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Abstract— In this paper we use fluid model techniques limit the throughput of the switch to about 58% when the
to establish two results concerning the throughput of data input traffic is independent, identically distributed (i.i.d.)
switches. For an input-queued switch (with no speedup) we Bernoulli and the output destinations are uniform. This
show that a maximum weight algorithm for connecting in- s i contrast to OQ switches which always deliver 100%

puts and outputs delivers a throughput of 100%, and for throughput, since no output will idle as long as there is a
combined input- and output-queued switches that run at a ghput, P 9

speedup of 2 we show that any maximal matching algorithm packet in the switch destined for it.
delivers a throughput of 100%. The only assumptions on It has since been shown that the low throughput of 1Q
the input traffic are that it satisfies the strong law of large switches is merely an artifact of HoL blocking caused due
numbers and that it does not oversubscribe any inputor any tg a FIFO organization of the input buffers, and that 1Q
output. switches can achieve a throughput of upto 100% by using
a simple scheme known as “virtual output queueing” and
|. INTRODUCTION by using suitable packet scheduling algorithms [20], [21],

_ _ 28]. However, all of these results are shown to hold only
Packet switches based on an input-queued (IQ) Crossn the input traffic is i.i.d. although they allow a non-
architecture are attractive for use in high speed network,irorm loading of the switch.

This is because the buffers which queue packets at the "t has been believed for some time now that an 1Q switch

puts need only run twice as fast the line rates._ That is, 'gn deliver 100% throughput farbitrarily distributed in-
fume were slottgd S0 tha’? atmostone pacKet arnved at e?ﬁﬂ patterns so long as no input or output is oversubscribed.
mpu_t of the switch per time slot, then an Input buffer POrhat is, the results of [20], [21], [28] ought to be true for a
tentlal_ly n_eeds FO mal§e upto two transactions per time SIWfder class of input distributions and that the i.i.d. assump-
(1) write in an incoming packet, and (2) copy a buffereg, , is o1y required by their method of proof. The first re-

packet onto the crossbar fabric. Hence the b"’md\’\/idthschIt of this paper, Theorem 1, provides a proof of this belief

the input thﬁirsﬁ'S no fmo[{re th?vn twice the Ilnedract)e. IGsing fluid model techniques. More precisely, Theorem 1
contrﬁst, the u e(;s or a XI output-.queueh (I' Q) proves that an 1Q switch using a maximum weight match-
switch are required to run at least + 1 times the line ing algorithm can achieve a throughput of upto 100% when

rate. dEven for mode_rart]tely iizled SWitCth running.e;]t hi%ﬁbjected to arbitrarily distributed input traffic that satisfies
speeds, memories with such large speedups are either VeIVt ing mild conditions: (i) It obeys the strong law of

expensive or simply unavailable (see, for example, [20] f%{rge numbers, and (ii) it does not oversubscribe any input

an elaboration of th's pomt).' o _ ~_oroutput. Theorem 1, therefore, builds upon and extends
However, 1Q switches which maintain a single first-ing, o \work of [21] and [28].

first-out (FIFO) buffer at the inputs are known to suffer
from the so-called head-of-line (HoL) blocking problemf
The paper of Karol et al [17] shows that this problem cg

