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In heavy traffic analysis of open queueing networks, processes of interest such as queue lengths and workload levels are 
generally approximated by a multidimensional reflected Brownian motion (RBM). Decomposition approximations, on 
the other hand, typically analyze stations in the network separately, treating each as a single queue with adjusted 
interarrival time distribution. We present a hybrid method for analyzing generalized Jackson networks that employs both 
decomposition approximation and heavy traffic theory: Stations in the network are partitioned into groups of "bottleneck 
subnetworks" that may have more than one station; the subnetworks then are analyzed "sequentially" with heavy traffic 
theory. Using the numerical method of J. G. Dai and J. M. Harrison for computing the stationary distribution of 
multidimensional RBMs, we compare the performance of this technique to other methods of approximation via some 
simulation studies. Our results suggest that this hybrid method generally performs better than other approximation 
techniques, including W. Whitt's QNA and J. M. Harrison and V. Nguyen's QNET. 

nuestions related to the performance of computer, 
\/ communication, and manufacturing systems 
are ten addressed through the analysis of queueing 
network models. Exact solutions under realistic 
assumptions remain elusive, making approximate 
solutions a practical necessity. A popular approxima- 
tion technique is decomposition, which consists of 
breaking the network into smaller pieces (typically 
with one station in each piece), and analyzing each 
piece separately. Examples of decomposition approx- 
imations are contained in Kuehn (1979), Whitt 
(1983), Bitran and Tirupati (1988), and Reiman 
(1990). All of these papers decompose the network 
into single stations. QNET, as described by Harrison 
and Nguyen (1990), is an alternative method for 
approximating queueing networks. Motivated by 
heavy traffic theory, QNET uses a reflected Brownian 
motion (RBM) on the J-dimensional nonnegative 
orthant to approximate a J-station queueing network. 
Numerical results can then be obtained using the 
procedure described in Dai and Harrison (1992), 

known as the QNET algorithm. However, the com- 
putational complexity of the QNET algorithm grows 
in the size of the network, making it impractical for 
analyzing large networks. 

The goal of this paper is to develop a hybrid method 
for approximating generalized Jackson networks using 
both decomposition methodology and heavy traffic 
theory. Our method, which we call Sequential Bottle- 
neck Decomposition (SBD), first partitions stations in 
the network into several "ordered" subnetworks 
(where each subnetwork may contain more than one 
station), then analyzes the subnetworks "sequentially" 
using a variant of the QNET method. This approxi- 
mation is based on a heavy traffic limit theorem for 
queueing networks with several bottleneck stations 
(c.f. Johnson 1983, Chen and Mandelbaum 1991). 
When analyzing a particular subnetwork, SBD divides 
the remaining stations of the network into two sets, 
those that have larger traffic intensities than the sta- 
tions in the designated subnetwork, and those with 
smaller traffic intensities. (This implies that 
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subnetworks are composed of stations whose traffic 
intensities are "roughly" similar.) Stations with 
smaller traffic intensities are treated as if their service 
times are zero (they are "instantaneous switches"). 
Stations with larger traffic intensities are treated as if 
they are supersaturated (or overloaded), which turns 
them into sinks for customers routed to them, and 
sources for customers routed from them. The analysis 
of a subnetwork with k stations is thus reduced to 
formulating the appropriate k-dimensional reflected 
Brownian motion, and then finding the stationary 
distribution of the RBM. Note that this method over- 
comes issues of computational complexity associated 
with the QNET method of Harrison and Nguyen 
because subnetworks can be kept to a reasonable size. 

Reiman (1990) proposes two decomposition 
approximations for generalized Jackson networks 
which are similar in spirit to the SBD method 
described above. The critical difference in the methods 
proposed in Reiman (1990) is that all subnetworks are 
composed of a single station. The main incentive for 
using single-station subnetworks is that the approxi- 
mating process, one-dimensional reflected Brownian 
motion, has a known (exponential) stationary distri- 
bution. The recent work of Dai and Harrison, which 
provides numerical solutions for the stationary distri- 
bution of multidimensional reflected Brownian 
motion on the nonnegative orthant, opens up the 
possibility of using bottleneck subnetworks of all sizes. 
The purpose of this paper is to explore the benefits of 
extending the methods first described in Reiman 
(1990) to subnetworks that consist of more than one 
station. To our knowledge, this is the first description 
of a decomposition approximation that makes use of 
multistation subnetworks for generalized Jackson 
networks. 

The rest of the paper is organized as follows. We 
devote Section 1 to background material: In subsec- 
tion 1.1 we present the details of the generalized 
Jackson network model; a general discussion of 
decomposition approximations is contained in subsec- 
tion 1.2, and a description of the QNET method is 
provided in subsection 1.3. The sequential bottleneck 
decomposition (SBD) method is described in Section 
2. In Section 3 we present some numerical results 
which compares the performance of SBD, QNET, and 
QNA (Whitt). 

We conclude this section with a brief comment on 
our notation. All vectors are column vectors unless 
something is said to the contrary. For a J-vector a, if 
- C $1, 2, . . ., J}, then aB is the I Sl -vector (I -l is 
then cardinality of Sq) consisting of all elements of a 
with indices in _q. Similarly, if A is a J x J matrix, 

then A, is the principal submatrix associated with 
indices in i5. Finally, givenf(l.) as a real-valued func- 
tion and h as a constant, we will use the notation 
f(t) ht to mean f(t)/t h as t -> oo. In the case 
thatf(.) is a vector (matrix) valued function and h is 
a vector (matrix), one interpretsf(t) ~ ht component- 
wise in the natural way. 

1. PRELIMINARIES 

1.1. The Generalized Jackson Network 

The queueing network we consider has J single-server 
stations, each of which has an associated infinite 
capacity waiting room. At least one station has an 
arrival stream from outside the network, and 
the arrival streams are assumed to be mutually inde- 
pendent renewal processes. The arrival rate to station 
i is ai, and the interarrival variance is a;, 1 < i < J. 
The squared coefficient of variation (SCV) for arrival 
stream i, ci,i, is Cai. Since our approximations are 
based on two moments, that is all we define. Cus- 
tomers are served in a first-in, first-out order at each 
station. Service times at stations 1, ..., J form 
mutually independent sequences of i.i.d. random vari- 
ables. The mean service time at station i is ri, and the 
service time variance is si2, 1 < i < J. The squared 
coefficient of variation of service times at station 
i, ci, is rT2si. After completing service at station i, a 
customer is routed to station j with probability Pij, 
1 s j < J, and out of the network with probability 1 - 

V- PFj, 1 < i s J. We assume that the network is 
open, so all customers eventually leave. This is true if 
the matrix P = (Pij) is strictly substochastic. We further 
assume that arrival streams, service streams, and rout- 
ing streams are independent. We define the traffic 
intensity exactly as in Jackson (1957). Let X be the 
unique solution of 

X = a + P'X, (1) 

where a = (a,, a2, . . ., aj)'. By our assumption on P, 
(1) has a unique solution given by X = (I - P')-la = 

Q'a, where Q = Xn=O JJPf. The traffic intensity at sta- 
tion i, pi, is given by 

pi = X1T, 1 < i < J. (2) 

Under certain technical assumptions, Borovkov 
(1986) has shown that this network is ergodic if 

pi <1,I<.i < J. (3) 

1.2. Decomposition Approximations 

In decomposition approximation techniques, the 
analysis of a network is separated into analyses of 
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smaller subnetworks, each typically consisting of one 
station. The mean waiting time of each station is then 
approximated by an expression that is similar in form 
to the approximation of Kraemer and Lagenbach-Belz 
(1976) for the GI/G/1 queue. In particular, let w 

denote the approximation for the mean steady-state 
waiting time at station j under approximation scheme 
x. The typical decomposition approximation has the 
form 

i( pi) 2 (4) 

where Cjf is an approximate measure under scheme x 
of the composite variability associated with station j. 
One can think of CJ as being the sum of two compo- 
nents: The first component is associated with the SCV 
of the service time distribution, and the second com- 
ponent is associated with the SCV of the arrival pro- 
cess to that station. It is the expression for Cjx that 
differentiates the various decomposition approxima- 
tions and determines their effectiveness and accuracy. 
Observe that in the special case of Jackson networks 
(i.e., networks of the type considered here with the 
additional assumption that all distributions are expo- 
nential), the exact answer is obtained by setting 
CJackson = 2 for all stations j. 

One example of a decomposition approximation is 
Whitt's Queueing Network Analyzer (QNA) (Whitt 
1983). The expression for the waiting time at each 
station is of the same form as (4); however, the 
determination of CV,A is rather involved, so we do 
not discuss it here and refer the interested reader to 
Whitt for details. Other decomposition approxima- 
tions are contained in Kuehn (1979) and Bitran and 
Tirupati (1988). 

