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Abstract— In this paper we use fluid model techniques
to establish two results concerning the throughput of data
switches. For an input-queued switch (with no speedup) we
show that a maximum weight algorithm for connecting in-
puts and outputs delivers a throughput of 100%, and for
combined input- and output-queued switches that run at a
speedup of 2 we show that any maximal matching algorithm
delivers a throughput of 100%. The only assumptions on
the input traffic are that it satisfies the strong law of large
numbers and that it does not oversubscribe any input or any
output.

I. I NTRODUCTION

Packet switches based on an input-queued (IQ) crossbar
architecture are attractive for use in high speed networks.
This is because the buffers which queue packets at the in-
puts need only run twice as fast the line rates. That is, if
time were slotted so that at most one packet arrived at each
input of the switch per time slot, then an input buffer po-
tentially needs to make upto two transactions per time slot:
(1) write in an incoming packet, and (2) copy a buffered
packet onto the crossbar fabric. Hence the bandwidth of
the input buffers is no more than twice the line rate. In
contrast, the buffers of anN × N output-queued (OQ)
switch are required to run at leastN + 1 times the line
rate. Even for moderately sized switches running at high
speeds, memories with such large speedups are either very
expensive or simply unavailable (see, for example, [20] for
an elaboration of this point).

However, IQ switches which maintain a single first-in-
first-out (FIFO) buffer at the inputs are known to suffer
from the so-called head-of-line (HoL) blocking problem.
The paper of Karol et al [17] shows that this problem can
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limit the throughput of the switch to about 58% when the
input traffic is independent, identically distributed (i.i.d.)
Bernoulli and the output destinations are uniform. This
is in contrast to OQ switches which always deliver 100%
throughput, since no output will idle as long as there is a
packet in the switch destined for it.

It has since been shown that the low throughput of IQ
switches is merely an artifact of HoL blocking caused due
to a FIFO organization of the input buffers, and that IQ
switches can achieve a throughput of upto 100% by using
a simple scheme known as “virtual output queueing” and
by using suitable packet scheduling algorithms [20], [21],
[28]. However, all of these results are shown to hold only
when the input traffic is i.i.d. although they allow a non-
uniform loading of the switch.

It has been believed for some time now that an IQ switch
can deliver 100% throughput forarbitrarily distributed in-
put patterns so long as no input or output is oversubscribed.
That is, the results of [20], [21], [28] ought to be true for a
wider class of input distributions and that the i.i.d. assump-
tion is only required by their method of proof. The first re-
sult of this paper, Theorem 1, provides a proof of this belief
using fluid model techniques. More precisely, Theorem 1
proves that an IQ switch using a maximum weight match-
ing algorithm can achieve a throughput of upto 100% when
subjected to arbitrarily distributed input traffic that satisfies
the following mild conditions: (i) It obeys the strong law of
large numbers, and (ii) it does not oversubscribe any input
or output. Theorem 1, therefore, builds upon and extends
the work of [21] and [28].

After the appearance of [17], a number of researchers
(for example, [6], [8], [15], [16], [25]) considered improv-
ing the throughput of an IQ switch by using fabrics with
a moderate “speedup”1. A common conclusion of these

1A switch with a fabric speedup ofs can remove up tos packets from
each input and deliver up tos packets to each output within a time slot.
Hence, an OQ switch has a speedup ofN while an IQ switch has a



studies is that with a speedup of 4 or 5 one can achieve
upto 100% throughput when arrivals are i.i.d. at each in-
put, and the distribution of packet destinations is uniform
across the outputs.

One hopes that it is again possible to remove the i.i.d.
restrictions on the input traffic patterns. In fact, more is
true. Prabhakar and McKeown [23], Chuang et al [9], and
Krishna et al [18] have recently devised a number of al-
gorithms that allow a combined input- and output-queued
(CIOQ) switch with an internal speedup of between two
and four to exactly emulate(packet-by-packet) an OQ
switch. Furthermore, these algorithms have been shown to
work for all input traffic patterns and switch sizes. Since an
OQ switch always delivers a throughput of 100%, the pre-
viously mentioned exact emulation ensures that the CIOQ
switch also delivers a throughput of 100%.