After the appearance of [17], a number of researchers
or example, [6], [8], [15], [16], [25]) considered improv-
g the throughput of an IQ switch by using fabrics with
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studies is that with a speedup of 4 or 5 one can achiavificance of the results obtained. Since fluid model tech-
upto 100% throughput when arrivals are i.i.d. at each iniques are relatively new in the computer networking con-
put, and the distribution of packet destinations is unifortext, we have included an appendix in which the procedure
across the outputs. for obtaining fluid limits for a discrete stochastic network
One hopes that it is again possible to remove the i.i@ this case, the network consists of a single switch) is
restrictions on the input traffic patterns. In fact, more @iven in detail. As mentioned previously, the fluid model
true. Prabhakar and McKeown [23], Chuang et al [9], aridethod applies to very general traffic processes. Indeed,
Krishna et al [18] have recently devised a number of dhe only requirement is that they satisfy a strong law of
gorithms that allow a combined input- and output-queud@fge numbers. Since almost all real traffic processes sat-
(ClOQ) switch with an internal speedup of between twisfy this property, the results of this paper have a high prac-
and four toexactly emulate(packet-by-packet) an OQtical significance. A second aspect of this paper is that
switch. Furthermore, these algorithms have been showrittshows thatany maximalmatching algorithm delivers a
work for all input traffic patterns and switch sizes. Since al)0% throughput under a speedup of 2. The significance
OQ switch always delivers a throughput of 100%, the pref this result derives from the fact that maximal matchings
viously mentioned exact emulation ensures that the CIG@e easier to find than maximum matchings, and hence bet-
switch also delivers a throughput of 100%. ter suited for implementation. In particular, and to the best
The results of [9], [18], [23] are obtained with specifi®f our knowledge, this is the first proof that the popular
packet scheduling algorithms. It is interesting to ask jugfd well-studied PIM [1] and iSLIP [19] schedulers, which
how well a CIOQ switch that employs an arbitrary, buind maximal matchings, deliver a 100% throughput under
well-chosen, scheduling algorithm performs as its fabragbitrary packet arrival patterns at a speedup of 2.
speedup is increased. Charny [4] and Charny et al [5]
have recently obtained the following answer to this ques-
tion: When the speedup of a ClIOQ switch is at least 4 Consider anNV x N crossbar switch such as the one
and the input traffic is leaky bucket constrained, any maghown in Figure 1. Assume that time is slotted and that
imal matching algorithm (see Definition 5) delivers 100%ackets arrive at the switch at the beginning of a time slot.
throughput. Theorem 2 of this paper generalizes this resalr concreteness, time shotorresponds to the time inter-
in two ways: (i) It lowers the minimum required speedual [n—1,n),n = 1,2, ... Each input has a buffer of infi-
to 2, and (ii) it removes the restriction of leaky bucket comite capacity for holding packets prior to switching them to
strained inputs. their respective outputs. Likewise each output has an infi-
The results of this paper are derived by considering thée capacity buffer for holding packets that will be placed
fluid model analogs of an IQ or a CIOQ switch. Then the outgoing line. The buffer at an input is partitioned
framework of fluid models has proved to be powerful imto N “virtual output queues” (VOQs), each of infinite
obtaining the maximum throughput region (or, the stabitapacity. The virtual output queue VQCholds packets
ity region) of a variety of stochastic networks under vergrriving at input; destined for outpuf. The queueing dis-
mild assumptions on the input traffic (see [26], [10], [14Lipline at each VOQ and at the output buffer, which typ-
[27], [7], [13], [22], [11], [3], [24]). For a general expo-ically determine the quality-of-service (QoS) that a flow
sition of the stability analysis of stochastic networks usingptains from the switch, can be entirely arbitrary and are
fluid models, please refer to the recent set of notes by it of concern in this note.
[12]. In the fluid model framework, in order to prove thata A “scheduling cycle” consists of two parts: (a) the
switch delivers a throughput of 100% it is enough to prow@atching part, and (b) the switching part. During the
that the corresponding fluid modelvgeakly stable This matching part a matching algorithmy, selects a match-
is the gist of Theorem 3. ing between inputs and outputs in such a way that no input
We conclude the introduction with a few words aboutespectively, output) may be matched to more than one
the organization of the paper and about the practical siitput (respectively, input). During the switching part in-

put: transfers a packet to outpytf they are matched to
speedup of 1. For values efbetween 1 andV packets need to be

buffered at the inputs before switching as well as at the outputs af%ar1Ch Other_and VOZQIS nhon-empty. .
switching. We shall refer to this type of a switch as a combined input-_A matChm_g may b('?‘ represented by a Pe_rmUtatlon ma-
and output-queued (CIOQ) switch. trix 7. That is, inputi is matched to output if m;; = 1,

