prime}\right)\right)=\lambda m\left(F_{A}^{<}(\mathbf{e})\right)+\lambda m\left(C_{A}(X) \backslash F_{A}^{<}(\mathbf{e})\right),
$$

$$
\begin{aligned}
& \frac{\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}-\frac{\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant\left(\mathbf{e}^{\prime}\right)\right)}{1-\lambda m\left(F_{A}^{<}<\left(\mathbf{e}^{\prime}\right)\right)} \\
& \quad \geqslant \frac{\lambda m\left(C_{A}(X) \backslash F_{A} \leqslant(\mathbf{e})\right)\left(1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)-\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant(\mathbf{e})\right)\right)}{\left(1-\lambda m\left(F_{A}^{<}\left(\mathbf{e}^{\prime}\right)\right)\right)\left(1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)\right)} .
\end{aligned}
$$

Similarly, because

$$
\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}\left(\mathbf{e}^{\prime}\right)\right)=\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right),
$$

and

$$
\begin{aligned}
& \lambda m\left(F_{B}^{<}\left(\mathbf{e}^{\prime}\right)\right)=\lambda m\left(F_{B}^{<}(\mathbf{e})\right)+\lambda m\left(C_{B}(X) \backslash F_{B}^{<}(\mathbf{e})\right), \\
& \frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}\left(\mathbf{e}^{\prime}\right)\right)}{1-\lambda m\left(F_{B}^{<}\left(\mathbf{e}^{\prime}\right)\right)}-\frac{\lambda m\left(V_{B}(S) \backslash F_{B} \leqslant(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)} \\
& \quad=\frac{\lambda m\left(C_{B}(X) \backslash F_{B}^{<}(\mathbf{e})\right) \lambda m\left(V_{B}(S) \backslash F_{B} \leqslant(\mathbf{e})\right)}{\left(1-\lambda m\left(F_{B}^{<}\left(\mathbf{e}^{\prime}\right)\right)\right)\left(1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)\right)} .
\end{aligned}
$$

Thus, by (A.1)

$$
\begin{gather*}
\frac{\lambda m\left(C_{A}(X) \backslash F_{A} \leqslant(\mathbf{e})\right)\left(1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)-\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant(\mathbf{e})\right)\right)}{\left(1-\lambda m\left(F_{A}^{<}<\left(\mathbf{e}^{\prime}\right)\right)\right)\left(1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)\right)} \\
\quad \geqslant \frac{\lambda m\left(C_{B}(X) \backslash F_{B}^{<}(\mathbf{e})\right) \lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{\left(1-\lambda m\left(F_{B}^{<}\left(\mathbf{e}^{\prime}\right)\right)\right)\left(1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)\right)} . \tag{A.2}
\end{gather*}
$$

Because

$$
\begin{aligned}
& \frac{\lambda m\left(V_{A}(S) \backslash F_{A} \leqslant(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)}+\frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)} \geqslant 1, \\
& \frac{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)-\lambda m\left(V_{A}(S) \backslash F_{A}^{\leqslant} \leqslant(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)} \\
& \quad \leqslant \frac{\lambda m\left(V_{B}(S) \backslash F_{B}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)},
\end{aligned}
$$

so from (A.2),

$$
\frac{\lambda m\left(C_{A}(X) \backslash F_{A}^{\leqslant}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}\left(\mathbf{e}^{\prime}\right)\right)} \geqslant \frac{\lambda m\left(C_{B}(X) \backslash F_{B}^{<}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}\left(\mathbf{e}^{\prime}\right)\right)}
$$

from which it follows that

$$
\frac{\lambda m\left(C_{A}(X) \backslash F_{B}^{<}(\mathbf{e})\right)}{1-\lambda m\left(F_{A}^{<}(\mathbf{e})\right)} \geqslant \frac{\lambda m\left(C_{B}(X) \backslash F_{B}^{<}(\mathbf{e})\right)}{1-\lambda m\left(F_{B}^{<}(\mathbf{e})\right)}
$$

The argument for B-sections $Y=[i, s, t)$ with $s \leqslant e_{i}$ is similar.