The results of [9], [18], [23] are obtained with specific
packet scheduling algorithms. It is interesting to ask just
how well a CIOQ switch that employs an arbitrary, but
well-chosen, scheduling algorithm performs as its fabric
speedup is increased. Charny [4] and Charny et al [5]
have recently obtained the following answer to this ques-
tion: When the speedup of a CIOQ switch is at least 4
and the input traffic is leaky bucket constrained, any max-
imal matching algorithm (see Definition 5) delivers 100%
throughput. Theorem 2 of this paper generalizes this result
in two ways: (i) It lowers the minimum required speedup
to 2, and (ii) it removes the restriction of leaky bucket con-
strained inputs.

The results of this paper are derived by considering the
fluid model analogs of an IQ or a CIOQ switch. The
framework of fluid models has proved to be powerful in
obtaining the maximum throughput region (or, the stabil-
ity region) of a variety of stochastic networks under very
mild assumptions on the input traffic (see [26], [10], [14],
[27], [7], [13], [22], [11], [3], [24]). For a general expo-
sition of the stability analysis of stochastic networks using
fluid models, please refer to the recent set of notes by Dai
[12]. In the fluid model framework, in order to prove that a
switch delivers a throughput of 100% it is enough to prove
that the corresponding fluid model isweakly stable. This
is the gist of Theorem 3.

We conclude the introduction with a few words about
the organization of the paper and about the practical sig-

speedup of 1. For values ofs between 1 andN packets need to be
buffered at the inputs before switching as well as at the outputs after
switching. We shall refer to this type of a switch as a combined input-
and output-queued (CIOQ) switch.

nificance of the results obtained. Since fluid model tech-
niques are relatively new in the computer networking con-
text, we have included an appendix in which the procedure
for obtaining fluid limits for a discrete stochastic network
(in this case, the network consists of a single switch) is
given in detail. As mentioned previously, the fluid model
method applies to very general traffic processes. Indeed,
the only requirement is that they satisfy a strong law of
large numbers. Since almost all real traffic processes sat-
isfy this property, the results of this paper have a high prac-
tical significance. A second aspect of this paper is that
it shows thatany maximalmatching algorithm delivers a
100% throughput under a speedup of 2. The significance
of this result derives from the fact that maximal matchings
are easier to find than maximum matchings, and hence bet-
ter suited for implementation. In particular, and to the best
of our knowledge, this is the first proof that the popular
and well-studied PIM [1] and iSLIP [19] schedulers, which
find maximal matchings, deliver a 100% throughput under
arbitrary packet arrival patterns at a speedup of 2.

II. M ODEL AND NOTATION

Consider anN × N crossbar switch such as the one
shown in Figure 1. Assume that time is slotted and that
packets arrive at the switch at the beginning of a time slot.
For concreteness, time slotn corresponds to the time inter-
val [n−1, n), n = 1, 2, . . .. Each input has a buffer of infi-
nite capacity for holding packets prior to switching them to
their respective outputs. Likewise each output has an infi-
nite capacity buffer for holding packets that will be placed
on the outgoing line. The buffer at an input is partitioned
into N “virtual output queues” (VOQs), each of infinite
capacity. The virtual output queue VOQij holds packets
arriving at inputi destined for outputj. The queueing dis-
cipline at each VOQ and at the output buffer, which typ-
ically determine the quality-of-service (QoS) that a flow
obtains from the switch, can be entirely arbitrary and are
not of concern in this note.

A “scheduling cycle” consists of two parts: (a) the
matching part, and (b) the switching part. During the
matching part a matching algorithm,m, selects a match-
ing between inputs and outputs in such a way that no input
(respectively, output) may be matched to more than one
output (respectively, input). During the switching part in-
put i transfers a packet to outputj if they are matched to
each other and VOQij is non-empty.