Il. MODEL AND NOTATION



VOQy up to time slotn. We also adopt the convention that
Input 1 D—.D_ Quput 1 Dij(()) = 0.
—— [ o]— Qefini'_tion 2 A switch opergting_ under a matching al-
voQ,, . gorithm is said to beate stableif, with probability one,
¢ D
. VOQy, . lim M:Azj i,j=1,...,N 2
= LT e
Input N - OutputN  for any arrival processes satisfying (1).
VEQD Definition 3: A matching algorithm is said to beffi-
. cientif (2) holds for any arrival processes satisfying (1)
Fig. 1. A CIOQ switch and

ZAM <1, ZAM <1. ()

i J
Since, each output link can potentially transmit one packet
in each time slot,

otherwise input is not matched to outpyt LetII be the
set of all V! permutation matrices.

The switch is said to have a speedupspfvheres €
{1,..., N}, if during every time slot there areschedul- . > Dij(n)
ing cycles. We will also refer to each of the scheduling Al =
cycles in a time slot as a “phase”. When the speedigp .

bigger than 1, any packets that are transferred from an Ll?ﬁhe long-run fraction of time that output ligkis busy. A

; L ) switch operating under an efficient matching algorithm can
puti to an outputj during a phase will be assumed to b . .
. eep each output link00% busy, equally the switch can
transferred at the end of the phase. As mentioned earlier, . " .
. achieve upta 00% throughput, if there is enough offered
whens > 1 buffers are required at the ouputs as well. This
leads to the combined input- and output-queued (CIO ad.. .
Write Z;;(n) for the number of packets in VOQat the

architecture. . . . . .
In addition to assuming that packets arrive at the swithﬁagm.nlng Of. time slqh, including any packet that might
ave just arrived at time — 1.

just at the beginning of a time slot, we shall also assume
that packets depart from the switch just prior to the end of 1. STABILITY RESULTS
a time slot.

Definition 1: A matching algorithmn is a specification
of a sequence of permutatiods;; (n + %)}m, where

In this section, we state the two major results of this pa-
per. The first states that a maximum weight matching algo-
rithm is efficient for a switch with speedup 1. The second

m E . . . . g
Wijt(” tJTdS) !ndlci:tesé;[h?tgventltf:at inputis matched to. i 105 that any maximal matching algorithm is efficient for
outputj during phase: of time slot. a switch with speedup > 2.

Let A;;(n) denote the number packets that have arrive
at input: destined for outpuf up to time slotz. Since we A. Speedup of 1
assume that packet arrivals occur at the beginning of atim
slot, for any timef € (n — 1,n), A;;(n) is the cumulative
number of packets that have arrived at VOQy time .

%hen the switch speedup is 1 there is only one schedul-
ing cycle and hence no more than one packet may be re-
We adopt the convention that,;(0) — 0. We assume movgd from each input or transferreq to each output in
. A : one time slot. A packet that reaches its output at the end
that the arrival process€s;;(-),,j = 1,..., N} satisfy . , . . .
a strong law of large numbers (SLLN): with probabilit of a time slot will depart immediately from the switch,
9 g ' P Yand hence there is no need for output buffers. Thus, at a
one, . .
Aii(n) speedup of 1, we are led to the input-queued architecture.
lim —~ =Aij ,j=1,...,N. (1) For each permutation (or matching of inputs and outputs)

n—oo n H i1} 1
We call \;; the arrival rate at VOQ). Assumption (1) on m € T1, let the “weight” under matching equal

arrival processes is very mild. It is satisfied, for example, fr(n) = (m, Z(n)),

when the arrival process€s;;(-),7,j7 = 1,...,N} are

jointly stationary and ergodic with arrival ratas;. where for two matricesA and B of the same size,
Let D;;(n) be the number of departures fromVQQu) (A, B) = >_,; Ai; Bi;.