The approximation for total mean sojourn time in 
the network is easy to derive from estimates of mean 
waiting times. Let vj denote the mean total number of 
visits that a customer makes to station j; it follows 
from the definition of the routing matrix P that if the 
customer in question enters the network through sta- 
tion i, then Vj = [(I - P)-']ij. The decompositon 
approximation scheme x estimates the mean steady- 
state sojourn time SI by 

J 
SX = vA I ;x + rj]. (5) 

j=1 

1.3. The QNET Method 

To use the QNET method (Harrison and Nguyen), 
one first replaces the queueing network by what we 

call an approximating Brownian system model. For 
generalized Jackson networks considered in this paper, 
this step is rigorously justified by the limit theorem of 
Reiman (1984). The second step is the computation 
of the stationary distribution for the Brownian model, 
which amounts to solving a certain highly structured 
partial differential equation. No closed-form solution 
to the partial differential equation is known for the 
general case; however, an algorithm has been devel- 
oped by Dai and Harrison to numerically solve for 
the stationary distribution. 

We begin by deriving the parameters for the 
Brownian model from the "primitive data" associated 
with the generalized Jackson network. The develop- 
ment here closely follows that of Harrison and 
Nguyen, and the interested reader is referred there for 
a more detailed description. First, set 

6= p - e, (6) 

where p is the vector of traffilc intensities calculated in 
(2) and e is the J-dimensional vector of ones. The jth 
element of 0 can be interpreted as the rate at which 
work accumulates at station j if the server is always 
busy. The stability condition (3) is equivalent to 
requiring 0 < 0; that is, on average, work accumulates 
at a negative rate. 

Next let T be the diagonal matrix with diagonal 
elements (r,, . . ., rj), and define 

M = T(I - P)-l T-1. (7) 

It follows from the previous interpretation of the 
matrix (I - P')-' that Mij represents the average 
amount of residual work for server i embodied in a 
unit of immediate work for server j. The matrix M 
contains all the information about customer routing 
that is required in the QNET approach to system 
performance analysis. Observe that the "routing 
matrix" M is invertible, and denote its inverse by R, 

R =M-1 = T(I-P')T-'. (8) 

The final parameter of the Brownian system model 
is a covariance matrix F associated with the "workload 
input" processes to the network. For a more explicit 
definition of r, some additional notation must be 
introduced. Let Ej(t) be the number of external 
arrivals to enter station j by time t; let Aj(t) be the 
total number of visits to station j made by those 
customers who enter the network by time t (regardless 
of where the customer enters the network); and let 
E(t), A(t) be the J-dimensional vector processes 
defined in the obvious way. Let { w/(1), wj(2), . . .} be 
a sequence of i.i.d. service times at station j. We are 
interested in obtaining the asymptotic covariance 
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matrix IF associated with the total load input process 
L(t) = (L,(t), . .. , L,(t))' defined by 

Lj(t) = w(1) + ... + wj(Aj(t)). (9) 

Let 1k'(1), k1(2), ...) be a sequence of i.i.d. routing 
vectors for customers completing services at station l; 
the jth component of the vector equals one if the 
customer goes next to station j, and all other compo- 
nents are zero. Denoting by q5 a generic element of 
this sequence, it follows that 

E[q/] = Pf' and Cov[k'] = H', (10) 

where P, is the lth row of the routing matrix P and H' 
is the J x J matrix defined by 

Hj= _PPz 
i 

=1J H' -Pl F,,) oi 

Next define the J-dimensional cumulative sums and 
the centered processes 

n n 

=bl(n) = E 5+(k) and 4'(n) = (0'(k) - PI ). 
k=l k=l 

One can now define the total arrival process A(t) in 
terms of external arrival processes and routing vectors 
by means of the representation 

J 

A(t) = E(t) + E 4'(A,(t)) 
1=1 

J 

= E(t) + , 4(Ai(t)) + P'A(t). ( 1) 
1=1 

The obvious manipulations reduce the above expres- 
sion to 

A(t) = (I - P1)- l E(t) + E V(A(t))] (12) 

From renewal theory and the assumed independence 
of the various external arrival processes, one has 
E[E(t)] - at and Cov[E(t)] - At, where 

A = diag(acY,1, .. . c a2,J). (13) 

Furthermore, because the random vectors 1" have zero 
means, we can show that the asymptotic covariance 
matrix of the bracketed quantity in (12) remains 
unchanged if one replaces A,(t) by its asymptotic mean 
X,t, or more precisely, by the integer part of X,t. Com- 
bining that fact with (10), (13), and the obvious 
independence properties, one has from (12) that 
Cov[A(t)] - Bt, where 

B = [(I - P')-l](A + H)[(I - P')-']' (14a) 

and 
J 

H= X X1H'. (14b) 
1=1 

The service times wj(n) are independent of A(t), so 
it follows from (9) and (14) that Cov[L(t)] rt, where 

F= TBT+ TDT, (15) 

and D = diag(X1c , ... c Xjc'J). Substituting (14) into 
(15) and simplifying, one has 

F = [T(I - P')-']G[T(I - P')-']', (16) 

where 

G = A + H + (I - P')D(I-P). (17) 

Readers may verify that (17) is equivalent to 

aci + X1cS( 1 -2P'') 

+ '[EJn=i XMPmi(PmzC2m + 1 -Pmi)] i = 

Gj _ic2,p-jc2jPji 

J=X AM(1 - C2m)PmzPmj ip mJ. 

(18) 

The approximating Brownian system model is 
defined by these six relationships: 

Z(t = W() + I(t) (19) 

{1(t), t - 0} is a J-dimensional Brownian motion 
with drift vector 0 and covariance matrix P, (20) 

I(.) is nondecreasing and continuous 
with I(0) = 0 (21) 

Ij(.) increases only when Wj((.) = 0, (22) 

Z(t) = MW(t), and (23) 

W(t) 3 0. (24) 

The process W(t) as defined by (19)-(24) is a 
J-dimensional reflected Brownian motion with drift 
vector ,u = RO, covariance matrix Q = RrR' = TGT', 
and reflection matrix R, or simply (,A, Q, R) RBM. If 
pj < 1 for each stationj, Harrison and Williams (1987) 
proved that W(t) converges in distribution to a ran- 
dom vector W* = (W*, ..., W*) as t -4 oo. The 
QNET method proposes that H* be used as 
the approximating steady-state workload vector 
for the queueing network. Observe that a rigorous 
justification of this approximation requires an inter- 
change of limits; namely, it remains to be shown that 
the steady-state distribution of the limiting Brownian 
model well approximates the heavy-traffic limit of 
the original queueing network in steady state. 
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Nevertheless, we will proceed as if this were true, and 
set 

W{yNET = E(Wj*) j = 1, ...,J. (25) 

Finally, given the steady-state distribution of the wait- 
ing vector, QNET approximates the mean steady-state 
sojourn time via an equation of the same form as (5). 

Let ir be the distribution of the limiting random 
variable V". Before we state an analytical charac- 
terization of the limiting distribution ir, we first 
introduce some additional notation. Let S denote 
the J-dimensional nonnegative orthant (the state 
space of the process), and let 

Fj= {(xI,. . . ,x)ES:xj=01, forj= 1,. . .,J. 

Recall that A, Q, and R are the drift vector, covariance 
matrix, and reflection matrix associated with W, and 
define the corresponding second-order elliptic differ- 
ential operator CV via 

1' J J 2 J 

Wf(x) = 2 EE Qi d f(x) + EX d f(x), 
2 i=l j=l axaj )j= Xj 

f E C2(S), 

where CQ(S) is the set of functions, which together 
with their first and second derivatives are continuous 
and bounded on S. Next, for each j = 1, . .. , J, define 
the directional derivative -7jf(x) = Ri Vf(x), where 
Ri is the jth column of the reflection matrix R. Note 
that -, f is the directional derivative off in the direc- 
tion of reflection associated with boundary face Fj. 

Harrison and Williams prove that the stationary 
distribution ir has a density function po, which together 
with a certain boundary density function pj on 
Fj(j = 1, ..., J) jointly satisfy the basic adjoint 
relationship (BAR): 

f S?f(x).po(x) dx + - E r % f(x) pj(x) daj = 0, 

fE Ct(S); (26) 
here, rj is Lebesgue measure on boundary face F1(j = 
I I... ., J). 