A matching may be represented by a permutation ma-
trix π. That is, inputi is matched to outputj if πij = 1,
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Fig. 1. A CIOQ switch

otherwise inputi is not matched to outputj. Let Π be the
set of allN ! permutation matrices.

The switch is said to have a speedup ofs, wheres ∈
{1, . . . , N}, if during every time slot there ares schedul-
ing cycles. We will also refer to each of the scheduling
cycles in a time slot as a “phase”. When the speedups is
bigger than 1, any packets that are transferred from an in-
put i to an outputj during a phase will be assumed to be
transferred at the end of the phase. As mentioned earlier,
whens > 1 buffers are required at the ouputs as well. This
leads to the combined input- and output-queued (CIOQ)
architecture.

In addition to assuming that packets arrive at the switch
just at the beginning of a time slot, we shall also assume
that packets depart from the switch just prior to the end of
a time slot.

Definition 1: A matching algorithmm is a specification
of a sequence of permutations{πmij (n + k

s )}n,k, where

πmij (n + k
s ) indicates the event that inputi is matched to

outputj during phasek of time slotn.
LetAij(n) denote the number packets that have arrived

at inputi destined for outputj up to time slotn. Since we
assume that packet arrivals occur at the beginning of a time
slot, for any timet ∈ (n− 1, n), Aij(n) is the cumulative
number of packets that have arrived at VOQij by time t.
We adopt the convention thatAij(0) = 0. We assume
that the arrival processes{Aij(·), i, j = 1, . . . , N} satisfy
a strong law of large numbers (SLLN): with probability
one,

lim
n→∞

Aij(n)
n

= λij i, j = 1, . . . , N. (1)

We callλij the arrival rate at VOQij . Assumption (1) on
arrival processes is very mild. It is satisfied, for example,
when the arrival processes{Aij(·), i, j = 1, . . . , N} are
jointly stationary and ergodic with arrival ratesλij .

LetDij(n) be the number of departures from VOQij(n)

up to time slotn. We also adopt the convention that
Dij(0) = 0.

Definition 2: A switch operating under a matching al-
gorithm is said to berate stableif, with probability one,

lim
n→∞

Dij(n)
n

= λij i, j = 1, . . . , N (2)

for any arrival processes satisfying (1).
Definition 3: A matching algorithm is said to beeffi-

cient if (2) holds for any arrival processes satisfying (1)
and ∑

i

λij ≤ 1,
∑
j

λij ≤ 1. (3)

Since, each output link can potentially transmit one packet
in each time slot,

lim
n→∞

∑
iDij(n)
n

is the long-run fraction of time that output linkj is busy. A
switch operating under an efficient matching algorithm can
keep each output link100% busy, equally the switch can
achieve upto100% throughput, if there is enough offered
load.

WriteZij(n) for the number of packets in VOQij at the
beginning of time slotn, including any packet that might
have just arrived at timen− 1.

III. STABILITY RESULTS

In this section, we state the two major results of this pa-
per. The first states that a maximum weight matching algo-
rithm is efficient for a switch with speedup 1. The second
states that any maximal matching algorithm is efficient for
a switch with speedups ≥ 2.

A. Speedup of 1

When the switch speedup is 1 there is only one schedul-
ing cycle and hence no more than one packet may be re-
moved from each input or transferred to each output in
one time slot. A packet that reaches its output at the end
of a time slot will depart immediately from the switch,
and hence there is no need for output buffers. Thus, at a
speedup of 1, we are led to the input-queued architecture.
For each permutation (or matching of inputs and outputs)
π ∈ Π, let the “weight” under matchingπ equal

fπ(n) = 〈π,Z(n)〉,

where for two matricesA and B of the same size,
〈A,B〉 =

∑
ij AijBij .



Definition 4: Under themaximum weight matching al-
gorithm, w,

πw(n) = arg maxπ{fπ(n)}. (4)

Let f(n) = fπw(n)(n) be the weight of the maximum
weight matching at timen.
When there are multiple matchings that all have equal
weight we choose one of these matchings arbitrarily to
break the tie.