Definition 4: Under themaximum weight matching al- " " "
gorithm, w, DZ](”) = ZHEZWU 1{Z¢j(f)>0}(Tﬂ' (6) - 1% (6 - 1))7
S =1
m(n) = argmax,{fr(n)}. (4) T(-) is non-decreasing, and _ T7"(n) = n.

Let f(n) = frw(n)(n) be the weight of the maximum el

weight matching at time. The first equation tracks the evolution &f; in terms of

When there are multiple matchings that all have equdle total number of arrivals at and departures from VOQ

weight we choose one of these matchings arbitrarily Tthe second equation keeps a count of the cumulative num-

break the tie. ber of departures from VOQ And the third equation ex-
We shall prove the following theorem in Section V.  presses the fact that inpuis matched to some output or
Theorem 1:A maximum weight matching algorithm isthe other at each time.

efficient.
B. Fluid equations

B. Speedup of 2 Now we describe a deterministic, continuous fluid

Recall that for a switch with a speedupothere ares model of a switch operating under some matching algo-
scheduling cycles. rithm m, with offered traffic satisfying (1). Lef(¢)

Definition 5: A matching algorithmz is said to be a be the cumulative amount of time 0, ¢] that matching
maximal matching algorithnor anonidling matching al- 7 was employed under the matching algoritam For

gorithmif for every phase: of every timen, Zij(n‘i'%) > 4,7 = 1,...,N and for eacht > 0, the fluid model is

0 implies that at least one of the following holds: governed by the following set of equations:

D) Ziy(n+ &) 7%, (n+ %) > 0

(2) Zirj(n + &y ml (n+ £) > 0, Zij(t) = Zij(0) + Aijt — Dyj(t) = 0, (%)

for somei’, 5’ € {1,...,N}. Dij(t) = mi Ty (t),if Zy(t) > 0, (6)
Thus under a maximal matching algorithm if inputas rell

a packet for output at the beginning of a scheduling cycle, T™(-) is nondecreasing, anZ Tm(t) =t, (7)

then either (i) Input is matched to output, or (ii) Input
1 is matched to an outpyt # j for which it has a packet,
or (iii) Output j is matched to an input # ¢ which has a where, for a functiory, f(¢) denotes the derivative gfat

mwell

packet for outpuy. t. We adopt the convention that whenever symp)) is
The following theorem is proved in Section V. used,f is assumed to a differentiabletat
Theorem 2:Any maximal weight matching algorithmis  Equations (5)-(7) are fluid model equations. Each so-
efficient, so long as the speedsip> 2. lution (D, T, Z) to (5)-(7) is said to be a fluid model so-

lution. One interpretsZ;;(t) as the buffer level at time

in VOQ;; andD;;(t) as the total amount of fluid departing
We now introduce the fluid model of a switch. To ddérom VOQ; in [0, ¢]. Equation (5) is a basic flow equation.

this, we first write down the equations that govern the (digguation (6) has an equivalent characterization: Whenever

crete) dynamics of a switch. We then write down the cog;;(¢) > 0, there exists & > 0 such that

responding fluid model equations of the switch.

IV. FLUID MODELS

Dij(t)~Dy(t) = 3 miy (T2 (#) =T (1)), ¢ € [t,+4].
mell
Suppose the switch employs some (yet to be specified) _ o (8)
matching algorithmm. For ar € II, let T(n) be the Eduation (8) says that if the amount of fluid in VQQs
cumulative amount of time that permutatianhas been POSitive attime;, then, for small enough > 0, the amount
used by time slot. Again, we assum&™(0) = 0. The of fluid drained from VOQ); in the intervallt, t'] C [t,t +

following equations of evolution hold for the switch: for®) €duals the amount of time that inpuand outpuyj were
n>0andi,j=1,... N matched to each other durifgt’].