Dai and Harrison describe a general algorithm for 
the numerical solution of the basic adjoint relationship 
(26). There are some choices one has to make associ- 
ated with that algorithm, and they have suggested one 
possibility. With that particular choice, the algorithm 
has been implemented in a computer program tenta- 
tively called QNET. Readers are referred to Dai (1990) 
and Dai and Harrison (1992) for a complete descrip- 
tion of the algorithm as well as details of the imple- 
mentation. Suffice it to say that QNET produces 
approximate densities indexed by n = 1, 2, ... of 

the form pS')(x) = r ()(x). q(x), where r(n)(x) is some 
(n - 1)-degree polynomial of xl, . x. , J and 

q(x) = exp (- 2,yj(l - Pj)[QIjJxj) 

with -yj defined as 

y --R-'y = e - p > O. (27) 

Here e is the vector of ones. Under the condition 

f [pO(x)2q(x) dx < oo and 
s (28) 

T [pj(x)]2q(x) doj < oo, 

the algorithm converges in the sense that 

T [p n)(X) _ po(X)]2q(x) dx -- 0 as n -? oo. (29) 

Unfortunately, not all RBMs arising from queueing 
networks satisfy condition (28), so convergence in the 
sense of (29) is not guaranteed in general. It is conjec- 
tured in Dai and Harrison that p() converges to po in 
some weak sense even if condition (28) is not satisfied. 
Numerical experiences so far seem to support this 
conjecture. One expects that larger values of n will 
give better accuracy; but readers should be warned 
that numerical round-off errors might destroy the 
property. As a practical matter we have found that 
n = 4, 5, 6 generally gives satisfactory answers for the 
test problems examined thus far. If one fixes n = 5, 
the computational complexity of the algorithm is 
O(J'?), which means that small and medium sized 
problems can be solved relatively fast using the current 
implementation of the algorithm. As discussed above, 
the sequential bottleneck decomposition method devel- 
oped in this paper will eliminate the restriction of 
QNET on the size of networks. 

2. THE SEQUENTIAL BOTTLENECK 
DECOMPOSITION (SBD) 

2.1. Heavy-Traffic Limit of a Queueing Network 
With Bottlenecks 

To motivate the SBD method, we first describe the 
heavy traffic behavior of a queueing network in which 
there are nonbottlenecks, defined as stations j with 
pj < 1; bottlenecks, stations j with pj = 1; and strict 
bottlenecks, stationsj with pj > 1. We will interchange- 
ably refer to the nonbottlenecks, bottlenecks, and 
strict bottlenecks as underloaded, balanced, and over- 
loaded stations, respectively. Let ? denote the set of 
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stations that are underloaded, iw the set of bal- 
anced stations, and -e the set of overloaded stations. 

The heavy traffic limit theorem of Chen and 
Mandelbaum states that under "heavy-traffic normal- 
ization," workload and queue length processes at all 
underloaded stations "vanish." Furthermore, the 
heavy traffic limit for the rest of the network is iden- 
tical to that for the system in which all underloaded 
stations have zero service times. Next, the limits for 
the queue length and workload processes at strict 
bottleneck stations require centering; that is, workload 
processes and queue length processes at these stations 
build up at a positive rate. Thus, one may think of 
these stations as having infinite queue lengths in 
steady state. Finally, the limit of the balanced subnet- 
work 5 is a I 'lj -dimensional reflected Brownian 
motion, whose parameters reflect the effects on g 

from the nonbottleneck as well as strict-bottleneck 
stations. 

Although we are interested only in networks whose 
stations have traffic intensities strictly less than one, 
and the work of Chen and Mandelbaum applies to 
networks containing traffic intensities that are greater 
than or equal to one, their theory provides the moti- 
vation for the sequential bottleneck decomposition 
method. In particular, it suggests the following mode 
of analysis: One can partition a network into several 
subnetworks of stations whose traffic intensities are 
approximately equal, and then analyze each subnet- 
work separately. To analyze a particular subnetwork, 
one treats the designated subnetwork as "balanced." 
All stations with lower traffic intensities than the 
stations in the designated subnetwork are treated as 
";underloaded," and all stations with higher traffic 
intensities are viewed as "overloaded." Then, in the 
spirit of the Chen and Mandelbaum theory, analysis 
of the designated subnetwork reduces to formulating 
an appropriate Brownian system model, and then 
calculating the steady-state distribution of the associ- 
ated RBM. 

2.2. The Mechanics of SBD 
Without loss of generality, one can assume stations 
are numbered so that Pi < P2 < . .. pJ < 1. Consider 
a partition that divides the J stations into N subsets, 
indexed by n = 1, ..., N. The nth subset will be 
referred to as subnetwork S, Suppose that partitions 
are made in such a way that all stations in a subnet- 
work are more or less balanced; that is, their traffic 
intensities are in the same range. We will further 
assume that the subnetworks Sl, . . ., SN are ordered 
in the following sense: if m < n, then pi < pj for all 
stations i E Sm and j E Sn. Observe that we have not 

specified the number of subsets N, nor how the parti- 
tion is to be made. For now let us proceed assuming 
that such a partition has already been made. In Section 
3, we present some numerical examples and suggest 
"'natural" partitions for these networks. However, we 
do not strive to provide a general prescription for 
decomposing a network. 

The SBD method analyzes the queueing network 
by analyzing each of the subnetworks S, ..., SN 
separately. The remainder of this section is devoted to 
specifying how to analyze a subnetwork S". Relative 
to S, all stations in subnetworks S with I < n are less 
heavily loaded, and similarly, all stations in subnet- 
works Sm with m > n are more heavily loaded. Thus, 
from the point of view of S, the network can be 
decomposed into three components, the "balanced" 
subnetwork q(n) = S, the "underloaded" subnet- 
work 1?(n) = Um<nSm, and the "overloaded" sub- 
network ie(n) = Um>nSm. In the spirit of the limit 
theorem by Chen and Mandelbaum, all stations in 
JX(n) will be treated as if they are supersaturated, 
while all stations in ck<(n) are instantaneous switches 
(i.e., stations with zero service times). A supersaturated 
station has two main characteristics which result from 
it having an infinite queue length. First, customers 
routed there never return, and second, departures 
from there form a renewal process because the server 
is always busy. 

To analyze subnetwork Sn one needs to define the 
parameters associated with the subnetwork, namely, 
the "exogenous" interarrival time distributions, the 
service time distributions, as well as the routing of 
the customers within the subnetwork. To minimize 
notation, henceforth S, q, 9i, and -.&will be used to 
mean S,, s?(n), and X6(n), respectively. We 
begin with the computation of the internal routing 
probabilities associated with subnetwork S. Let P = 
(Pij) be a J x J matrix whose components are given 
by 

PiJ = { (30) 

By assumption, P is a strictly substochastic matrix; 
from the construction in (30), it is easy to verify that 
P is also a strictly substochastic matrix, hence one can 
set 

Q = (I _ p)- l (31) 

For i E E and j E E U &, Qij denotes the probability 
that when a customer at station i first leaves the 
underloaded subnetwork @, it enters the nonunder- 
loaded subnetwork n U -e via station j. Next, 
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defining 

P1i = P1i + E Pi,Q4y, (32) 
le 9i 

it follows from the interpretation of Q that P is the 
internal routing matrix for the bottleneck subnetwork 
S; that is, for i, j E q, Pij is the probability that a 
customer at station i first re-enters the bottleneck 
subnetwork through station j. Similarly, P5 is the 
routing matrix to the balanced subnetwork for cus- 
tomers departing from the overloaded subnetwork. 
Finally, it is not difficult to verify that P, is strictly 
substochastic, and we set 

QrgO_iO = (I - P_)l. (33) 

The next step in the analysis is the determination 
of the "exogenous" arrival processes to the balanced 
subnetwork. The arrival process to each station j E E 

is a superposition of several renewal processes, which 
can be identified as emanating from three sources: 

a. the exogenous arrival stream of the original 
queueing network; 

b. exogenous arrival streams to the underloaded sta- 
tions which are then routed directly to j; and 

c. arrivals resulting from the renewal services of sta- 
tions that are supersaturated. (34) 

In the exposition below, it will be convenient to 
introduce the following enumeration scheme. We will 
be concerned with vectors, matrices, and processes 
that are restricted to stations in the balanced subnet- 
work ?. Strictly speaking, the stations in - will not 
be numbered consecutively by 1, . . ., I l, but for the 
sake of notational simplicity, we abuse terminology 
somewhat and refer to stations in n by indices 
1, . . ., 1-41, where by "station" j we mean the jth 
element in the set -4. 