We shall prove the following theorem in Section V.
Theorem 1:A maximum weight matching algorithm is

efficient.

B. Speedup of 2

Recall that for a switch with a speedup ofs there ares
scheduling cycles.

Definition 5: A matching algorithmx is said to be a
maximal matching algorithmor a nonidling matching al-
gorithmif for every phasek of every timen,Zij(n+ k

s ) >
0 implies that at least one of the following holds:
(1)Zij′(n+ k

s )πxij′(n+ k
s ) > 0

(2)Zi′j(n+ k
s )πxi′j(n+ k

s ) > 0,
for somei′, j′ ∈ {1, . . . , N}.

Thus under a maximal matching algorithm if inputi has
a packet for outputj at the beginning of a scheduling cycle,
then either (i) Inputi is matched to outputj, or (ii) Input
i is matched to an outputj′ 6= j for which it has a packet,
or (iii) Output j is matched to an inputi′ 6= i which has a
packet for outputj.

The following theorem is proved in Section V.
Theorem 2:Any maximal weight matching algorithm is

efficient, so long as the speedups ≥ 2.

IV. FLUID MODELS

We now introduce the fluid model of a switch. To do
this, we first write down the equations that govern the (dis-
crete) dynamics of a switch. We then write down the cor-
responding fluid model equations of the switch.

A. Switch dynamics

Suppose the switch employs some (yet to be specified)
matching algorithmm. For aπ ∈ Π, let Tmπ (n) be the
cumulative amount of time that permutationπ has been
used by time slotn. Again, we assumeTmπ (0) = 0. The
following equations of evolution hold for the switch: for
n ≥ 0 andi, j = 1, . . . , N ,

Zij(n) = Zij(0) +Aij(n)−Dij(n),

Dij(n) =
∑
π∈Π

n∑
`=1

πij 1{Zij(`)>0}(T
m
π (`)− Tmπ (`− 1)),

Tmπ (·) is non-decreasing, and
∑
π∈Π

Tmπ (n) = n.

The first equation tracks the evolution ofZij in terms of
the total number of arrivals at and departures from VOQij .
The second equation keeps a count of the cumulative num-
ber of departures from VOQij . And the third equation ex-
presses the fact that inputi is matched to some output or
the other at each time.

B. Fluid equations

Now we describe a deterministic, continuous fluid
model of a switch operating under some matching algo-
rithm m, with offered traffic satisfying (1). LetTmπ (t)
be the cumulative amount of time in[0, t] that matching
π was employed under the matching algorithmm. For
i, j = 1, . . . , N and for eacht ≥ 0, the fluid model is
governed by the following set of equations:

Zij(t) = Zij(0) + λijt−Dij(t) ≥ 0, (5)

Ḋij(t) =
∑
π∈Π

πijṪ
m
π (t), if Zij(t) > 0, (6)

Tmπ (·) is nondecreasing, and
∑
π∈Π

Tmπ (t) = t, (7)

where, for a functionf , ḟ(t) denotes the derivative off at
t. We adopt the convention that whenever symbolḟ(t) is
used,f is assumed to a differentiable att.

Equations (5)-(7) are fluid model equations. Each so-
lution (D,T, Z) to (5)-(7) is said to be a fluid model so-
lution. One interpretsZij(t) as the buffer level at timet
in VOQij andDij(t) as the total amount of fluid departing
from VOQij in [0, t]. Equation (5) is a basic flow equation.
Equation (6) has an equivalent characterization: Whenever
Zij(t) > 0, there exists aδ > 0 such that

Dij(t′)−Dij(t) =
∑
π∈Π

πij(Tmπ (t′)−Tmπ (t)), t′ ∈ [t, t+δ].

(8)
Equation (8) says that if the amount of fluid in VOQij is
positive at timet, then, for small enoughδ > 0, the amount
of fluid drained from VOQij in the interval[t, t′] ⊂ [t, t+
δ] equals the amount of time that inputi and outputj were
matched to each other during[t, t′].

