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Abstract-The subject of this paper is open multiclass queueing 
networks, which are common models of communication networks, 
and complex manufacturing systems such as wafer fabrication 
facilities. We provide sufficient conditions for the existence of 
bounds on long-run average moments of the queue lengths at 
the various stations, and we bound the rate of convergence 
of the mean queue length to its steady-state value. Our work 
provides a solid foundation for performance analysis either by 
analytical methods or by simulation. These results are applied to 
several examples including re-entrant lines, generalized Jackson 
networks, and a general polling model as found in computer 
networks applications. 

I. INTRODUCTION 

HE subject of this paper is open multiclass queueing T networks, which are models of complex systems such 
as wafer fabrication facilities or communication networks. 
A simple example is illustrated in Fig. 1. In this three- 
station (i.e., machine) network, which might model a simple 
manufacturing system, one type of product is to be made. 
Jobs arrive at station 1 according to a general renewal process 
with arrival rate 1. Each job follows a deterministic route, 
and the station sequence that a job visits is 1, 2, 3, 2, 3, 
2, 1, 3, and 1. Following Kelly [l], a job (or customer) 
class is defined to be the combination of a job type and a 
processing stage. Therefore, in this example, each machine 
processes three job classes. Unlike the networks described in 
[l], the external arrival processes are assumed to be general 
renewal processes, the processing requirements have class 
dependent distributions, and service discipline at each station 
can be general. Hence a job may require different processing 
requirements at subsequent visits to a machine. 

We are interested in steady-state performance criteria such 
as 

t 

iimsup :l ~ ~ ( s ) l ~ d s  (1.1) 
t+w 

where IQ(t)I is the total number of jobs in the system at time t. 
Specifically, we search for answers to the following questions: 

i) When is the long-run average (1.1) finite? 
ii) When does the pth moment E[IQ(s)lP] converge to a 
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steady-state value as s + oo? 
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iii) What is the rate of convergence of E[lQ(s)l] to station- 

Long run averages are frequently considered by system an- 
alysts in performance evaluation. In general, no analytical 
formula exists to describe the limit, and even approximations 
are difficult to obtain. Hence, computer simulations are still 
the primary tool available to estimate steady-state performance 
measures such as (1.1). 

Unfortunately, even stability of the network is frequently 
not known in advance, and recent research shows that in 
many multiclass networks, the limit supremum in (1.1) may 
be infinite for any p > O ,  even though the usual capacity 
constraints for the network are satisfied (see, e.g., [2]-[4]). 
To illustrate the difficulties that can arise in a multiclass 
network, we present here the following simulation study of 
the network pictured in Fig. 1. In these simulations, we make 
the simplifying assumption that each station has a common 
service time distribution with mean mi, i = 1,2,3. We take 
ml = m2 = 0.3 and m3 = 0.1, and we assume that customers 
enter the network at rate 1. Therefore the nominal workload 
per unit of time for servers 1 ,2  and 3 are 90%, 90%, and 30%, 
respectively. Finally, we must specify the service discipline. 
At station 1, priority is given to customer classes in order (9, 
7, l), where buffer 9 has highest priority. At station 2, priority 
is given to customer classes in order (4, 2, 6), and at station 
3 the service discipline is first-in first-out (FIFO). 

We have simulated this network under two distributional 
assumptions. In the first case [case (M)], all distributions are 
assumed to be exponential. In the second case [case (D)], all 
distributions are degenerate. That is, there is no randomness at 
all in the network. For (M) and (D2), the network is initially 
empty. For (Dl), there are two jobs initially in front of buffer 

arity? 
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TABLE I 
FOR (M) AND (Dl), AVERAGE QUEUE LENGTHS AT STATIONS 1 AND 2 
GROW WITHOUT BOUND, WHILE THE QUEUE LENGTH AT STATION 3 Is 
NEARLY ZERO. SIMULATION (D2) IS WELL BEHAVED, EVEN THOUGH 

THE NETWORK DIFFERS FROM (D1) INITIALLY BY ONLY TWO JOBS 
case NMing queue length utilization rate cycle 

time at each station at each station time 
1 2 3 1 2 3  

(M) 1,000 41.07 91.74 0.10 0.73 0.82 0.25 137.66 
10,000 493.61 772.79 0.10 0.76 0.77 0.26 1289.58 
l00,OOO 4993.16 7106.94 0.11 0.77 0.76 0.25 12446.21 

(Dl) 1,000 37.62 79.96 0.00 0.73 0.79 0.26 108.29 
10,000 483.49 718.17 0.00 0.77 0.77 0.26 1228.28 
100,000 4534.39 8301.29 0.00 0.74 0.79 0.26 13439.38 

(D2) 1,000 0.40 0.30 0.04 0.90 0.90 0.30 2.85 
10,000 0.42 0.29 0.04 0.90 0.90 0.30 2.85 
100,000 0.42 0.29 0.04 0.90 0.90 0.30 2.85 

‘ 3000 
“ s t a t i o n  1” - 
“ s t a t i o n  2“ 

2500 1 

0 2000 4000 6000 8000 10000 

Fig. 2. 
Mutual blocking between machines 1 and 2 results in instability. 

The queue lengths at each station oscillate with increasing magnitude: 

1. The simulation is done using SIMAN 3.5 [5 ] .  It is clear 
from Table I that the queue lengths in the simulations (M) 
and (Dl) are unbounded, whereas in simulation (D2) the total 
customer population remains bounded. Fig. 2 plots the queue 
length processes at stations 1 and 2 for system (M) in the first 
loo00 units of simulation time. The plot again suggests that 
the total queue length cycles to infinity. Readers are referred 
to Dai and Weiss 16, Remark 21 and Gu [7] for more insight. 

Previous research in this area has concentrated primarily 
on single-station systems. See, in particular, the work of 
Keifer and Wolfowitz [8], Miyazawa [9], Daley and Rolski 
[lo], and Sigman and Yao [ l l ] .  Polling models are treated 
in, for example, Altman er al. [12], [13] or Georgiadis and 
Szpankowski [ 141. Recently, more complex queueing net- 
works have received greater attention. Generalized Jackson 
networks are treated in Borovkov [15], Sigman [16], Meyn 
and Down [17], and Baccelli and Foss [18]. Re-entrant lines 
are considered in Kumar er al. [2], [19]-[21]. 