As in the development of subsection 1.3, let us 
now define sequences of i.i.d. routing vectors 
{?Q(1), ok(2), . . .} and o- k(2), . . .} for k E i, 
/ E E U 9, corresponding to the routing matrices Q 
and P, respectively. To be more specific, denoting 
by OQ a generic element of the sequence 
{?k(1), ok(2), ...}, and by k' a generic element 
of {10(1), +/(2), ... , ok (respectively, 14) is a 
1-5eI-vector whose jth component equals unity if 
a customer in k E @? (respectively, / E X&) next enters 
the balanced subnetwork g via station j, and all other 
components are zero. (Note that the new enumeration 
scheme of stations in -7 is being used here.) It thus 
follows that 

E[OQ] = QLk Cov[OQ] = Hk, k E = (35) 

E[01-] = P, Cov[op] = Hp, / E E U 4 (36) 

where Qke is the kth row of Q P, is the lth row of 
P.,e and HQ, H^ are x I x f/I matrices defined by 

(HQ) i = Qk_ 
- 
Q i (37) 

LQkiQkJ 1?1,~ 

( =P'i(AlA Pli) i = j =H {"=j"p 71 (38) 

Next, define cIQ and 4%^ to be the associated cumula- 
tive sums processes, 

n n 

(bQ(n)= E 0b(m) and o'^(n) E 0^(m) 
m=l m=1 

and also their centered versions, 
n 

4k (n) = E kbQ(m) - QLk] 
m=l 

and 
n 

4P^(n) = E kb'(m) - P,]. 
m=1 

Using this representation, the modified external 
arrivals to the balanced subnetwork, denoted as the 
14 -vector E, can now be expressed as a sum of 
the three sources of arrivals enumerated in (34). Let 
Si(t), i E e be a renewal process with rate Xi and SCV 
c2j. One can interpret Si(t) as the renewal process 
associated with services from station i with the follow- 
ing modification. We substitute the throughput rate Xi 
for the service rate at station i (originally r-'), as we 
believe that this more accurately represents the 
dynamics of the system. Then 

E(t) = Ee(t) + E k (Ek(t)) + E (SXt)) 
keG2 Ief 

= E(t) + Q 'E(t) + P?S4) 

+ E 4 (EJ(t)) + E 4 (S1(t)) (39) 
ke %/ Iei 

Notice that the last two terms of (39) consist of zero- 
mean random vectors. Hence, their asymptotic covar- 
iance matrix remains unchanged if Ek(t) and S,(t) 
were replaced by the asymptotic means, akt and x1t, 
respectively. From (35)-(39) and the independence 
assumptions, it follows that E[E(t)] & at and 
Cov[E(t)] At, where 

A= + Q % a + P 9Xe (40) 

and 

[aiCa,i + LXe=. a!kOQki(QkiCa,k + 1 Qki) 

) + Z, X P11i( 1c',1 + 1 - P,i) i = j 

- Ek e, ak(l Ca,k)QkiQkj 

- E l ,,21 
' 'A 

i { 
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Finally, imitating the development of (11 )-(14), the 
modified total arrival process to the balanced subnet- 
work - can now be expressed as 

A( = (I - PW)' E(t) + E kp(Ai(t)) 
iE- O 

=Ql (k[() p(Ai(t))] (42) 
iE=-_~ 

Furthermore, the process A(t) has asymptotic mean 
X and covariance matrix B given by 

X = (I - P') a =Qa (43) 

and 

B = QieAA + H]Qe, H= E X,(HP^),_ (44) 
1E-2 

where Qi,, Hp, &, and A are given in (33), (38), and 
(40)-(4 1). 

Because service times are not affected in the decom- 
position, the modified total load input processes to 
the balanced subnetwork q, denoted by L(t), retain 
the same representation of (9), 

Lj(t) = wi(l) + ... + wj(Aj(t)). 

From the above expression and (1 5)-(18), the asymp- 
totic covariance matrix r of L has the form 

r = ( TQ W)G( Q 9),(45) 

with 

G = A + H + (I - P (I - RPe9~e), (46) 

and D = diag( Xc i, i E ). Algebraic manipulations 
show G to have the components: 

aica ci + XicSi( 1 - 2P1i) 

+ Eke% akQki(QkiCa,k + 1 Qki) 

+ S Cs2 + 1 - P,i) 

G= + EE, XiPi(Piics2 + 1 - P1i) i = j (47) 

- xiCs,iPii - X1CSJP1i - Xke% ak( l - ca,k)QkiQkJ 

-_~ X,( 1 - cs, PiPj 

- SE AX( 1 - Cs2,)P1Pj1 i ? i. 

Defining 

pj = X1r1, (48) 

the bottleneck subnetwork n is approximated by a 

I -I -dimensional RBM with parameters 

4 = R(j - e), 

Q = RrR' = T?q?qGT, and 

R = T(I - P )T-7. (49) 

This completes the description of the SBD method. 

2.3. The Jackson Network 

A typical validity test for an approximation method 
is to verify that it gives the correct solution for the 
class of Jackson networks. Recall that for such net- 
works, the mean steady-state waiting time at each 
station is given by 

WJackson = TiPi (50) 
j - pj 

(0 

In this subsection we show that SBD yields the approx- 
imations shown in (50) when applied to Jackson 
networks. 

In Jackson networks, all service times and inter- 
arrival times are exponentially distributed, hence, 
C2 = C2 = 1 for allj = 1, J. Expression (47) 
for Gij thus simplifies to 

|a ai + Xi(I 2Pij) + Ekc= akQki 

Gii = + D, xP,i + ? x,P,i i = 

l - ij -jji i ?1. (51) 

Recall that ce = (I - P )X, so for each i E q, 
Xkei XkPki = Xi - ai. By definition, ai = ai + 
XkE akQki + D X1P,i, so (51) reduces to 

{2Xj1= - (52) 

One can verify that with these data, the skew sym- 
metry condition in Harrison and Williams holds, 
which implies that the waiting times are exponentially 
distributed with mean 

WBD =(I - ̂ X)(1 - Pi) -I ^ P 

To prove the equivalence of (50) and (53), it suffices 
to show that for all i E q, Xi = Xi. The throughput 
rates X of the bottleneck subnetwork S uniquely satisfy 
(43), where 'a is given by (40). From (32), the internal 
routing matrix has the form P. = P. + P. ?Q, 
Substituting this expression and (40) into (43), we 
obtain 

(I- Pg)3= a + P_gAe 

+ Q ?4a+ Pj A] (54) 
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Recall the traffic equation 

X = a + P'X, (55) 

which has the unique solution given by X = (I - 

P')-'a. In particular, we have 

X Gi = a G + P ? + P GCX + P &X. 

Using this expression in (54), we have 

(I- Pn)X= a+ <X 

+Q (-X -~~. (56) + [ ( I P, P G) X 
Gtp PG 

It is straightforward to verify that (I- P- )QG?@= 

PG,,, so that (56) reduces to 

(I - Pw)S = a~ + P"X @ +P 

+ P>AX,5- P X?. (57) 

Again, because X uniquely solves the traffic equations 
(55), it satisfies 

X = age + P'igA + P + P 

so (57) becomes 

(I - P")S = (I - P) . 

Because (I - P ) is invertible, X = X?q and we have 
shown that WVSBD = WJackson 

2.4. Some Notes on Choosing a Decomposition 

We have completed the description of our approxi- 
mation method for single-class open networks, based 
on a decomposition of the original system into smaller 
subnetworks. We will demonstrate the use of this 
method in the next section, where we will compare its 
performance with several other approximation 
schemes. As told, however, our story is not complete. 
To speak of the sequential bottleneck decomposition, 
we need to provide a more explicit prescription for 
breaking the original network into subnetworks. At 
present, it is not possible to recommend the "best" 
decomposition for a general case. On the other hand, 
we are able to suggest some basic guidelines. 

First, one must construct subnetworks in such a 
way that the group of subnetworks can be ordered. 
That is, all traffic intensities of the stations within a 
subnetwork must be either smaller or greater than all 
traffic intensities in another subnetwork. 

Second, noting that the decomposition method is 
partly driven by the dimensional limitations of Dai 
and Harrison's algorithm, we recommend that sub- 
networks be kept to a "reasonable" size. For example, 
based on the current implementation of their algo- 
rithm on a SUN SPARCstation 1, it takes 31.9 seconds 

to analyze a five-station subnetwork, whereas it takes 
2654.8 seconds to analyze an eight-station subnet- 
work. Therefore, for this computational platform, it 
is probably wise to decompose a network into subnet- 
works with five or less stations. 