Depending on the matching algorithm used, often
Zij(n) = Z;j(0) + A;j(n) — Dij(n), there are additional fluid model equations corresponding

A. Switch dynamics



to matching algorithmn. For example, ifn equalsw, the Briefly, this is because under condition (8)s doubly sub-
maximum weight matching algorithm, the additional fluidtochastic and can therefore be written as a convex com-
equation takes the form: for eaghe 11, bination of permutation matrices, from which the above
inequality follows. See Lemma 2 of [21] for details.

Lett be a fixed value such thgtandZ are differentiable

) ) ©) _att. LetIl’ be the set of matchings such thatf,(t) =
The above equation says that under the maximum wei E)_ Then we havef (t) = f(t) for © € IT (see, for

matching algorithm, a matching which has weight less
than another matching’ at some time will not be em-
ployed at that time. Thus, equation (9) characterizes Z Tw(t) =1.
the maximum weight matching algorithm and is added to relll
the basic fluid model equations (5)-(7) whenever we cop-

) : ) ) . t follows that
sider the fluid model of a switch employing the maximum

TV (t) = 0if (7, Z(t)) < (', Z(t)) for somer’ € II.

™

example, the proof of Lemma 3.2 of [14]), and by (9),

weight matching algorithm. (Z(t),D(t)) = (Z(t), > wTx(t)
In general, deciding which equation can be added to a melll

f!uid model is related téluid limitsand is discussed in Sec- _ Z (Z(t), 7T (1))

tion VI-A. oy
Definition 6: The fluid model of a switch operating un- .

der a matching algorithm is said to beeakly stablaf = > [T()

for every fluid model solutio{D, T, Z) with Z(0) = 0, metl .

Z(t) = 0fort > 0. = ()Y Te(t)
Theorem 3:A switch operating under a matching al- mell’

gorithm is rate stable if the corresponding fluid model is = f(t).

weakly stable.

We defer the proof to the appendix. Thus,

(Z(t),2(t) = (Z(t),A) —(Z(t),D(1))
= (Z(1),N - ft)

< 0

V. PROOFS OFTHEOREMS1 AND 2

In this section, we prove Theorems 1 and 2. In light
of Theorem 3, it suffices to prove that, in each case, the
corresponding fluid model is weakly stable. We first statefollows that d(Z(t), Z(t))/dt < 0 for any Z(t) # 0.
the following simple lemma. Since Z(0) = 0, from Lemma 1 we have that the fluid

Lemma l:Let f : [0,00) — [0,00) be an absolutely model is weakly stable.
continuous function withy (0) = 0. Assume thaff (t) <
0 for almost everyt (wrt Lebesgue measure) such thd®. Proof of Theorem 2

f(t) > 0 andf is differentiable at. Thenf(t) = 0for  Consider the fluid model of a switch having a speedup
almost every > 0. of s, operating under a maximal matching algorithm. Let
Proof: For almost every > 0, f*(t) — f*(0) = (D,T,Z) be a fluid model solution witlZ(0) = 0. Let

2 [y f(s)f(s)ds < 0,sincef(s)f(s) < 0ae.inf0,t]. Lt) = > Zij(t) denote the total amount of fluid

Now f(0) = 0 and f(¢) = 0 imply that f(t) = 0 for queued at input at timet. Similarly, let M;(t) =

almost every. B 5. Zy(t) be the total amount of fluid destined for out-

put j and queued at some input at timeDefineC;;(t) =

A. Proof of Theorem 1 Li(t) + M;(t). In addition to the fluid model eiq(u;tions
Let (D, T, Z) be a fluid model solution satisfying (5)-(5)-(7), under a maximal matching algorithm for a switch

(7) and (9) withZ(0) = 0. For a permutation matrix, having a speedup &f the fluid model solution satisfies the

definefr(t) = (m, Z(t)). Let f(t) = max, fz(t). Let A following additional equation:

be theN x N matrix with entries)\;;. Itis well-known

that under condition (3) Cij(t) < Z Aijr + Z)\i’j —s wheneverZ;;(t) > 0.