Depending on the matching algorithmm used, often
there are additional fluid model equations corresponding



to matching algorithmm. For example, ifm equalsw, the
maximum weight matching algorithm, the additional fluid
equation takes the form: for eachπ ∈ Π,

Ṫwπ (t) = 0 if 〈π,Z(t)〉 < 〈π′, Z(t)〉 for someπ′ ∈ Π.
(9)

The above equation says that under the maximum weight
matching algorithm, a matchingπ which has weight less
than another matchingπ′ at some timet will not be em-
ployed at that time. Thus, equation (9) characterizes
the maximum weight matching algorithm and is added to
the basic fluid model equations (5)-(7) whenever we con-
sider the fluid model of a switch employing the maximum
weight matching algorithm.

In general, deciding which equation can be added to a
fluid model is related tofluid limitsand is discussed in Sec-
tion VI-A.

Definition 6: The fluid model of a switch operating un-
der a matching algorithm is said to beweakly stableif
for every fluid model solution(D,T, Z) with Z(0) = 0,
Z(t) = 0 for t ≥ 0.

Theorem 3:A switch operating under a matching al-
gorithm is rate stable if the corresponding fluid model is
weakly stable.
We defer the proof to the appendix.

V. PROOFS OFTHEOREMS1 AND 2

In this section, we prove Theorems 1 and 2. In light
of Theorem 3, it suffices to prove that, in each case, the
corresponding fluid model is weakly stable. We first state
the following simple lemma.

Lemma 1:Let f : [0,∞) → [0,∞) be an absolutely
continuous function withf(0) = 0. Assume thatḟ(t) ≤
0 for almost everyt (wrt Lebesgue measure) such that
f(t) > 0 andf is differentiable att. Thenf(t) = 0 for
almost everyt ≥ 0.

Proof: For almost everyt ≥ 0, f2(t) − f2(0) =
2
∫ t

0 f(s)ḟ(s) ds ≤ 0, sincef(s)ḟ(s) ≤ 0 a.e. in[0, t].
Now f(0) = 0 and f(t) ≥ 0 imply that f(t) = 0 for
almost everyt.

A. Proof of Theorem 1

Let (D,T, Z) be a fluid model solution satisfying (5)-
(7) and (9) withZ(0) = 0. For a permutation matrixπ,
definefπ(t) = 〈π,Z(t)〉. Let f(t) = maxπ fπ(t). Let λ
be theN × N matrix with entriesλij . It is well-known
that under condition (3)

〈λ,Z(t)〉 ≤ f(t) for t ≥ 0.

Briefly, this is because under condition (3)λ is doubly sub-
stochastic and can therefore be written as a convex com-
bination of permutation matrices, from which the above
inequality follows. See Lemma 2 of [21] for details.

Let t be a fixed value such thatf andZ are differentiable
at t. Let Π′ be the set of matchingsπ such thatfπ(t) =
f(t). Then we haveḟπ(t) = ḟ(t) for π ∈ Π′ (see, for
example, the proof of Lemma 3.2 of [14]), and by (9),∑

π∈Π′

Ṫπ(t) = 1.

It follows that

〈Z(t), Ḋ(t)〉 = 〈Z(t),
∑
π∈Π′

πṪπ(t)〉

=
∑
π∈Π′

〈Z(t), πṪπ(t)〉

=
∑
π∈Π′

fπ(t)Ṫπ(t)

= f(t)
∑
π∈Π′

Ṫπ(t)

= f(t).

Thus,

〈Z(t), Ż(t)〉 = 〈Z(t), λ〉 − 〈Z(t), Ḋ(t)〉
= 〈Z(t), λ〉 − f(t)
≤ 0.

It follows that d〈Z(t), Z(t)〉/dt ≤ 0 for anyZ(t) 6= 0.
SinceZ(0) = 0, from Lemma 1 we have that the fluid
model is weakly stable.