In recent years, significant progress has been made in two 
lines of research. The work of Meyn and Tweedie [22]-[25] 
gives a framework for the analysis of continuous-time, general 
state-space Markov processes, which is in particular applicable 
to jump processes such as queueing and storage models. The 
work of Harrison [26], Chen and Mandelbaum [27], [28] 
and Harrison and Nguyen [29] has focused on the dynamics 
and sample path properties of multiclass networks. This work 

provides a valuable set of tools for network analysis which, in 
particular, has led to methods for approximation of networks 
by reflected Brownian motion models and fluid approximations 
for multiclass networks. In this paper we merge these methods 
to obtain a general set of tools for answering such questions as 
i)-iii) above. This provides a solid foundation for performance 
analysis either by analytical methods or by simulation and 
is sufficiently general to allow straightforward application to 
several diverse areas in which network models are used in 
practice. 

In Section 11, we give a precise definition of the network 
model considered, and Section 111 is devoted to fluid models 
and their stability. We summarize our main results and provide 
several examples in Section IV. In particular, in Section IV-C 
we consider a token passing ring and provide a simple proof 
of stability and boundedness of moments for this important 
example in full generality. In Section V, we obtain a bound for 
long-run average moments of the queue length process, and in 
Section VI we strengthen these results to obtain convergence 
of steady-state moments. The paper concludes with some 
discussion of future directions. 

11. A MULTICLASS NETWORK 

A. Network Model 

We consider a network composed of d single server sta- 
tions, which we index by a = 1 7 . . . , d  . The network is 
populated by K classes of customers, where customers of 
class k arrive to the network via an exogenous arrival process 
with independent and identically distributed (i.i.d.) interarrival 
times {&(n),n _> I}. We allow &(n) -= 30 for all n 
for some k,  in which case we say that the external arrival 
process for customers of class k is null. We let A denote 
the set of classes with nonnull exogenous arrivals. Hereafter, 
whenever external arrival processes are under discussion, only 
classes with nonnull exogenous arrivals are considered. Class 
k customers require service at station s( k). Their service times 
are also i.i.d. and are denoted { q k ( n ) :  n _> 1). We assume that 
the buffers at each station have infinite capacity. 

Routing is assumed to be Bernoulli, so that upon completion 
of service at station s ( k ) ,  a class k customer becomes a 
customer of class C with probability &, and exits the network 
with probability 1 - & Pke, independent of all previous 
history. To be more precise, let 4’(n) be the routing vector for 
the nth class k customer who finishes service at station s ( k ) .  
The Cth component of dk (n) is one if this customer becomes a 
class e customer and zero otherwise. Therefore, @(n) is a K -  
dimensional “Bernoulli random variable” with parameter PL, 
where Pk denotes the kth row of P = (&) (all vectors are 
envisioned as column vectors, and primes denote transpose). 
We assume that for each k the sequence 4k = { 4 k ( n ) ,  n _> 1) 
is i.i.d. and that +I,  . - - ,  qbK are mutually independent, as 
well as independent of the arrival and service processes. The 
transition matrix P = (&) is taken to be transient. That is 

I + P + P2 + . . . is convergent. (2.1) 
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Condition (2.1) implies that all customers eventually leave the 
network. Hence the systems we consider are open queueing 
networks, although in our examples we show that some more 
general networks may also be included. 

For future reference, let (Yk = l/E[&(l)] and pk = 
1/E [ r ]k ( l ) ]  be the arrival rate and service rate for class k 
customers, respectively. The set Ci = { I C :  s(k) = i} is called 
the constituency for station i. We let C denote the d x K 
incidence matrix 

1 if s(k) = i 
0 otherwise. c i k  = { 

In light of assumption (2.1), (I - exists and is equal to 

( I  - .’)-I = (I + P + P2 + . . -)’ 

Put X = (I - P’)-’a. One interprets X I ,  as the effective 
arrival rate to class k. For each i = 1, ... , d  we define the 
nominal load for server i per unit of time as 

kECi 

In vector form, we have p = CM-lX,  where M = diag 

This network description is quite standard and may be found 
in numerous related papers (see, e.g., [29]). The network 
pictured in Fig. 1 is a particular kind of multiclass network, 
called a re-entrant line by Kumar [ 191. For this re-entrant line, 
we can designate customers in their kth stage of processing 
as class k customers, k = 1 ,2 , . . .  ,9. Using the notation 
introduced in the preceding paragraph, we have d = 3, K = 
9,d= {l},a = (l,O,O,O,O,O,O,O,O)’ 

( P 1 , - . .  

1 ( 0 0 1 0 1 0 0 1 0  

1 0 0 0 0 0 1 0 1  
c = 0 1 0 1 0 1 0 0 0  

P = (PM) with Pk,k+l = 1 for IC = 1 , . . . , 8  and all other 
entries zero 

M-l  = diag(0.3,0.3,0.1,0.3,0.1,0.3,0.3,0.1,0.3) 

X = (1,1,1,1,1,1,1,1,1)’ and p = (0.9,0.9,0.3)’. 
To fully describe a multiclass network, we must also specify 

how the server chooses among the various classes at a station. 
A service discipline at station i dictates which job will be 
served next when server i completes a service. We assume 
that service disciplines are nonidling (work-conserving), which 
means that a server works continuously whenever there is work 
to be done at the station. The server may split its capacity 
among classes at a station, but we assume that at most one 
customer in each class can receive partial service time. Ex- 
amples include FIFO, buffer priority service disciplines (both 
preemptive and nonpreemptive), and head-of-line processor 
sharing (cf. [30, Section 2.11). 

B. A Markovian State 

Now we define a state process for the network which de- 
pends upon the particular service discipline which is employed. 
For example, under any preemptive resume buffer priority 
service discipline, the state X (t) at time t may be defined as 

X(t) = ( Q k ( t ) , A e ( t ) , B k ( t ) ) : k =  l , - - - ,K ,C  E A) 
E $K+IdI + (2.3) 

where Qk(t)  is the queue length for class k customers, 
including the one being serviced, and Bk(t) is the residual 
service time for the class k customer that is in service, which is 
set to be a fresh class k service time if Qk(t) = 0. The residual 
arrival time, which is equal to the remaining time until the next 
customer of class k arrives, is denoted Ak(t). Both B ( t )  and 
A( t )  are taken to be right continuous. State descriptions for 
other service disciplines can be defined similarly: Readers are 
referred to Dai [30, Section 111 and Section IV below for other 
examples. 

We let X denote the state space for the state process, which 
is by definition equal to the set of possible values for the state 
X(t) ,  and we let z = (q,  a, b) denote a generic state in X. The 
first component q captures the positions of customers in the 
network. It can be finite dimensional as in (2.3) or infinite 
dimensional as is the case for the FIFO service discipline 
(see [30]). We use IqI to denote the total queue length in the 
network. The remaining components of z denote the residual 
interarrival times and the residual service times for each class. 
Because we assume that at most one customer in each class can 
receive partial service time, we have a E FP? and b E R?. For 
the sake of concreteness, readers can assume, for example, that 
the state process is of the form (2.3) described for a preemptive 
resume buffer priority service discipline. The reader should 
bear in mind, however, that all discussion in the paper is far 
more general. 