O Z(1) < F(t) fort > 0. ! ! (10)



Equation (10) can be added to the fluid model becauseTdferefore,

the following lemma.

Lemma 2:For switch with speedup of operating un-
der a maximal matching algorithm, each fluid limit must
satisfy (10).

We leave the proof to the appendix. We provide an intu-
itive explanation here. Suppose that at the beginning of a
time slot, the number of packets at VQQs at leasts.
Then during each of the scheduling cycles within the
time slot, there is at least one packet at VQQThere-
fore, during a scheduling cycle, either (1) a packet moves
from input: to an output’, or (2) a packet moves from an
inputi’ to output;j. HenceC;; reduces by at leastduring
a time slot due to departures. It increases by the number
of packets that arrive at inputor for outputj. Hence the
change inC;; (measured in the fluid model by its derivall!
tive) is no more than the difference between the sum of the
arrivals and the departures. 2]

Now we return to the proof of Theorem 2. L@tbe the
N x N matrix with each entry beint). One can check that[3]

Ct)=QZ({t)+Z1)Q t>0. (11)

[4]
[5]

Define

f@) =(2(1),C())-
It follows that f(¢) > 0 fort > 0 and f(0) = 0. Itis also
clear thatf(¢) = 0 implies thatZ(¢) = 0. We would like
to show thatf(t) > 0 implies f(t) < 0, from which and [6]
Lemma 1 the weak stability of the fluid model follows. We
claim (and will shortly prove) that [7]

(12)
(8]

f(t) =2(Z(1),C(1)).

Equivalently,

f() 23 Zi(t)Cij(1)
i\j [9]
=2 > Zit)Cyt)

IN

0,

. o 10
where the inequality is a consequence of (10). Theref&re]

f(t) < 0wheneverf(t) > 0, proving Theorem 2.
To establish (12), one first observes that

f(t) > Zi(1)Ciy (t)
o
> Zi(t) (Z Zin(t)+ ) ij(t))
i, k k
> (20 Zi () + 25 (1) Z15(1) )

i?jIk

[11]

[12]

[13]

)

Z Zzg (t)ZZk (t) + Z Zij (t)sz (t)
ik
+ Z Zii(t) Zy;(t) + Z Zij(t) Zij (1)
ik
2> Zij(t) Zin(t) + 2 Zij(t) Zi; (t)
ik

2 Z Zi;(t)Ci5(t),

i7j7k

’L"j7k:

/1:7.7"]{:

which proves (12).
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In this appendix, we first introduce fluid limits, whichfor any » > 0 and¢t > # > 0. Recall that a se-
will be used to prove Theorem 3. We then prove Lemmaguence of functiong,,(-) is said to converge tg(-) uni-
The proof provides an example showing how one can afttmly on compact (u.o.c.) intervals if, for evety> 0,
additional fluid model equations to a fluid model. supg<y <t | fu(t') — f(t)] — 0 asn — co. By the Arzela-
Ascoli Theorem (see, e.g., Billingsley [2], pp 221), for a
fixed w, the family {(D"(-,w), T (-,w)),r > 0} is tight,

In this section, we introduce fluid limits associated withsr — oo, in the space of continuous functions endowed
a switch and prove that each fluid limit must be a fluidith u.o.c. topology. That is, for each sequeriss, },

VI. APPENDIX

A. Fluid limits



there exists a subsequengs, } and a continuous func-B. Proof of Theorem 3

tion (D(-), T(-)) such that, for any > 0, Assume that the fluid model is weakly stable. Recall
lim sup |D E(t',w) — Dyt =0, (16) (Definition 6) that this meang;;(0) = 0 andZ;;(t) = 0

k—o0 g<t/<t for ¢ > 0. By Section VI-A, for eachv satisfying (1),
lim sup |T5"™*(t,w)—T:(¥)]=0. (17) {D"(:,w),r > 0} is tight asr — oo, and the fluid limit
k—00 0<t/<t (D, Z) is uniquely given byZ;;(t) = 0 for ¢ > 0. Using
Note that this in (5), we get thaD;; (t) = \;;t for ¢t > 0.
) Thus,
lim sup |A7(t',w) — At'| =0 (18) Djj(t,w) — Aijt