Third, the motivation for our decomposition tech- 
nique derives partly from theoretical findings regard- 
ing the behavior of networks with nonbottlenecks, 
bottlenecks, and strict bottlenecks. Analogous to such 
a characterization, a default partition is to place the 
stations of a network into three groups: those that are 
lightly loaded, medium loaded, or heavily loaded. Our 
experience indicates that stations with traffic intensi- 
ties greater than 0.85 may be regarded as heavily 
loaded; stations with traffic intensities less than 0.4 
may be considered lightly loaded; and the remaining 
values correspond to the medium range of traffic 
intensities. If the default partition results in subnet- 
works that violate the size guidelines above, then these 
subnetworks should be decomposed further. 

Of course, these are only general guidelines and the 
final decomposition must take into consideration 
the special circumstances of the network. For some 
networks, there will be an "obvious" decomposition, 
while the partition may be more vague in other situ- 
ations. For example, given a network of six queues 
whose traffic intensities are between 0.85 and 0.95, it 
is not clear that there would be a "best" decomposi- 
tion, or that the network should be decomposed at all. 
In such a case, we suggest that the modeler experiment 
with different partitions and examine the range of 
results. As the figures in our next section suggest, 
however, this decomposition method is quite robust 
in the sense that one can typically expect similar 
approximations even with different partition schemes 
(provided, of course, that one abides by the rules for 
constructing subnetworks specified in subsection 2.2). 

3. NUMERICAL EXAMPLES 

3.1. A Three-Station Network 

Pictured in Figure 1 is a three-station generalized 
Jackson network, where customers arrive to station 1 
according to a Poisson process with rate a = 0.225. 
Customers who complete service at station 1 proceed 
to station 2, and after being served there go to either 
station 3 or to station 1, each with probability 1/2. 

Customers finishing service at station 3 either go to 
station 2 or exit the system, each with probability 1/2. 

The service-time distribution at station i is assumed 
to be general with SCV C2,. We consider five versions 
of this network. Each version corresponds to a 
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1/2 

1/2 

1 ~ ~ ~~~~~ 3 

(X=0.225 1 1/2 1/2 

Figure 1. A three-station network. 

different triad of SCVs (c,1, cS,2, C3,3) chosen from the 
set: (0.0, 0.0, 0.0), (2.25, 0.0, 0.25), (0.25, 0.25, 2.25), 
(0.0, 2.25, 2.25), and (8.0, 8.0, 0.25). We label these 
five versions as systems A, B, C, D, and E. In each 
system we consider four different cases, which differ 
by the mean service times at each station. The param- 
eters of these four cases are given in Table I. 

Table I 
Mean Service Times of Four Cases of the 

Three-Station Network 
Case ri 72 73 PI P2 P3 

1 1 1 1 0.675 0.900 0.450 
2 4/3 3/4 2 0.900 0.675 0.900 
3 4/3 3/4 1 0.900 0.675 0.450 
4 4/3 3/4 3/2 0.900 0.675 0.675 

Table II gives the simulation estimates and approx- 
imations of the total mean sojourn time (calculated 
from (5)) in the network. Table III gives the mean 
sojourn time (service time plus waiting time) at each 
station for system D. In simulations, service times are 
fitted with Erlang distributions, exponential distribu- 
tions, or hyperexponential distributions with balanced 
means depending on the SCV being less than one, 
equal to one, or larger than one, respectively. A ran- 
dom variable is said to have hyperexponential distri- 
bution with balanced means (having mean m and 
SCV c2 > 1) if it has density function 

f(t) = pmle-"lt + (1 - p)12e-"2t, t : 0, 

where p = 1/2 + 1/2 V(c2 - )/(c2 + 1), ALl = 2p/m 
and 82= 2(1 - p)/m. The simulations were performed 
using Panacea 3.3. 1. In all cases, ten replications were 
run and the simulation time of each replication was 
1 05. In this table, as in all subsequent tables, the 
numbers in parentheses after the simulation results 
represent the half-width of 95 % confidence intervals, 
expressed as a percentage of the simulation average. 
The numbers in parentheses after the approximations 
represent percentage errors from the simulation aver- 
age. This format makes it easy to determine the 

Table II 
Simulation Estimates and Approximations for the Total Mean Sojourn Time of 

the Three-Station Network 
System/Case Simulation QNA QNET (n = 5) SBD (n = 5) 

A 1 40.390 (3.75%) 20.519 (-49.20%) * (****) 42.986 (6.43%) 
2 59.580 (3.29%) 36.039 (-39.51%) 56.679 (-4.87%) 58.175 (-2.36%) 
3 40.720 (4.78%) 23.985 (-41.10%) 38.682 (-5.00%) 40.188 (-1.31%) 
4 42.119 (3.36%) 26.221 (-37.75%) 41.808 (-0.74%) 42.655 (1.27%) 

B 1 52.399 (2.64%) 42.020 (-19.81%) 52.613 (0.41%) 50.200 (-4.20%) 
2 91.523 (3.77%) 94.050 (2.76%) 83.704 (-8.54%) 95.270 (4.09%) 
3 61.680 (3.44%) 72.230 (17.10%) 61.941 (0.42%) 60.902 (-1.26%) 
4 63.336 (2.83%) 75.821 (19.71%) 64.142 (1.27%) 64.691 (2.14%) 

C 1 44.244 (1.96%) 31.298 (-29.26%) 37.031 (-16.30%) 47.092 (6.44%) 
2 92.417 (4.23%) 87.443 (-5.38%) 91.169 (-1.35%) 91.648 (-0.83%) 
3 44.263 (4.69%) 33.222 (-24.94%) 43.966 (-0.67%) 44.994 (1.65%) 
4 50.202 (1.04%) 41.353 (-17.63%) 51.077 (1.74%) 52.227 (4.03%) 

D 1 55.813 (2.58%) 71.417 (27.96%) 58.754 (5.27%) 58.209 (4.29%) 
2 98.364 (1.82%) 101.710 (3.40%) 97.198 (-1.19%) 94.363 (-4.07%) 
3 47.718 (2.51%) 40.215 (-15.72%) 47.820 (0.21%) 48.206 (1.02%) 
4 55.237 (4.37%) 49.281 (-10.78%) 55.990 (1.36%) 56.739 (2.72%) 

E 1 134.426 (4.77%) 265.110 (97.22%) 155.080 (15.36%) 115.694 (-13.93%) 
2 213.101 (3.47%) 308.440 (44.74%) 228.248 (7.11%) 206.114 (-3.28%) 
3 138.722 (3.97%) 243.750 (75.71%) 161.290 (16.27%) 135.280 (-2.48%) 
4 155.054 (4.37%) 252.330 (62.74%) 167.831 (8.24%) 147.299 (-5.00%) 

Average absolute percentage error 32.12% 5.07% 3.64% 
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statistical significance of the errors. The QNA column 
contains the estimates produced by Whitt's QNA soft- 
ware package (Whitt). The QNET column contains 
the estimates obtained by the QNET method, as 
described in subsection 1.3. The SBD estimates are in 
the SBD column. In each table, we also display the 
average absolute percentage error of each approxima- 
tion scheme, which is calculated by taking the average 
of the absolute value of the percentage errors. 

The next paragraph gives a detailed discussion on 
how we partitioned the network into subnetworks 
when using the SBD method for this particular net- 
work. From Table II it is evident that both QNET and 
SBD outperform QNA, with SBD slightly better than 
QNET in general. For case 1 of system A, the current 
implementation of the QNET algorithm fails to con- 
verge to a positive number. We believe that (28) is not 
satisfied in this case, but further investigation of the 
QNET algorithm is needed to determine the exact 
cause of the problem. 

In applying the sequential bottleneck decomposi- 
tion method, we partitioned the network as follows. 
For case 1, we use the partition SI = 11, 3}, and S2 = 

12). Similarly, for case 3, we consider the grouping 
SI = 12, 31 and S2 = {l}. In case 2, stations 1 and 3 
have the same traffic intensity, so we set SI - 12}, and 
S2 = {1, 3}. Finally, for case 4, we have SI = 12, 3}, 
and S2= 11}. 

Clearly, the partitions that we have chosen do not 
constitute the only choice, nor necessarily the best 
choice. In Table IV, we investigate the effects of a 
different partition for case 3 of all systems. Here, SBD 

(a) represents the SBD approximation using the par- 
tition described in the previous paragraph. For SBD 
(b), we set SI = 131, S2 = 121, and S3 = III. As the 
numbers in Table IV indicate, for this case SBD 
appears to be insensitive to the particular partition 
that is used. 

Note that in case 1 the mean sojourn time approx- 
imation is not affected by breaking up the subnetwork 
containing stations 1 and 3 into separate subnetworks. 
This is because in the subnetwork consisting of sta- 
tions 1 and 3 (with station 2 considered as overloaded) 
the only connection between the stations is that they 
share the output process of station 2, which is split in 
a Bernoulli manner. With station 2 overloaded, its 
output process is assumed renewal, so the marginal 
distribution of the two stations, when considered as a 
two-station subnetwork, is the same as the distribution 
obtained considering them as separate subnetworks. 