For a state z = ( q , a , b )  E X, we define the “norm” of z 
to be 1x1 = 141 + la1 + Ibl. Whether or not this is an actual 
norm depends on the specific form of X, however, we assume 
throughout the paper that the sublevel set 

C ( n )  = {z E x: 1x1 5 n} 
is a compact subset of X for any n. This condition is satisfied 
automatically in virtually all practical cases. 

It was shown in Dai [30, Section 2.21 that for a wide class 
of service disciplines, X = {X(t), t >_ 0) is a strong Markov 
process. This allows us to assume at our disposal the usual 
elements that constitute a Markovian environment for X. For- 
mally, it is assumed hereafterthat ( (n ,F) ,F~,X( t ) ,Bt ,P , )  is 
a Bore1 right process on the measurable state space (X, Bx). 
(For a definition of right process, see [31].) In particular, 
X = { X ( t ) ,  t 2 0) has right-continuous sample paths; it is 
defined on (a, F) and is adapted to {Ft, t 2 O}; {P,, z E X} 
are probability measures on ( n , F )  such that for all z E X 

P,{X(O) = z} = 1 

and 
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where 7 is any Ft-stopping-time 111. FLUID MODELS AND THEIR STABILITY 

and f is any real-valued bounded measurable function (the do- 
main o f f  is the space of X-valued right-continuous functions 
on [0, oo), equipped with the Kolmogorov a-field generated 
by cylinders). 

We note that the assumption that a Markovian state exists 
implicitly imposes some constraints on the service discipline. 
In particular, the time homogeneity of the process X implies 
that the service discipline is also time homogeneous. Such 
constraints are not particularly restrictive if one is willing to 
take the state space X sufficiently large. For instance, the state 
space for the FIFO service discipline is substantially larger 
than the state space for a priority discipline, and more complex 
disciplines may result in still larger state-space representations. 

Let Pt(z, D), D E B x ,  t 2 0, be the transition probability 
of X, defined as 

P t ( x ,  D )  = Pz(X(t) E 0). 

A nonzero measure x on (X,Bx) is invariant for X if x is 
a-finite, and 

x ( D )  = Pt(z ,  D)x(dz), for all D E B x ,  t 2 0. J, 
An invariant measure x is said to be unique if the only 
invariant measures for X are positive scalar multiples of x. 

The Markov process X is called Harris recurrent if there 
exists some probability measure v on (X,Dx), such that 
whenever v ( D )  > 0 and D E BX 

To give a formal definition of the fluid model, we first 
require a particularly transparent description of the network. 
For each k and n ,  define 

n 

a+) := &i). 
i=l 

Assume that the initial state of the network is 2 = (4, a ,  b) E 
X. Then for each k, define 

E,"(t):= max{n > O : A ~ ( O ) + & ( l ) + - . .  

+ E k ( n  - 1) I t } ,  

+ qk(n - 1) I t )  
S;(t):= max{n>O:B; (O)+qk( l )+ - -  

where the maximum of an empty set is defined to be zero. 
It is clear that all processes in discussion, except a, depend 
on z, and we use a superscript 2 to explicitly denote such 
dependency. Let Tz(t)  be the cumulative time that server s ( k )  
has spent on class k customers in [0, t]. We then have 

K 

QZ(t) = QZ(0) + G ( t )  + 

Q"(t) = (QT(t), . . . , Qk(t))' 2 0,  

@:(s?(Tt?)) 
e = i  

- S;(Tt( t ) ) ,  fork = l , - . . , K ,  (3.1) 
(3.2) 
(3.3) T"(.) = (TT(.), . . . , T'(.))'is nondecreasing, 

I?( t )  = t - T,"(t) is nondecreasing, 
kEC, 
i =  1, . . .  7 d7 (3.4) 

*M 

Additional conditions on (Q" (a) , T" (.)) that are specific where TD = inf {t 2 0: Xt E D }  (see [32] and [22]). If X is 
Harris recurrent, then a unique invariant measure x exists, see, to the queueing discipline. (3.6) 
for example, Getoor [33]. If the invariant measure is finite, 
then it may be normalized to a probability measure; in this 
case X is called positive Harris recurrent. When X is positive 
Harris recurrent, we say the service discipline is stable. In 
this case, we use x to denote the stationary distribution, 
we let P,(.) = Jx P"(.)x(dz), and we use E, to denote 
the corresponding expectation operator, so that the process 
X = {X(t), t 2 0 )  is a strictly stationary process under P,. 

At first sight, it appears that Harris recurrence is a difficult 
property.to verify, as it involves the hitting time TD for an 
uncountably infinite number of sets D. A set D E BX is 
called small if there exists t > 0,  a probability measure v on 
Bx,  and a S > O  such that 

P t ( 2 , A )  2 Sv(A),  5 E D , A  E Bx. 

Equation (3.1) expresses the fact that the queue length for class 
k at time t is equal to initial queue length, plus cumulative 
external arrivals and cumulative internal arrivals to class k by 
time t ,  minus the cumulative departures from class k by time t. 
Condition (3.5) is the nonidling constraint that the cumulative 
idle time I:(.) at station i does not increase when the queue 
length at station i is positive. Examples are given below to 
illustrate the final condition (3.6). Readers are referred to 
Harrison [26] for more discussion on the system equations 
describing the dynamics of discrete queueing networks. 

We now scale space and time to reduce the apparent 
fluctuation of the model. Consider the process 

(3.7) 

It is shown in [22] that if Pz{rD < oo} 1 for just one closed 
small set, then the process is Harris recurrent. In queueing 
network models, typically, every compact subset of X is 
small, and in this case there is a strong relationship between 
topological formulations of stability, and the measure-theoretic 
recurrence properties defined here. process. 

where as usual 2 E X is the initial condition. For large 2 , 
we will see that the normalized queue length process 1s 

approximated by a solution &(t) of a set of integral equations. 
The scaling appeared in (3.7) is often called the fluid scaling, 
and any limit &(t) is called a fluid limit of the queue length 

4.1 
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Letting 141 4 00 while keeping the remaining components 
of the initial condition z fixed, any limit point of the normal- 
ized queue length process is a solution of the following 
fluid model (see [30] for the precise procedure). 