T=0 o< <t

for all w satisfying the SLLN assumption (1). CombinY-0-C-as — oc.In particular,Dj;(1,w) — Xij asr — oo

ing (16) and (18), we have that, for each randomness®" Dyi(r,w)
satisfying (1) and any sequen{ge, } with r, — oo as Tlijgo = T’

n — oo, there exists a subsequengs,, } and function

(D(+),T(-), Z(-)) such that

(D™ (-, w), T (+,w), 27 (-,w)) — (D(:), T(-), Z((i)g)) C. Proof of Lemma 2

Restrictingr to the integers on the left hand side yields (2),
thus proving the theorem.

u.o.c. ask — oo. We prove the following lemma, which implies Lemma 2
Definition 7: Any function (D(-),T(-)Z(-)) obtained via the fluid limit procedure.

through the limiting procedure in (19) is said to béwad Lemma 3: A switch employing a maximal matching al-

limit of the switch. gorithm at a speedup efpossesses the following property:

One can check that each fluid limiD, T, Z), obtained If Z;;(n) > s, then

from (19), satisfies the fluid model equation (5). Since

Z"(0,w) = r1Z(0,w) — 0 asr — oo, one must have Cjj(n + 1) ) < ZAU n+1) — A;j(n)

Z(0) = 0. We now check that the fluid limit also satisfies

the'ﬂgid model equation (6). As disgusgeq in S_egtion IV- + Z Agi(n+1) — Ay;(n) — s.(21)
B, it is enough to check that the fluid limit satisfies (8). g

Consider aVOQ@ and atime > 0. Suppose thaf;;(t) > Proof: Let V;; denote the set of all VOQs hold-

0. By the continuity ofZ, there exists @ > 0 such that ing packets at input or for outputj. Then C;;(n +

mingep o) Zij(t') > 0. Seta = minyep i Zij(t'). 1) — Cij(n) is the difference in the number of ar-
Thus, for large enough, we have rivals at timen + 1 to V;; and the number of depar-
tures fromV;; at timen. The number of arrivals to

Z" ')y > a/2 fort' €t,t+6] and r.a/2 > 1.
t')>a/ € ] Tny,a/2 > Vi; at timen + 1 equals <Zj, Aiy(n+1) — Ai]—/(n)>

ij

Thus, + (35 Avj(n+ 1) — Ays(n)).
Zii(t') > 1 fort' € [rpt,rn, (t+0)].  (20) SinceZ;;(n) > s and at most one packet may be re-
moved from inputi in each phase of the'” time slot,
Equation (20) says that, for a large time intervay, . i(n+ ) > 0for1 < k < s. As the switch employs a

[rnt, Tn, (t + 0)], the VOQ; has at least one packet iNmaximal ‘matching algorithm,
it. We have, for eachl € [t,t + J],

ek k k
0 § Dij(rnk /) - Dij(rnkt) ﬂ.ij (n . ;) . ZZ] (n + )ﬂ- ,(n + 8)
k: k
- Zﬂ—z]< 'rnk Tﬂ'(rnkt>> <1 + lej(n+—)W%(n+—) > 0
mell S S

Dividing each side by,,, and lettingk — oo, one has (8). for somej’ # j andi’ # i.

Finally, because of (15), each fluid limiD, T, Z) is Therefore, during each phageof time n, either input
Lipschitz continuous and therefore is absolutely continiitransfers a packet to some output or outpuéceives a
ous. packet from some input. In either case, at least one packet



is removed from a VOQ in the s&}; during each phase of
time n. Since there are phases, the number of departures
from V;; is at leasts and we get the bound on the right-
hand-side of (21). |