We end this section by a detailed illustration of the 
SBD method for analyzing case 2 of the network. As 
described before, we consider stations 1 and 3 as 
subnetwork SI and station 2 as subnetwork S2. We 
begin the analysis with subnetwork S2. Stations 1 and 
3 have larger trafflc intensities than station 2. There- 
fore, in the SBD analysis, we treat stations 1 and 3 as 
if they are supersaturated (traffic intensities greater 
than unity) which turns them into sinks for customers 
routed to them, and sources for customers routed from 
them. Therefore, in the SBD analysis, customers 
leaving station 2 will never come back. Let X = (X1, 
X2, X3)' = (3a, 4a, 2a)' be the effective arrival rates 
solved from (1). There are two exogenous arrival 

Table III 
Simulation Estimates and Approximations for the Mean Sojourn Time at Each Station for System D 

Withcs,1 =O.O,c,2=2.25,cS,3=2.25 

Case Station Simulation QNA QNET (n = 5) SBD (n = 5) 

I 1 2.476 (0.61%) 2.244 (-9.37%) 2.484 (0.32%) 2.471 (-0.20%) 
2 10.845 (3.21%) 14.909 (37.47%) 11.554 (6.54%) 11.406 (5.17%) 
3 2.544 (0.63%) 2.525 (-0.75%) 2.543 (-0.04%) 2.585 (1.61%) 

2 1 11.347 (3.29%) 8.013 (-29.38%) 10.836 (-4.50%) 11.129 (-1.92%) 
2 2.643 (1.25%) 2.962 (12.07%) 2.749 (4.01%) 2.819 (6.66%) 
3 26.870 (2.04%) 32.909 (22.47%) 26.757 (-0.42%) 24.850 (-7.52%) 

3 1 11.389 (3.04%) 7.945 (-30.24%) 10.988 (-3.52%) 11.333 (-0.49%) 
2 2.290 (1.27%) 2.897 (26.51%) 2.526 (10.31%) 2.259 (-1.35%) 
3 2.220 (0.59%) 2.396 (7.93%) 2.376 (7.03%) 2.585 (16.44%) 

4 1 11.296 (6.39%) 7.974 (-29.41%) 10.930 (-3.24%) 11.333 (0.33%) 
2 2.414 (1.12%) 2.925 (21.17%) 2.643 (9.49%) 2.600 (7.71%) 
3 5.886 (1.05%) 6.831 (16.06%) 6.314 (7.27%) 6.170 (4.83%) 

Average absolute percentage error 20.24% 4.72% 4.52% 
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processes to station 2. One is a renewal arrival process 
?I = {7R1(t), t > 01 from station 1, whose interarrival 
times have mean 1/X1 and squared coefficient of 
variation C2 1. The other is a "thinned" renewal proc- 
ess 172 = {n2(t), t > 01 from station 3. The incom- 
ing customers form a renewal counting process with 
interarrival times having mean 1 /X3 and squared 
coefficient of variation c2,3. An incoming customer 
from station 3 "flips" a fair coin, and goes to station 
2 if the customer gets a head. It is easy to check that 
E[i7(t)] Xt and Var[nj(t)] X1c\2,It. Similarly we 
have E[72(t)] - (X3/2)t and Var[i2(t)] - [(X3/2) 
(1 + c2,3)/2]t. The superposition of these two arrival 
processes is the exogenous arrival processes to station 
2, which has asymptotic rate XA + X3/2 = X2 and 
asymptotic variance X,1 + (X3/2)(1 + cs,3)/2. 

Therefore, 

W;2SBD 

-T2(e) 2(C2+yACs,1+j2 ( C2)) 

-2 3 (Cs,2 + - Cs, I + 4 2 ) 32- 1/232 2 1(1_Ci\ 

3 27 
C2 32+ ~ ~ s\ ,3 

Table V compares SBD estimates of mean sojourn 
time at station 2 for case 2 of the five systems with 
simulation estimates, as well as QNA and QNET 
estimates. For subnetwork S1, station 2 is an instan- 
taneous switch, and the resulting two-station net- 
work is a generalized Jackson network as pictured in 
Figure 2, which can be analyzed via QNET. 

Table IV 
Two SBD Approximations of the Mean Sojourn Times at Each Station for Case 3 of all Systems 

System Station Simulation QNET (n = 5) SBD (a) (n = 5) SBD (b) (n = 5) 

A 1 11.559 (5.37%) 10.738 (-7.10%) 11.333 (-1.96%) 11.333 (-1.96%) 
2 0.938 (0.21%) 0.964 (2.77%) 0.945 (0.75%) 0.894 (-4.7%) 
3 1.113 (0.09%) 1.306 (17.34%) 1.205 (8.27%) 1.258 (13.03%) 

B 1 16.484 (4.13%) 16.369 (-0.70%) 15.833 (-3.95%) 15.833 (-3.95%) 
2 2.389 (0.50%) 2.512 (5.15%) 2.697 (12.89%) 2.608 (9.17%) 
3 1.347 (67.04%) 1.393 (3.41%) 1.307 (-2.97%) 1.400 (3.93%) 

C 1 11.705 (5.65%) 11.336 (-3.15%) 11.833 (1.09%) 11.833 (1.09%) 
2 1.300 (0.38%) 1.422 (9.38%) 1.285 (-1.15%) 1.350 (3.85%) 
3 1.976 (0.86%) 2.135 (8.05%) 2.176 (10.12%) 2.108 (6.68%) 

D 1 11.389 (3.04%) 10.988 (-3.52%) 11.333 (-0.49%) 11.333 (-0.49%) 
2 2.290 (1.27%) 2.526 (10.31%) 2.259 (-1.35%) 2.476 (8.12%) 
3 2.220 (0.59%) 2.376 (7.03%) 2.585 (16.44%) 2.357 (6.17%) 

E 1 32.132 (4.80%) 37.200 (15.77%) 27.333 (-14.94%) 27.333 (-14.94%) 
2 9.089 (2.57%) 10.976 (20.76%) 11.849 (30.37%) 11.837 (30.23%) 
3 2.999 (0.73%) 2.893 (-3.55%) 2.943 (-1.87%) 2.956 (-1.43%) 

Average absolute percentage error 7.87% 7.24% 7.32% 

Table V 
Simulation Estimates and Approximations for the Mean Sojourn Time at Station 2 for 

Case 2 of Five Systems 
System Simulation QNA QNET (n = 5) SBD (n = 5) 

A 0.877 (0.00%) 0.982 (11.97%) 0.952 (8.55%) 0.847 (-3.42%) 
B 2.011 (0.65%) 1.869 (-7.06%) 2.378 (18.25%) 2.186 (8.70%) 
C 1.353 (0.44%) 1.481 (9.46%) 1.476 (9.09%) 1.407 (3.99%) 
D 2.643 (1.25%) 2.962 (12.07%) 2.749 (4.01%) 2.819 (6.66%) 
E 9.249 (2.39%) 10.529 (13.84%) 10.229 (10.60%) 11.776 (27.32%) 

Average absolute percentage error 10.88% 10.10% 10.02% 
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Figure 2. The two-station subnetwork SI. 

3.2. A Five-Station Network 
Pictured in Figure 3 is a five-station generalized 
Jackson network. The exogenous arrival process to 
station 1 is Poisson with rate a = 1.0. We assume that 
service times at stations 2-5 have the same distribu- 
tion. We further assume that the SCV of the service 
time at station 1 is the same as that at stations 2-5, 
and use c2 to denote the common SCV of the service 
times, i.e., c2 = c2i for i = 1,..., 5. We consider two 
versions of the network, labeled as systems A and B. 
In system A, all the service times are deterministic, 
which implies that c2 = 0. In system B, we allow more 
variability of the service times by taking c2 = 4. In 
each system, we again consider four different cases, 
whose parameters are given in Table VI. Note that by 
symmetry among stations 2 to 5 we have T3 = T4 = 

T5 = T2, and consequently, P3 = P4 = P5 = P2. Thus, in 
the SBD analysis, stations 2 to 5 are always grouped 
as one subnetwork, and station 1 itself forms the other 
subnetwork. The simulation estimates and approxi- 
mations for the total mean sojourn times for systems 
A and B are given in Table VII. The accuracy of 
QNET and SBD approximations are both impressive 
in this case, whereas the QNA approximations are not 
as accurate. 