Dejinifion 3.1: A (undelayed) fluid limit for a network 
under a specific service discipline is defined to be any so- 
lution (&( .), T(.)) to the following equations, where &(t) = 
(&l(t), . * * , Q K ( ~ ) ) ’  and T(t)  = (Ti(t), . . * ,TKO))’ 

- - 

K - 
& k ( t )  = & k ( o )  + a k t  - P k T k ( t )  + P t k P t T t ( t )  

t=1 

f o r k = l , . - . , K ,  (3.8) 
fork = l , - . - , K ,  (3.9) 
and T k  (-) is nondecreasing for 

k = 1 , - . . , K ,  (3.10) 
T k ( t )  is nondecreasing for 

kGCi  

i =  1, ... 7 d, (3.11) 
- 
~i(.) increases at times t when & k ( t )  = o 

k E C ,  

fori = l , . . . , d  . (3.12) 

to the queueing discipline. (3.13) 

The set of (3.8)-(3.13) is called the fluid model, and we 
let Q denote the collection of all solutions (&( .), T(.))  of the 
fluid model. 

Additional conditions on (&(a), T( - ) )  that are specific 

In vector form, the fluid model takes the form 
Q(t) =Q(O) +at  - ( I  - P’)MT(t) 
Q(t )  20, 
T(0)  = 0 and T( - )  is nondecreasing, 

I ( t )  = te - CT(t) is nondecreasing, 

- 

- 

- 

- 

lm C&(t) dI(t) = 0,  

Additional conditions on (&(.), T(.))  that are specific 
to the queueing discipline. 

In general, (3.8)-(3.13) may not uniquely determine 
(&( .), T( .)) because the queueing network may be sensitive to 
its initial configuration. That is, a slight change of the initial 
network configuration, negligible under fluid scaling, may 
completely change the subsequent behavior of the network 
(see, for example, cases (Dl) and (D2) in Table I). 

If we let 121 + 00 without constraining any components of 
z = (4, U ,  w), then we also obtain a fluid model, but in this case 
the residual arrival and service processes introduce a delay. 

Dejinifion 3.2: The delayed fluid model of a service dis- 
cipline in a network with delay (x(O),B(O)) E R+ K + M  is 
defined to be (3.9)-(3.13), together with 

Q ( t )  = Q(0) + (at - X(O))+ - ( I  - P’)M(T(t)  - B(0))’ 
(3.14) 

where for a y E W, y+ = (y+ Iyl)/2. The delay is important in 
subsequent analysis, but is largely irrelevant when addressing 
stability of the network. 

- 

For example, for a G/G/l  queue, the (undelayed) fluid 
model is succinctly described by the differential equation 

d -  
-Q(t) = (A  - p)l(&(t) > o), dt 

t 2 0. 

Condition (3.13) will be derived here for a buffer priority 
service discipline, and other examples will be considered in 
Section IV. Under a buffer priority service discipline, one can 
envision that customers in class k wait in their own buffer. 
Customers in distinct buffers have different service priorities, 
and we assume that there are no ties among classes. Within 
each buffer, customers are served in FIFO discipline. Let H k  

denote the set of indexes for all classes served at station s ( k )  
which have priority greater than or equal to that of class k, 
and let 

L E H k  

Then <(t) is the cumulative amount of service in [0,t1 
dedicated to customers whose classes are included in H k ,  and -+ I ,  (t) is the total unused capacity that is available to serve 
customers whose class does not belong to H k .  Note that T i ( t )  
is a station level quantity representing the total unused capacity 
in [O,  t] by server i, whereas I ,  (t) is a class level quantity. 
The priority service discipline requires that for every k, all the 
service capacity of station s ( k )  is dedicated to classes in H k ,  

as long as the workload present in these buffers is positive. 
Thus we may express the additional condition (3.13) by the 
integral equation 

-+ 

lm Z(t) d z ( t )  = 0,  1 5 k 5 K. (3.15) 

Although constraint (3.15) appears to be almost obvious for 
a buffer priority discipline, in general one must check carefully 
that condition (3.13) for the fluid limit model can indeed be 
obtained from (3.6) by the limiting procedure. For example, 
when the preemptive resume buffer priority service discipline 
is applied, condition (3.6) takes the form 

lm Qi i+( t )  d(t - Tl’+(t)) = 0,  k = 1,. . . , K (3.16) 

where 

By using Lemma 2.4 of Dai and Williams [34], one can show 
that upon taking limits, the identity (3.16) does indeed become 
(3.15). 

Now we present a recent formulation of stability for the 
fluid model. In later sections, this stability property for the 
fluid model is shown to imply several probabilistic forms of 
stability for the network. 
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Definition 3.3: The fluid model is stable if there exists a 
fixed time t o  such that &(t) = 0,  t 2 to,  for any &(.) E Q 
satisfying I & ( O ) ~  = 1. 

We conclude this section with the following result of Chen 
[35, Theorem 5.31 that will be useful below. 

Lemma3.1: If the fluid model defined by (3.8)-(3.13) is 
stable, then the delayed fluid model is also stable. That is, 
there exists t o  > 0 such that &(t) = 0 for t 2 to, for any 
solution to the delayed fluid model whose initial condition F 
satisfies the bound IC1 = I&(O)I + la(0)I + IB(O)I 5 1. 

Now that stability is defined for the fluid model, we describe 
how these properties are reflected in the associated network. 

Iv. MAIN RESULTS AND EXAMPLES 
We describe here our main results, and give several exam- 

A 1) & , . . . , &, 771, . . . , VK are mutually independent and 

A2) For some integer p 2 1 

ples. First we list three assumptions on the network: 

i.i.d. sequences. 

E[<e(l)p+'] < mfor E d and 
E [ ~ ~ ( l ) p + l ] < ~ f o r  k =  1 , . - . , K  . 

A3) The set {X E X: 1x1 = 0) is a singleton, and for each 
k E d, there exists some positive function qk(x) on 
R+, and some integer jk, such that 

P(Jk(1) > ~ ) > O f o r a l l z > O .  (4.1) 

P(Sk(1) + ... + &(jle) E d z )  2 qrc(z) d z  and lm q k ( X )  dx > 0. (4.2) 

Conditions Al) and A2) are quite standard, although the 
independence assumption AI) can be relaxed; see the remark 
after Proposition 2.1 of Dai [30]. 

Condition A3) is not needed for bounding moments, but 
is required to establish ergodicity of the network. Under this 
condition, the argument used in Lemma 3.4 of Meyn and 
Down [17] may be applied to deduce that all compact subsets 
of X are small. Frequently, milder conditions can be invoked 
to obtain this property for the network, and since this is the 
only reason that A3) is introduced, we list here the following 
generalization: 

A39 For the Markov process X, every compact subset of 

For example, for a G/G/1 queue with p < 1, Condition A3') 
is satisfied if and only if the spread-out condition (4.2) holds 
(see [36]). Sigman [16] describes more general examples in 
which the unboundedness condition (4.1) is superfluous. 