B. Proof of Theorem 2

Consider the fluid model of a switch having a speedup
of s, operating under a maximal matching algorithm. Let
(D,T, Z) be a fluid model solution withZ(0) = 0. Let
Li(t) =

∑
j′ Zij′(t) denote the total amount of fluid

queued at inputi at time t. Similarly, let Mj(t) =∑
i′ Zi′j(t) be the total amount of fluid destined for out-

put j and queued at some input at timet. DefineCij(t) =
Li(t) + Mj(t). In addition to the fluid model equations
(5)-(7), under a maximal matching algorithm for a switch
having a speedup ofs, the fluid model solution satisfies the
following additional equation:

Ċij(t) ≤
∑
j′

λij′ +
∑
i′

λi′j − s wheneverZij(t) > 0.

(10)



Equation (10) can be added to the fluid model because of
the following lemma.

Lemma 2:For switch with speedup ofs operating un-
der a maximal matching algorithm, each fluid limit must
satisfy (10).
We leave the proof to the appendix. We provide an intu-
itive explanation here. Suppose that at the beginning of a
time slot, the number of packets at VOQij is at leasts.
Then during each of thes scheduling cycles within the
time slot, there is at least one packet at VOQij . There-
fore, during a scheduling cycle, either (1) a packet moves
from inputi to an outputj′, or (2) a packet moves from an
input i′ to outputj. HenceCij reduces by at leasts during
a time slot due to departures. It increases by the number
of packets that arrive at inputi or for outputj. Hence the
change inCij (measured in the fluid model by its deriva-
tive) is no more than the difference between the sum of the
arrivals and the departures.

Now we return to the proof of Theorem 2. LetQ be the
N×N matrix with each entry being1. One can check that

C(t) = QZ(t) + Z(t)Q t ≥ 0. (11)

Define
f(t) = 〈Z(t), C(t)〉.

It follows thatf(t) ≥ 0 for t ≥ 0 andf(0) = 0. It is also
clear thatf(t) = 0 implies thatZ(t) = 0. We would like
to show thatf(t) > 0 implies ḟ(t) ≤ 0, from which and
Lemma 1 the weak stability of the fluid model follows. We
claim (and will shortly prove) that

ḟ(t) = 2〈Z(t), Ċ(t)〉. (12)

Equivalently,

ḟ(t) = 2
∑
i,j

Zij(t)Ċij(t)

= 2
∑

{i,j:Zij(t)>0}

Zij(t)Ċij(t) ≤ 0,

where the inequality is a consequence of (10). Therefore
ḟ(t) ≤ 0 wheneverf(t) > 0, proving Theorem 2.

To establish (12), one first observes that

f(t) =
∑
i,j

Zij(t)Cij(t)

=
∑
i,j

Zij(t)
(∑

k

Zik(t) +
∑
k

Zkj(t)
)

=
∑
i,j,k

(
Zij(t)Zik(t) + Zij(t)Zkj(t)

)
.

Therefore,

ḟ(t) =
∑
i,j,k

Żij(t)Zik(t) +
∑
i,j,k

Zij(t)Żik(t)

+
∑
i,j,k

Żij(t)Zkj(t) +
∑
i,j,k

Zij(t)Żkj(t)

= 2
∑
i,j,k

Zij(t)Żik(t) + 2
∑
i,j,k

Zij(t)Żkj(t)

= 2
∑
i,j

Zij(t)Ċij(t),

which proves (12).
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VI. A PPENDIX

In this appendix, we first introduce fluid limits, which
will be used to prove Theorem 3. We then prove Lemma 2.
The proof provides an example showing how one can add
additional fluid model equations to a fluid model.