Table VI 
Mean Service Times of Four Cases of the 

Five-Station Network 
Case TI T2 PI P2 

1 0.400 1.2 0.80 0.60 
2 0.300 1.6 0.60 0.80 
3 0.400 1.5 0.80 0.75 
4 0.375 1.6 0.75 0.80 

3.3. Nine Stations in Series 

Consider a generalized Jackson network consisting of 
nine single-server stations in series. Customers arrive 
at the first station according to a renewal process 
with interarrival times having a general distribu- 
tion with mean 1 and squared coefficient of variation 
cc2,. The service-time distribution at station i is expo- 
nential (C2 = 1) with mean pi, where pi < 1. The 
traffic intensity at station i is pi = 0.6 for 1 < i < 8 
and pq = 0.9. This network was chosen by Suresh and 
Whitt (1990b) to demonstrate the so called heavy- 
traffic bottleneck phenomenon: If the traffic intensity 
of one station is allowed to approach 1, then the 
waiting-time distribution at this bottleneck station is 
asymptotically the same as if the immediate arrival 
process (i.e., the departure process from the previous 
station) were replaced by the external arrival process 
to the first station. They showed that conventional 
parametric decomposition methods such as QNA fail 
to catch this heavy-traffic bottleneck phenomenon. 
They considered two cases for the interarrival times: 
high variability and low variability. The distribution 
for high variability is the hyperexponential (H2) 

PoissonlX~ 
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distribution with balanced means and c2,1 = 8. 
The distribution for low variability is deterministic 
(D) with c,I = 0. 

Tables VIII and IX give different estimates of the 
expected time at each station, as well as the total 
waiting time in the system. The simulation estimates 

were taken from Suresh and Whitt (1 990a), and their 
simulation results show that customers will experience 
a long delay in queue 9 in both cases. When we apply 
the sequential bottleneck decomposition method as 
described in Section 2 to this network, there is a 
natural partition: SI = {1, 2, 3, 4, 5, 6, 7, 81 and 

Table VII 
Simulation Estimates and Approximations for the Total Mean Sojourn Time of the Five-Station Network 

System/Case Simulation QNA QNET (n = 5) SBD (n = 5) 

A 1 6.725 (0.68%) 6.135 (-8.77%) 6.770 (0.67%) 6.950 (3.35%) 
2 11.096 (5.59%) 9.959 (-10.25%) 10.998 (-0.88%) 11.345 (2.24%) 
3 9.944 (0.68%) 8.911 (-10.39%) 9.842 (-1.03%) 9.576 (-3.70%) 
4 11.567 (0.63%) 10.342 (-10.59%) 11.618 (0.44%) 11.998 (3.73%) 

B 1 19.214 (0.64%) 21.512 (11.96%) 19.800 (3.05%) 19.150 (-0.33%) 
2 35.948 (0.66%) 40.081 (11.50%) 34.832 (-3.10%) 35.648 (-0.83%) 
3 33.676 (0.68%) 37.155 (10.33%) 34.416 (2.20%) 35.276 (4.75%) 
4 40.704 (1.42%) 44.876 (10.25%) 39.338 (-3.36%) 39.803 (-2.21%) 

Average absolute percentage error 10.46% 1.84% 2.64% 

Table VIII 
Simulation Estimates and Approximations of the Mean Steady-State Waiting Time at Each Station for 

Nine Stations in Series With cla, = 0 

Station Number Simulation QNA QNET (n = 4) SBD (n = 4) 

1 0.290 (2.41%) 0.45 (55.17%) 0.45 (55.17%) 0.45 (55.17%) 
2 0.491 (1.43%) 0.61 (24.24%) 0.66 (34.88%) 0.66 (35.01%) 
3 0.607 (1.32%) 0.72 (18.62%) 0.74 (22.14%) 0.74 (22.29%) 
4 0.666 (1.20%) 0.78 (17.12%) 0.79 (18.39%) 0.79 (18.58%) 
5 0.706 (1.42%) 0.83 (17.56%) 0.82 (15.77%) 0.82 (16.00%) 
6 0.731 (1.78%) 0.85 (16.28%) 0.84 (14.38%) 0.84 (14.63%) 
7 0.748 (1.34%) 0.87 (16.31%) 0.85 (13.49%) 0.85 (13.76%) 
8 0.775 (1.68%) 0.88 (13.55%) 0.86 (10.68%) 0.86 (10.91%) 
9 5.031 (4.31%) 7.99 (58.82%) 6.97 (38.49%) 4.05 (-19.50%) 

Total time in waiting 10.05 13.97 (39.00%) 13.01 (29.45%) 10.06 (0.09%) 

Average absolute percentage error 26.47% 24.79% 22.87% 

Table IX 
Simulation Estimates and Approximations of the Mean Steady-State Waiting Time at Each Station 

for Nine Stations in Series With c2, = 8 
Station Number Simulation QNA QNET (n = 4) SBD (n = 4) 

1 3.284 (3.50%) 4.05 (23.33%) 4.05 (23.33%) 4.05 (23.33%) 
2 2.321 (4.18%) 2.92 (25.81%) 1.81 (-21.84%) 1.82 (-21.59%) 
3 1.914 (3.40%) 2.19 (14.42%) 1.47 (-23.35%) 1.49 (-22.15%) 
4 1.719 (4.07%) 1.73 (0.64%) 1.16 (-32.50%) 1.19 (-30.77%) 
5 1.598 (3.69%) 1.43 (-10.51%) 1.07 (-32.90%) 1.10 (-31.16%) 
6 1.478 (4.13%) 1.24 (-16.10%) 1.03 (-30.55%) 1.06 (-28.28%) 
7 1.423 (3.23%) 1.12 (-21.29%) 1.00 (-29.71%) 1.03 (-27.62%) 
8 1.413 (4.67%) 1.04 (-26.40%) 0.98 (-30.40%) 1.01 (-28.52%) 
9 30.116 (16.84%) 8.90 (-70.45%) 6.04 (-79.95%) 36.45 (21.03%) 

Total time in waiting 45.27 24.60 (-45.66%) 18.60 (-58.91%) 49.80 (10.01%) 

Average absolute percentage error 23.22% 33.84% 26.05% 
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S2 = {91. With this partition, station 9 is analyzed in 
isolation with stations 1-8 treated as instantaneous 
switches. Therefore, SBD analyzes station 9 as if it 
were a GIMII station with the same renewal arrival 
process as station 1. Hence, the average waiting time 
WgBD at station 9 is approximately given by 

( 9p cq 
WgVBD~ - \p-p(I _ p1) 

QNET is applied to S2 to obtain the SBD estimates of 
mean waiting times for stations 1-8. Note that, in 
both cases, the SBD estimates of total waiting time 
are very close to the simulation results. However, one 
can see from Tables VIII and IX that QNET, like 
QNA, fails to catch the heavy-traffic bottleneck phe- 
nomenon at station 9. Incidentally, the QNET esti- 
mates and SBD estimates of the mean waiting times 
at the first eight stations should be exactly the same. 
The small discrepancy is caused by the QNET algo- 
rithm when we fix (in both cases) n = 4 with dimension 
J= 8 and J= 9. 

3.4. Ten Stations in Series 

When there is high variability in an external arrival 
process, as in the second case of subsection 3.3 with 
C= 8.0, Suresh and Whitt (1990b) considered con- 
trolling the variability by filtering the arrival process 
through a low-variability station (i.e., by inserting a 
low variability station at the head of the network). In 
this section, we use their experiment to test our SBD 
method. The network model (system A) considered in 
this section is a modification of the network model 
from subsection 3.3, in which an extra station with 
deterministic service times is inserted before the same 
nine exponential stations. Hence, we have c2, = 0. 

The remaining 9 stations do not change; they get 
relabeled so that now Pio = 0.9 and pi = 0.6 for 2 < 
i < 9. As before, c2, = 1 for 2 < i < 10. We consider 
two different traffic intensities for the first station, 
pI = 0.6 and 0.9. If pI = 0, we get back the nine sta- 
tions in series considered in the previous section. 

Tables X-XI give simulation estimates and different 
approximation estimates of the mean steady-state 
waiting times at each station for different traffic inten- 
sities at station 1. When p, = 0.6, station 10 is still the 
unique bottleneck station. Table X shows that SBD 
again predicts the bottleneck phenomenon at station 
10 quite well. However, as shown in Table XI, SBD 
performs poorly when stations 1 and 10 are both 
bottleneck stations. One possible explanation of this 
is that SBD assumes that station 1 feeds immediately 
into station 10. Hence, c ljo is taken to be zero when 
in fact, due to intervening stations, it is not. The 
intervening stations are taken into account in both 
QNA and QNET. Tables XII-XIII report results for 
the dual examples (system B) in which the external 
arrival process is deterministic (c2 l = 0) and the first 
station has hyperexponential service times with cS, = 

8.0. From Table XII we see that both QNET and 
QNA approximations perform very well in this case. 
The poor performance of SBD relative to QNA and 
QNET here has the same explanation as in the case 
of Table XI. SBD acts as if the input to the network 
(c,= 0) is fed directly into station 10. For the case 
Pi = 0.9, we see from Table XIII that high variability 
in the service times can also cause a much greater 
waiting time in a subsequent bottleneck station. 