We may now highlight the main results of this paper. 
Theorem 4.1: Assume that the fluid model for a service 

i) For some constant f i P ,  and for each initial condition 

X is small. 

discipline is stable, and that Al) and A2) hold. Then: 

X E X  

limsup - E,[(Q(t)IP] ds 5 K~ 
t+cc :s," 

where p is the integer used in A2). Assume further that 
A3) or A37 holds. Then, the service discipline is stable, 

and moreover, for each initial condition, we have the 
following. 

ii) The transient moments converge to their steady-state 
values 

lim E,[Qk(t)'] = E,[Qk(O)'] 5 K,, for r = 1, - - .  , 
t-im 

p,k = l , . * . ,K .  

iii) The first moment converges at rate t p - l  

lim t(p-')IE,[Q(t)] - EKIQ(0)]( = 0. 
t+m 

iv) The strong law of large numbers holds 

lim 1 Q ~ ( s )  ds = E,[Qk(O)'], P,-a.s., 
t" t 

for T = l , . . - , p , k  = l , . . . , K  . 
Proof: The proof of these results, and several related 

results, follow from Theorems 5.5, 6.2, 6.3, and 6.4. 0 
To show how this result is applied in practice and how it 

may be used to strengthen previous results in the networks 
area, we now consider several examples from the operations 
research and computer networks literature. 

A. Generalized Jackson Networks 

A generalized Jackson network is an example of an open 
queueing network in which only one customer class is serviced 
at a given station, so that lCkl = 1 for all k. It is shown in 
Dai [30] that the associated model is stable, and hence all of 
the conclusions of Theorem 4.1 apply. 

This generalizes Theorem 3.4 of Meyn and Down [17] 
where a similar conclusion is reached in the special case where 
p = 2 and stronger conditions are imposed upon the service 
processes. In the case where the interarrival times possess 
geometrically decaying tails, it is shown in [17] that the state 
process is geometrically ergodic. We do not know if the same 
conclusion can be reached by considering the fluid model. 

The time averaged bound of Theorem 4.14) is also obtained 
in Theorem 2.2 of [17] under very mild conditions on the 
arrival process. It is likely that this generality can also be 
inferred from the fluid model since the methods of Section V 
do not depend on the Markov property as much as as they do 
on properties of the conditional expectation. 

B. Re-Entrant Lines 

Re-entrant lines are also a subclass of the models considered 
here, in which routing is deterministic: customers arrive to 
buffer one, where they wait in queue until service. After a 
service is completed, a customer moves on to buffer two, and 
so forth, until it finally reaches buffer K. After service is 
completed at this final queue, the customer leaves the network. 
Hence the routing probability is of the form P k , k + l  = 1 for 
all k, and it follows that this is also an open network. 

Stability for such models depends crucially on the service 
discipline chosen. For the FBFS (first buffer-first served) 
service discipline, it is shown in [27] and [30] that the fluid 
model is stable. Also, the LBFS (last buffer-first served) 
discipline is treated in Kumar and Kumar [20] and Dai and 
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Weiss [6], where again stability is demonstrated for general 
network topologies, whenever the nominal load is less than 
unity at each station. Theorem 4.1 thus shows that these 

Assumptions Al)-A3). 

a token cycle is defined to be 

1 K K 

models have bounded pth moments in steady state under uo = C E [ $ ( l ) ]  = 7. (4.3) 
k=l k=l 'k 

C. Polling Models 

So far, we have focused primarily on models from manufac- 
turing applications. The methods developed here are of course 
also applicable to communication networks. We consider here 
one such model which has recently received much attention 
in the computer networks literature. 

Consider an L-limited token ring, as described in Altman et 
al. [12], [13], Georgiadis and Szpankowski [14], or Kuehn 
[37]; see also Fricker and JGbi [38] and Borovkov and 
Shassburger [39]. The token passing ring is a single server 
station populated with K classes of customers. Each class has 
its own buffer at the station. Customers arrive to the kth buffer 
at rate Crk and are serviced at rate pk when a service is in 
progress. After the service, a customer leaves the network. A 
token must be possessed by buffer k before the server can 
initiate a service session for class k customers. Once a service 
session starts for buffer k ,  the server continues to serve class k 
customers until .& class k customers depart or until the queue 
empties, whichever event occurs first. At the end of this service 
session, the token in the token passing ring travels from buffer 
k ,  to k + 1 (mod K) with a switch-over time of $(n) on its 
nth such transition. We refer the reader to Georgiadis and 
Szpankowski [14] or Takagi [40] for further details. 

The polling model differs from the standard multiclass 
queueing network defined in Section II because extra switch- 
over times for the token are required. During the time period 
that the token is in the process of switching to a new buffer, 
the server is idling, although there may be nonempty buffers 
in the network. This token interference certainly reduces the 
service capacity of the network. 

We assume that the switch-over time sequence {($ (n), 
. . . , &(n)),  n 2 1) is i.i.d. and is independent of the arrival 
sequences and service sequences in Al). Let the switch-over 
rate be p i  = E[v; (~) ] -~  > 0 , l  5 k 5 K. This network 
may be modeled as a continuous time-continuous state space 
Markov process 

X(tIT = ( Q k ( t ) ,  Ae(t) ,&(t) ,  B,O(t), c(t)>: 

The queue length process QZ(t) and the cumulative service 
allocation process T,"(t) for buffer k and for initial state z are 
defined as before. Let T:"(t) be the cumulative time by time 
t that the token spends in switching from buffer k to k + 1 
(mod K ) .  Suppose that the function (Q(-),T(.),?(-)) is a 
limit point of 

when 1x1 + 00. Then (Q(t),T(t),p(t)) is a (delayed) fluid 
limit of the token ring. 

We show here that the delayed fluid model is stable under 
the load condition of [14]. Similar to [35], it is enough to 
prove that the undelayed fluid model is stable. This model 
is obtained by letting q + 00 in (4.4), while keeping the re- 
maining components of the initial state z fixed. We summarize 
some important features of the undelayed fluid model in the 
following proposition. 

Proposition 4.2: Let (Q, T,?) be any fluid limit of (4.4), 
and assume that as z + 00 along some subsequence 

- -  

+ (Qk ( O ) ,  0, 0, 0) 

1 5 k 5 K. The fluid limit then has the following properties, 
where properties of a derivative hold whenever the derivative 
exists: 

i) The busy time vectors T(t)  and T (t) are increasing 

ii) For all t 2 0 

-0 

-0 
and continuous with T(0) = T (0) = 0. 