A. Fluid limits

In this section, we introduce fluid limits associated with
a switch and prove that each fluid limit must be a fluid

model solution to (5)-(7).
Recall thatZij(n) is the number of packets in VOQij at

the beginning of time slotn. We extend the definition of
Zij(t), for arbitrary timet ≥ 0, to beZij(btc), wherebtc
is the largest integer less than or equal tot. ThenZij(·) ∈
D[0,∞), where, for an integerd, Dd[0,∞) is the space
of functionsf : [0,∞) → R

d that are right continuous
and have left limits in(0,∞). Similarly, we can extend
the definition ofA(t) so that it is defined fort ≥ 0. Note
that the functionsAij(·) andZij(·) are random elements
of D[0,∞), in general.

For purely technical reasons (which will soon become
apparent), we wish to defineD(t) andTπ(t) for t ≥ 0 so
that they arecontinuousfunctions. This merely involves
making the following piecewise linear interpolation: For
t ∈ (n, n+1), letD(t) = D(n)+(t−n)(D(n+1)−D(n))
and letTπ(t) = Tπ(n) + (t− n)(Tπ(n+ 1)− Tπ(n)).

Note that the functionsDij(t) andTπ(t) are random el-
ements ofC[0,∞). We shall sometimes use the notation
A(·, ω), D(·, ω), Tπ(·, ω) andZ(·, ω) to explicitly denote
the dependency on the randomnessω.

For a switch with a speedup ofs and for a fixed random-
nessω, we have

Dij(t+ t′, ω)−Dij(t′, ω) ≤ t s, t, t′ ≥ 0, (13)

Tπ(t+ t′, ω)− Tπ(t′, ω) ≤ t, t, t′ ≥ 0. (14)

It should be clear to the reader thatD(t) andTπ(t) were
defined to be continuous in order to obtain the above uni-
form continuity properties.

Now, for eachr > 0 define

Ār(t, ω) = r−1A(rt, ω),
D̄r(t, ω) = r−1D(rt, ω),
T̄ r(t, ω) = r−1T (rt, ω),
Z̄r(t, ω) = r−1Z(rt, ω).

It follows from (13) and (14) that

D̄r
ij(t)− D̄r

ij(t
′) ≤ s(t− t′), T̄ rπ(t)− T̄ rπ(t′) ≤ (t− t′),

(15)
for any r > 0 and t ≥ t′ ≥ 0. Recall that a se-
quence of functionsfn(·) is said to converge tof(·) uni-
formly on compact (u.o.c.) intervals if, for everyt ≥ 0,
sup0≤t′≤t |fn(t′)− f(t′)| → 0 asn→∞. By the Arzela-
Ascoli Theorem (see, e.g., Billingsley [2], pp 221), for a
fixed ω, the family{(D̄r(·, ω), T̄ r(·, ω)), r > 0} is tight,
asr → ∞, in the space of continuous functions endowed
with u.o.c. topology. That is, for each sequence{rn},



there exists a subsequence{rnk} and a continuous func-
tion (D̄(·), T̄ (·)) such that, for anyt ≥ 0,

lim
k→∞

sup
0≤t′≤t

|D̄rnk
ij (t′, ω)− D̄ij(t′)| = 0, (16)

lim
k→∞

sup
0≤t′≤t

|T̄ rnkπ (t′, ω)− T̄π(t′)| = 0. (17)

Note that

lim
r→∞

sup
0≤t′≤t

|Ārij(t′, ω)− λijt′| = 0 (18)

for all ω satisfying the SLLN assumption (1). Combin-
ing (16) and (18), we have that, for each randomnessω
satisfying (1) and any sequence{rn} with rn → ∞ as
n → ∞, there exists a subsequence{rnk} and function
(D̄(·), T̄ (·), Z̄(·)) such that