3.5. A Ten-Station Network With Feedback 

A ten-station generalized Jackson network is pictured 
in Figure 4. There is an exogenous Poisson arrival 

Table X 
Simulation Estimates and Approximations of the Mean Steady-State Waiting Times at Each Station for 

the Ten Stations in Series With c, I = 8.0, c ,l = 0.0 and Pi = 0.6 

Station Number Simulation QNA QNET (n = 4) SBD (n = 4) 

1 2.44 (3.69%) 3.60 (47.48%) 3.60 (47.48%) 3.60 (47.48%) 
2 1.80 (3.90%) 2.75 (53.12%) 0.79 (-56.01%) 0.80 (-55.46%) 
3 2.01 (4.38%) 2.09 (4.08%) 1.32 (-34.26%) 1.34 (-33.27%) 
4 1.81 (3.32%) 1.66 (-8.24%) 1.25 (-30.90%) 1.27 (-29.80%) 
5 1.66 (4.15%) 1.39 (-16.42%) 1.13 (-32.05%) 1.15 (-30.85%) 
6 1.56 (3.65%) 1.21 (-22.54%) 1.06 (-32.14%) 1.08 (-30.86%) 
7 1.45 (3.80%) 1.10 (-24.09%) 1.01 (-30.30%) 1.04 (-28.23%) 
8 1.41 (3.27%) -1.03 (-26.69%) 0.98 (-30.25%) 1.01 (-28.11%) 
9 1.40 (4.72%) 0.98 (-29.90%) 0.96 (-31.33%) 0.99 (-29.18%) 

10 29.97 (16.90%) 8.57 (-71.40%) 5.14 (-82.85%) 36.45 (21.62%) 

Total time in waiting 45.50 23.97 (-47.32%) 17.24 (-62.11%) 48.73 (7.10%) 

Average absolute percentage error 30.40% 40.76% 33.49% 
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Table XI 
Simulation Estimates and Approximations of the Mean Steady-State Waiting Time at Each Station for 

Ten Stations in Series With cd,i = 8.0, c2, = 0.0 and P1 = 0.9 
Station Number Simulation QNA QNET (n = 4) SBD (n = 4) 

1 32.78 (15.61%) 32.40 (-1.16%) 32.40 (-1.16%) 32.40 (-1.16%) 
2 0.42 (2.63%) 1.13 (170.33%) 0.49 (17.22%) 0.45 (7.66%) 
3 0.67 (1.93%) 1.05 (55.79%) 0.82 (21.66%) 0.66 (-2.08%) 
4 0.80 (1.75%) 1.00 (25.00%) 0.87 (8.75%) 0.74 (-7.50%) 
5 0.86 (1.98%) 0.96 (11.63%) 0.88 (2.33%) 0.79 (-8.14%) 
6 0.91 (1.76%) 0.94 (3.52%) 0.89 (-1.98%) 0.82 (-9.69%) 
7 0.91 (1.88%) 0.93 (2.65%) 0.89 (-1.77%) 0.84 (-7.28%) 
8 0.92 (1.95%) 0.92 (-0.11%) 0.89 (-3.37%) 0.85 (-7.71%) 
9 0.94 (2.45%) 0.91 (-3.19%) 0.90 (-4.26%) 0.86 (-8.51%) 

10 14.04 (13.56%) 8.16 (-41.88%) 8.28 (-41.02%) 5.46 (-61.11%) 

Total time in waiting 53.25 48.39 (-9.13%) 47.31 (-11.15%) 43.87 (-17.62%) 

Average absolute percentage error 31.53% 10.35% 12.08% 

Table XII 
Simulation Estimates and Approximations of the Mean Steady-State Waiting Time at Each Station for 

Ten Stations in Series With c2 1 = 0.0, c2l = 8.0 and P1 = 0.6 

Station Number Simulation QNA QNET (n = 4) SBD (n = 4) 

1 3.52 (3.83%) 3.60 (2.24%) 3.60 (2.24%) 3.60 (2.24%) 
2 1.87 (3.36%) 1.75 (-6.57%) 2.44 (30.27%) 2.44 (30.27%) 
3 1.35 (2.15%) 1.44 (6.59%) 1.16 (-14.14%) 1.16 (-14.14%) 
4 1.23 (3.10%) 1.25 (1.87%) 1.03 (-16.06%) 1.03 (-16.06%) 
5 1.19 (2.19%) 1.12 (-5.49%) 0.98 (-17.30%) 0.98 (-17.30%) 
6 1.15 (1.83%) 1.04 (-9.41%) 0.95 (-17.25%) 0.95 (-17.25%) 
7 1.09 (3.11%) 0.99 (-9.51%) 0.94 (-14.08%) 0.93 (-14.99%) 
8 1.07 (3.00%) 0.96 (-10.11%) 0.92 (-13.86%) 0.92 (-13.86%) 
9 1.04 (2.02%) 0.94 (-9.70%) 0.92 (-11.62%) 0.92 (-11.62%) 

10 8.60 (3.66%) 8.31 (-3.33%) 8.07 (-6.12%) 4.05 (-52.89%) 

Total time in waiting 22.10 21.40 (-3.17%) 21.01 (-4.93%) 16.98 (-23.17%) 

Average absolute percentage error 6.48% 14.29% 19.06% 

Table XIII 
Simulation Estimates and Approximations of the Mean Steady-State Waiting Time at Each Station for 

Ten Stations in Series With c2,1 = 0.0, c2 l = 8.0 and P1 = 0.9 
,~~~~~~~~~~~~ .,c, 8. an i . 

Station Number Simulation QNA QNET (n = 4) SBD (n =4) 

1 29.55 (5.27%) 32.40 (9.65%) 32.40 (9.64%) 32.40 (9.65%) 
2 3.21 (4.36%) 3.37 (4.98%) 3.25 (1.25%) 4.05 (26.17%) 
3 2.02 (3.56%) 2.48 (22.65%) 1.42 (-29.77%) 1.82 (-9.99%) 
4 1.79 (3.36%) 1.91 (6.88%) 1.12 (-37.33%) 1.49 (-16.62%) 
5 1.58 (4.24%) 1.55 (-2.02%) 1.04 (-34.26%) 1.19 (-24.78%) 
6 1.50 (2.27%) 1.31 (-12.43%) 1.00 (-33.16%) 1.10 (-26.47%) 
7 1.44 (3.26%) 1.17 (-18.92%) 0.98 (-32.09%) 1.06 (-26.54%) 
8 1.36 (2.58%) 1.07 (-21.15%) 0.96 (-29.26%) 1.03 (-24.10%) 
9 1.32 (2.50%) 1.01 (-23.37%) 0.95 (-27.92%) 1.01 (-23.37%) 

10 16.36 (5.71%) 8.73 (-46.64%) 8.12 (-50.37%) 24.18 (47.80%) 

Total time in waiting 60.12 54.98 (-8.55%) 51.24 (-14.77%) 69.33 (15.32%) 

Average absolute percentage error 16.87% 28.51% 23.55% 



DAI, NGUYEN AND REIMAN / 135 

process to station 1 with mean rate 1. The routing 
information is indicated by the arrows in the figure. 
If there are two outgoing routes at a station, a depart- 
ing customer will "flip" a fair coin to choose a route. 
The mean service times at stations 1-10 are: 0.45, 
0.30, 0.90, 0.30, 0.38571, 0.20, 0.1333, 0.20, 0.15, 
and 0.20. The squared coefficients of variation at these 
stations are: 0.5, 2, 2, 0.25, 0.25, 2, 1, 2, 0.5, and 0.5. 
The traffic intensities at these stations are: 0.6, 0.4, 
0.6, 0.9, 0.9, 0.6, 0.4, 0.6, 0.6, and 0.4. In the SBD 
analysis, there is a natural partition among network 
stations, namely SI = 12, 7, 0l, S2 = {1, 3, 6, 8, 9}, 
and S3 = 14, 5}. The simulation estimates and various 
approximation estimates of the mean sojourn time at 
each station, as well as the total mean sojourn time in 
the network, are given in Table XIV. It is clear that 
SBD gives remarkably accurate estimates of the mean 
sojourn time in the network. 
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