K 

C [ T k ( t )  + Z(t)] = t .  
k=l 

iii) For all 1 5 k 5 K 

where Q k ( t ) , B k ( t ) ,  and A k ( t )  are defined as in (2.3), @ ( t )  

k + 1 (mod K), set to be a fresh switch-over time if such a 
switch-over is not occurring at time t ,  and C(t )  indicates the 
number of services which have been started and/or completed 

iv) For all 1 5 k 5 K 
is the remaining switch-over time between class k and class - 

T k ( t )  = P k ,  whenever Qk( t )  = 0. 

V) For all k , j  
during the current session of an active buffer. This variable 
is set to zero if a switch-over is in progress, when no buffer 

-0 
&(t) = &(t). 

is active. 

lows. The nominal load at queue k is = a k / p k ,  and the 
total load is po = C P k .  The total mean switch-over time in 

The crucial parameters of the network are defined as fol- vi) For 5 5 

pk?k( t )  = Lkp",i(t), whenever Qk(t )  > 0. 
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Pro05 Let (U, T ,  To) be a limit point of (4.4) as in Dai 
[30]. Results i) and ii) follow since the busy times for the 
network have these properties. Property iii) is a special case 
of (3.14). When & k ( t )  = o then & k ( t )  = o whenever the 
derivative exists, by positivity of &k (t). Hence in this case, 
from iii) 

0 = ? j k ( t )  = - p k + k ( t )  + CXk 

which is iv). 
Now we check that v) holds. Let Q;>'(t) = 1 if the token 

is in transition from buffer k to k + 1 (mod K) at time t and 
zero otherwise. Let 

s:>O(t) = max{n 2 o : ~ g ( ~ ) + r l g ( l ) + . . . + q g ( n - l )  I t ) .  

Then S;lO(T''O(t)) is the number of transitions from k to k+l 
(mod K) finished in [0, t] .  It follows from the definitions that 

Q ; ' O ( t )  = Q z ' O ( 0 )  + S:fl(Titl(t)) - St'o(Tflo(t)). 

Because 0 5 Q;"(t) 5 1 for all t ,  and 

uniformly on compact sets almost surely, we have that for all 
k (mod K) 

It remains to prove that property vi) holds. This is an 
application of the law of large numbers for i.i.d. sequences; 
the assumption that as long as there are at least !?k customers 
at buffer I C ,  exactly !I ,  services occur and the fact that one 
switch-over is completed in each token cycle. Now assume 
that & k ( t )  > 0. By the Lipschitz continuity of &(t), there is a 
small interval [t, t + h] such that 

min & k ( s )  > 0. 
t<s<t+h 

Then there is a subsequence { Q : " ( I Z ~ J S ) / J Z ~ ~ , ~  2 1) such 
that 

Q:"(I.nIS>/IznI -+ 

uniformly on [t, t + h] as n -+ 00. Therefore Q:"(Ixnls) 2 !k 

for all large n and s E [t, t + h]. Thus in each complete token 
cycle within [t, t + h], exactly !?k services occur at buffer k. 
Also, the number of token cycles within [t, t + h] differs from 
S,"'o(T{'o(s)) - S:'o(T''o(t)) by at most one. It follows that 
!k [si' (T,""(S)) -si' ( ~ i ' ~ ( t ) ) l  differs from s;(T;(s)) - 
S;(T,"(t)) by at most !k customers for all s E [t, t + h]. 
Therefore, p k ( T k ( S )  - - T k ( t ) )  = !&($(S) - <(t)), and 
hence p k T k ( t )  = ! k p i T k ( t ) .  0 

To prove that the undelayed fluid model is stable, consider 

- 0  

the work in the system, defined as 

We have from iii) that 

K 

W(t )  = W(0) + pot - x T k ( t ) .  (4.5) 
k = l  

We now rewrite this by substituting an expression for the 
total switch-over time. Let N ( t )  denote the common value 
of pgTj(t) ,  which is well defined by vi). Then by ii) and 
(4.3) we have that 

-0 

K 
x T k ( t )  = t - 'UoN(t) 

W( t )  = uON(t) - (1 - pop.  

(4.6) 
k = l  

and substituting this into (4.5) gives 

(4.7) 

This shows that obtaining stability amounts to bounding the 
total switch over time uoN(t). 
- For a fixed time t ,  let J denote those indexes for which 
Qi( t )  > 0. Then we have from (4.6), and Propositions 4.2-iv) 
and v), whenever the derivatives exist 

k E J  k €  J c  

Substituting the definition of N then gives 

which together with (4.7) and the definition of po shows that 

After rearranging terms, this becomes 

and this is negative for any &(t) # 0 if and only if the 
following condition holds 

It follows from Lemma 2.2 of Dai and Weiss [6] that the fluid 
model is stable whenever (4.8) holds. 

This together with Theorem 4.1 gives the following stability 
result for the network. 
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this case it is of a particularly simple form due to the simplicity 
of the model 

- 
Ql( t )  = QI(0) - ~ l T l ( t )  + A l t -  (4.9) 

By the feedback nature of the failure process, the fictitious 
customer is either at buffer 2 or at buffer 3. Hence, we have 
T z ( t ) + T 3 ( t )  = t for all t. Similar to the derivation in Section 
IV-C. we also have 

- 

1-12T2(t)  = 1-13Tdt) 
Fig. 3. An open-closed mixed network modeling a machine with random 
failures. When the fictitious customer is at station 1, a failure is in progress, 
and when this customer is at station 2, the server at station one is operating 
normally. and combining these two identities gives 

Theorem 4.3: If the load condition (4.8) holds, then the pth 
moment of the queue lengths in the token ring are bounded as 
in Theorem 4.1-i). If in addition A3') holds, then the remaining 
conclusions of Theorem 4.1 follow. 

A converse to this result is supplied in [14], together with 
a related stability result in the special case where the arrival 
stream is Poisson. We note that a direct stability proof for this 
network is extremely difficult. See the aforementioned paper 
or the two buffer analysis of Boxma and Groenendijk [41]. 

D. Modeling Machine Failures 

Machine failures can be modeled by making a mild gen- 
eralization of the general framework of Section 11. Consider 
for simplicity a single station system without re-entry with 
a failure-prone server (machine). The failure is assumed to 
be autonomous as opposed to operational. See Harrison and 
Pich [42] and the references therein for further discussion. 
To model failures, we assume that there are two buffers at the 
station. Buffer one is an actual buffer in which customers await 
service. Buffer two models breakdowns: when buffer two is 
nonempty, a failure is in progress. 

To give a complete picture it is necessary to introduce a 
second station with associated buffer three so that the network 
takes on the form given in Fig. 3. There is a single customer 
which travels back and forth between buffer 2 and buffer 3. 
When this fictitious customer is at station 1, a failure is in 
progress, and when this customer is at station 2 the server at 
station one is operating normally. We assume that the service 
discipline at station 1, the true machine, gives strict priority 
to buffer 2 and is preemptive. 