(D̄rnk (·, ω), T̄ rnk (·, ω), Z̄rnk (·, ω))→ (D̄(·), T̄ (·), Z̄(·))
(19)

u.o.c. ask →∞.
Definition 7: Any function (D̄(·), T̄ (·)Z̄(·)) obtained

through the limiting procedure in (19) is said to be afluid
limit of the switch.
One can check that each fluid limit(D̄, T̄ , Z̄), obtained
from (19), satisfies the fluid model equation (5). Since
Z̄r(0, ω) = r−1Z(0, ω) → 0 asr → ∞, one must have
Z̄(0) = 0. We now check that the fluid limit also satisfies
the fluid model equation (6). As discussed in Section IV-
B, it is enough to check that the fluid limit satisfies (8).
Consider a VOQij and a timet ≥ 0. Suppose that̄Zij(t) >
0. By the continuity ofZ̄, there exists aδ > 0 such that
mint′∈[t,t+δ] Z̄ij(t′) > 0. Seta = mint′∈[t,t+δ] Z̄ij(t′).
Thus, for large enoughk, we have

Z̄
rnk
ij (t′) ≥ a/2 for t′ ∈ [t, t+ δ] and rnka/2 ≥ 1.

Thus,

Zij(t′) ≥ 1 for t′ ∈ [rnkt, rnk(t+ δ)]. (20)

Equation (20) says that, for a large time interval
[rnkt, rnk(t + δ)], the VOQij has at least one packet in
it. We have, for eacht′ ∈ [t, t+ δ],

0 ≤ Dij(rnkt
′)−Dij(rnkt)

−
∑
π∈Π

πij

(
Tπ(rnkt

′)− Tπ(rnkt)
)
≤ 1.

Dividing each side byrnk and lettingk →∞, one has (8).
Finally, because of (15), each fluid limit(D̄, T̄ , Z̄) is

Lipschitz continuous and therefore is absolutely continu-
ous.

B. Proof of Theorem 3

Assume that the fluid model is weakly stable. Recall
(Definition 6) that this meansZij(0) = 0 andZij(t) = 0
for t > 0. By Section VI-A, for eachω satisfying (1),
{D̄r(·, ω), r > 0} is tight asr → ∞, and the fluid limit
(D̄, Z̄) is uniquely given byZ̄ij(t) = 0 for t ≥ 0. Using
this in (5), we get that̄Dij(t) = λijt for t ≥ 0.

Thus,
D̄r
ij(t, ω)→ λijt

u.o.c. asr →∞. In particular,D̄r
ij(1, ω)→ λij asr →∞

or

lim
r→∞

Dij(r, ω)
r

= λij .

Restrictingr to the integers on the left hand side yields (2),
thus proving the theorem.

C. Proof of Lemma 2

We prove the following lemma, which implies Lemma 2
via the fluid limit procedure.

Lemma 3:A switch employing a maximal matching al-
gorithm at a speedup ofs possesses the following property:
If Zij(n) ≥ s, then

Cij(n+ 1)− Cij(n) ≤
∑
j′

Aij′(n+ 1)−Aij′(n)

+
∑
i′

Ai′j(n+ 1)−Ai′j(n)− s. (21)

Proof: Let Vij denote the set of all VOQs hold-
ing packets at inputi or for output j. ThenCij(n +
1) − Cij(n) is the difference in the number of ar-
rivals at timen + 1 to Vij and the number of depar-
tures fromVij at time n. The number of arrivals to

Vij at time n + 1 equals
(∑

j′ Aij′(n+ 1)−Aij′(n)
)

+
(∑

i′ Ai′j(n+ 1)−Ai′j(n)
)
.

SinceZij(n) ≥ s and at most one packet may be re-
moved from inputi in each phase of thenth time slot,
Zij(n + k

s ) > 0 for 1 ≤ k ≤ s. As the switch employs a
maximal matching algorithm,

πmij (n+
k

s
) + Zij′(n+

k

s
)πmij′(n+

k

s
)

+ Zi′j(n+
k

s
)πmi′j(n+

k

s
) > 0

for somej′ 6= j andi′ 6= i.
Therefore, during each phasek of time n, either input

i transfers a packet to some output or outputj receives a
packet from some input. In either case, at least one packet



is removed from a VOQ in the setVij during each phase of
timen. Since there ares phases, the number of departures
from Vij is at leasts and we get the bound on the right-
hand-side of (21).