REFERENCES

Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, NJ.
Bertsimas, D., D. Gamarnik, J. N. Tsitsiklis. 1996. Stability conditions for multiclass fluid queueing networks. IEEE Trans. Automatic Control 41 1618-1631. (Correction: 1997. 42 128.)
Botvich, D. D., A. A. Zamyatin. 1992. Ergodicity of conservative communication networks. Rapport de recherche 1772, INRIA.
Bramson, M. 1994a. Instability of FIFO queueing networks. Ann. Appl. Probab. 4 414-431.
__. 1994b. Instability of FIFO queueing networks with quick service times. Ann. Appl. Probab. 4 693-718.
-_ 1997. Convergence to equilibria for fluid models of head-of-the-line proportional processor sharing queueing networks. Queueing Systems: Theory Appl. 23 1-26.
_- 1998. Stability of two families of queueing networks and a discussion of fluid limits. Queueing Systems: Theory Appl. 28 7-31.
__. 1999. A stable queueing network with unstable fluid network. Ann. Appl. Probab. 9 818-853.
Chen, H. 1995. Fluid approximations and stability of multiclass queueing networks I: Work-conserving disciplines. Ann. Appl. Probab. 5 637-665.
-_, H. Zhang. 1997. Stability of multiclass queueing networks under FIFO service discipline. Math. Oper. Res. 22 691-725. , - 1998. Stability of multiclass queueing networks under priority service disciplines. Oper. Res. Forthcoming.
Dai, J. G. 1995. Stability of open multiclass queueing networks via fluid models. In Stochastic Networks. F. Kelly, R. J. Williams (eds.), The IMA Volumes in Mathematics and its Applications. Springer, New York, 71-90.
——. 1996. A fluid-limit model criterion for instability of multiclass queueing networks. Ann. Appl. Probab. 6 751-757.
—, J. Hasenbein, J. H. Vande Vate. 1999. Stability of a threestation fluid network. Queueing Systems: Theory Appl. 33, 293-325.
-_, S. P. Meyn. 1995. Stability and convergence of moments for multiclass queueing networks via fluid limit models. IEEE Trans. Automatic Control 40 1889-1904.
-_, J. Vande Vate. 1996. Virtual stations and the capacity of two-station queueing networks. Under revision for Oper. Res.
__, G. Weiss. 1996. Stability and instability of fluid models for re-entrant lines. Math. Oper. Res. 21 115-134.
Down, D., S. Meyn. 1994. Piecewise linear test functions for stability of queueing networks. Proc. 33rd Conference on Decision and Control, 2069-2074.
Dumas, V. 1996. Essential faces and stability conditions of multiclass networks with priorities. Rapport de recherche 3030, INRIA.
_. 1997. A multiclass network with non-linear, non-convex, non-monotonic stability conditions. Queueing Systems: Theory Appl. 25 1-43.
El-Taha, M., S. Stidham, Jr. 1994. Sample-path stability conditions for multiserver input-output processes. J. Appl. Math. Stochastic Anal. 7437-456.
Foss, S., A. Rybko. 1995. Stability of multiclass Jackson-type networks. Preprint.
Harrison, J. M., V. Nguyen. 1995. Some badly behaved closed queueing networks. Stochastic Networks. F. P. Kelly, R. J. Williams, eds. 71 of The IMA volumes in Mathematics and its Applications. Springer, New York, 117-124.
Hasenbein, J. 1998. Capacity and Scheduling of Multiclass Queueing Networks. Ph.D. Thesis, School of Industrial and Systems Engineering, Georgia Institute of Technology.
-_ 1997. Necessary conditions for global stability of multiclass queueing networks. Oper. Res. Lett. 21 87-94.
Humes, C. Jr. 1994. A regulator stabilization technique: KumarSeidman revisited. IEEE Trans. Automatic Control 39 191-196.
Kumar, P. R., S. Meyn. 1996. Duality and linear programs for stability and performance analysis of queueing networks and scheduling policies. IEEE Trans. Automatic Control 41 4-17.
- 1995. Stability of queueing networks and scheduling policies. IEEE Trans. Automatic Control 40 251-260.
_-, T. I. Seidman. 1990. Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems. IEEE Trans. Automatic Control AC-35 289-298.
Lu, S. H., P. R. Kumar. 1991. Distributed scheduling based on due dates and buffer priorities. IEEE Trans. Automatic Control 36 1406-1416.
Meyn, S. P. 1995. Transience of multiclass queueing networks via fluid limit models. Ann. Appl. Probab. 5946-957.
Morrison, J. R., P. R. Kumar. 1998. On the guaranteed throughput and efficiency of closed re-entrant lines. Queueing Systems: Theory Appl. 28 33-54.
Rybko, A. N., A. L. Stolyar. 1992. Ergodicity of stochastic processes describing the operation of open queueing networks. Problems Inform. Transmission 28 199-220.
Seidman, T. I., 1994. "First come, first served" can be unstable! IEEE Trans. Automatic Control 39 2166-2171.
Stolyar, A., 1994. On the stability of multiclass queueing networks. Proceeding of the 2nd International Conference on Telecommunication Systems-Modeling and Analysis, Nashville, TN, 23-35.
Winograd, G. L., P. R. Kumar. 1996. The FCFS service discipline: Stable network topologies, bounds on traffic burstiness and delay, and control by regulators. Math. Comput. Modeling 23 115-129.