Strictly speaking, this network falls outside of the frame- 
work described in Section I1 since it is a model which is neither 
open nor closed. The analysis in Section IV-C can be carried 
over, however, the fluid model has a simple form, and the 
main results of this paper still apply. It is a mixed network as 
considered in Nguyen [43], but the fluid model considered here 
is different from that of [43] since in the example considered 
here, the total number of closed customers is fixed to be one. 
When all distributions are exponential, the stability of such 
systems was also studied by Ingenoso [U]. 

Because the analysis is analogous to that given in Section 
IV-C, we present here the (undelayed) fluid model for this 
example without proof. As always, the queue length process 
depends upon the busy time, service rates, and arrival rates. In 

(4.10) - 1/1-12 
T 2 ( t )  = 

1/1-12 + 1/1-13. 

Finally, we have the nonidling constraint 

- 
5!'l(t) + $ 2 ( t )  = 1 

Combining (4.11) and (4.10) gives 

when Ql( t )  > 0. (4.1 1) 

when Q l ( t )  > O  1-12 - 
T l ( 4  = z 

and substituting this into (4.9) gives, whenever the first buffer 
is nonempty 

1-111-12 - 
Q l W  = [-z + A]. 

Hence it follows from Lemma 2.2 of Dai and Weiss [6] that the 
fluid model is stable if the following load condition is satisfied 

A1 1-12 
Dl = i2z .Z 

Under this condition, it follows that the pth moment bounds 
obtained in Theorem 4.1-i) hold for this model. Again, if in 
addition Condition A3') may be verified, then each of the 
ergodic limits of Theorem 4.1 also hold. 

V. MOMENTS 

The main result of this section shows how one obtains 
moments on the queue lengths under a stability condition on 
the fluid model. Because we only assume that & and q k  are 
i.i.d., the model is not necessarily 4-irreducible, and hence it 
is impossible to assert that the state process is Harris recurrent 
in this case, and this rules out many ergodic theorems [36]. 
We still find, however, that the queue lengths are bounded in 
an L, sense. 

This section is divided into three parts. First we show that 
the network exhibits a contractive property if the fluid model 
is stable. Next, it is shown that such a contractive property 
implies strong bounds on the mean return time to a compact 
set. Finally, these results are used in Theorem 5.5 to show that 
the pth moment of the queue lengths is bounded on average 
under Assumptions AlbA2). 
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A. A Contraction Property for the Network For z = ( q , u , b ) ,  notice that because toJzl 2 Uk 
The main result given here is essentially the first step which 

for X = {X(t ) ,  t 2 0). The following result asserts that 
for large z, after a time period which is proportional to the 
magnitude of the initial condition X(0) = z, the L, norm of 
the queue lengths will be small when compared to their initial 
values. 

Proposition 5.1: Suppose that Assumptions Al) and A2) 
hold, and that the fluid model is stable. Then there exists 
t o  > 0 such that 

1 1 
- lzlp+l IAX(tOlzl)lP+l 5 I z l P + ' ( < k ( E t ( l z l t O )  -k l))'+l 

1 

allows us to connect stability of the fluid model with stability 

E; ( I, Ito ) + 1 

I- lzlP+1 C (&(i>>p+! 
i=l  

E: ( I" I t0  )+ 1 1 I- 
i=l 

By Walds' identity 

E: (I. It0 )+ 1 
1 

lim - E,[IX(t~lxl)l~+~] = 0. (5.1) 1 
121'W 1zp+1 IZIP+IE [ i=l (&(i))'+'] 

A large part of the proof of Proposition 5.1 is based upon 
the following. 

Lemma 5.2 [45, Theorem 5.11: Let {C(k): k E Z} be an 
i.i.d. sequence taking values in (0, CO), and let E(t) denote the 
counting process E(t )  = (n  2 1: ~ ( 1 )  + . . . + ~ ( n  - 1) I 
t). If E[<(l)] < CO, then for any integer T 2 1 

which converges to zero as 1x1 + CO by 
and the fact that p > 0. Therefore 

b) of Lemma 5.2 

Hence, under these conditions: 
a) For any 6 > 0, sup,>& E[(E(t)/t)'] < CO. 

b) The random variabies 

and thus (5.2) holds. Similarly, we can show that (5.3) holds, 
0 and this proves the proposition. 

B. Bounds on Mean Return Emes 

all of which concern the return time 
We now consider several consequences of Proposition 5.1, 

{(Jqt)b) ' :  t 2 1) 

are uniformly integrable. 0 
Proof of Proposition 5.1: Assume that Assumptions Al) 

and A2) hold and that the fluid model specified in (3.8H3.13) ~ c ( 6 )  = min(t 2 6:X(t) E C ) .  

From now on the symbol C will be used to denote a subset of 
the state space X, instead of the incidence matrix defined in 
Section 11, and the symbol b will be used to denote a generic 

is stable. By Lemma 3.1, the corresponding delayed fluid 
model is stable. It then follows from Dai [30, Section IV] 
that there exists t o  2 1 such that 

1 

I+- 1x1 
positive constant, instead of the residual service times. 

Proposition 5.3: Let X the state process for the network, 
and suppose that Assumptions Al) and A2) are satisfied. Then 
for some constant c,+~ < 00,s > 0, and a compact set C C X 

lim -lQ"(tolzI)I = 0 in probability. 

Because 
1 1 

-IQ"(lzlto)l 5 1 + -lEt(lzlto)l 
E, [LT""'(l + IX(t)IP) d t ]  

1x1 ked 1x1 
1 

I 1 + i-'E:(l4to)l 
ked 4 I cp+l(lzlp+l + l), z E x. (5.4) 

it follows from Lemma 5.2 that the collection of random 
variables Proof: Under the conditions of the proposition, it follows 

from Proposition 5.1 that there exists a compact set of the form 
C = {z: 1x1 I L} such that for z E C" 1 { -IQz(t~l~l)lp+l: )21p+1 I4 L 1) 

is uniformly integrable, and hence E,[IX(tol~l)lp+ll I ; 14p+1. 
1 On letting t ( z )  = t o  max (L, IzI), this bound may be written 

lim - E, IQ" ( t o  lzl)lp+l = 0. 
Irl+w (xIp+1 J Pt(")(z,  dy))yy+l I + IzIp+l + blc(z), z E x (5.5) It remains to show 

(5.2) 

(5.3) 

where b is a finite constant. 
Define as in the proof of Theorem 2.1-b) of [36], the 

sequence of stopping times 00 = 0,z 01 = t ( z ) ,  and O L + ~  = 
Ok +Bo, ul, k 2 1, where 8 is the shift operator on the 

1 
lim -E,IA(tolz()IP+l = 0, 

(11-00 Iz(p+1 

1 
lim - E,IB(to(zl)tlp+l = 0. 

(11+m 1zp+1 
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sample space. The stochastic process X k  := ~ ( a k ) ,  k 2 0, 
is a Markov chain with transition kernel 

P(x, A) = P,{X(t(x)) E A}, 

and the bound (5.5) may be expressed 

2 E X, A E Bx 

with Up+i(z) = IzIP+~.  From the Comparison Theorem [36, 
p. 3371 we then have 

where k, = min(k 2 1:X E C). 

constant CO 

To prove the proposition we first show that for some 

I co ( IX(ak)IP+l + I), k ? 0, x E X (5.7) 

which by the strong Markov property amounts to 

(5.8) 

Because IX(t)I = IQ"(t)l+ IA"(t)l+ IB"(t)l, let us first look 
at 

For 2 = (q ,  a, b) E X, it is easy to check that 

Therefore 

Et(s)+l 

(A;(S)lp 5 bIp + (<k(i))'. 
i=l 

Using Wald's identity and part a) of Lemma 5.2, we have 

Thus 

Similarly, we have 

E, [LU' ( B , " ( s ) ) ~  ds I C ~ ( I Z I ~ + ~  + 1). (5.10) 1 
So, it remains to bound the integral of I Q ( t ) I P .  By ignoring 
customers that leave the network during the time interval [0, t] 
we obtain the bound IQ"(t)l 5 IQz(0)l + &,E,"(t). By 
part a) of Lemma 5.2, there exists some constant c4 such that 

E,[(E,"(t))'] I E[(E,O(t))'] I c4(tP + I), E A t  2 0 

and hence for constants c5, q < 00 

I q()xlp+l + I), 2 E x. 
This together with (5.9) and (5.10), shows that (5.8) does hold. 

Substituting the equivalent bound (5.7) into (5.6) we have 
for some c7<00 

I c7[IxIp+1 + 11. 
By Fubini's theorem and the smoothing property of the 
conditional expectation, the left-hand side (LHS) is precisely 

(1 + IX(t)lP)dt]. Since Uk* 2 TC(toL),  this estab- 

We now give a general statement concerning Markov pro- 
cesses which we require to apply Proposition 5.3. 

Proposition 5.4: Let X be a Bore1 right Markov process on 
X, let f :  X + R+, and define for some S > 0, and a closed 
set C X 

lishes the proposition. 0 

'C (6) 
V(x) :=E, [l f ( X ( t ) ) d t ]  5 E x. 

If V is everywhere finite and uniformly bounded on C,  then 
there exists K. < 00 such that 

t 1 

t 0 
- Ez[V(X(t))l+ ; / Ez[f(X(s))l ds 

(5.1 1) 1 
t 5 -V(x)+IE, t > O , Z E X .  

Proof: We first demonstrate that for a constant b < 00 

(5.9) 

Because the LHS is monotone in T ,  it is enough to establish 
the result for T of the form nS, where n = 1 , 2 , .  . . . The proof 
is by induction where we take b = supzEc V(x). For n = 1, 
this is the definition of V. Supposing now that (5.12) holds for 
T = n6, we use the bound 

TC((7Z + 1)s) = S + esTc(n6) 
I Tc(S) + e ~ , ( 6 ) T c ( n S ) .  
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So, for any x 

The first term on the right-hand side (RHS) is precisely V ( x ) .  
The second term on the RHS can be rewritten using the strong 
Markov property as follows 

I V ( x )  + sup V(z) + nb 
X E C  

where the last step uses the induction hypothesis. By induction 
we see that (5.12) does hold for any integer T ,  and by 
monotonicity it then follows that this inequality holds for all 
positive T ,  with a possibly larger constant b. 

To prove the proposition we now write 

t+&Tc(6) 

p ( x , d Y ) V ( Y )  =E, [l f(X(S))dS] 

r r t  1 

where the last inequality uses the bound (5.12). Dividing both 
sides of this inequality by t ,  we obtain the desired result with 

0 K = supZEc V ( x )  + b. 

C. L, Stability for the Network 

With these preliminaries complete, we may now present 
the main result of this section. Proposition 5.3 implies that the 
conditions of Proposition 5.4 are satisfied with f(x) = l+ Iz IP ,  

and this is sufficient to prove the theorem. 
Theorem 5.5: Suppose that Assumptions Al) and A2) hold 

and that the fluid model is stable. Then there exists a constant 
< 00 such that 

E,[IQ(s)lP] ds I &,{ i14p+1 + I}, 
t >  0,x  E X. (5.13) 

i l  
In particular, for each initial condition 

1 r t  
limsup t+m - ;.lo E,[IQ(s)lP] ds 5 K,. 

VI. CONVERGENCE 
Inequality (5.4) is a form of f-regularity for the process, as 

defined in [36], which, under general conditions, is known to 
imply limit theorems such as strong laws of large numbers, 
mean ergodic theorems, functional central limit theorems, and 
laws of the iterated logarithm. In this section we develop limit 
theory which is most relevant to further systems analysis. 

The first set of results involves convergence of polynomial 
moments of the queue length process to their steady-state 
values. We then consider bounds on the rate of convergence to 
these steady-state values and give a proof of the Strong Law 
of Large Numbers. These results are crucial in simulation [46] 
and in evaluating performance of the network in steady state 
[201, [471, WI. 

A. Preliminaries 

The most convenient way of approaching convergence is to 
pose the problem in an operator theoretic framework, in which 
the transition kernel Pt is viewed as a linear operator from 
one function space to another. Recently it has been discovered 
that the following function space is particularly convenient 
when considering Harris recurrent processes. For a function 
f : X  + [1,00), define LT to be the Banach space 

LT = {g:X 4 W: for some c<00,Jg(x)J I cf(x),x E X} 

equipped with the norm IISllf = SUPZEX lg(x)l/f(.)- 
We let R denote the resolvent kernel 

R(x, A )  = e-tPt(x, A )  d t ,  z E X, A E Bx 

and for a function g on X, we let P tg  and Rg denote the 
functions Ptg(x) = 1 Pt(z,  dy)g(y) and Rg(z) = 1 R(x, dy) 
g(y), respectively. In our definition of L?, we most typically 
take f = f, for some q 2 1, where 

f&) := 1 + IylPR(z, dy). (6.1) J 
In this case Ptf I etf, so that Pt is a bounded linear operator 
on LT for any t. 
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If the stationary distribution 'IT exists, we put r ( g )  = Jx 
g ( x ) r ( d x ) .  Most of the results of this section involve bound- 
ing the convergence rate of P t g ( x )  to its steady-state value 
r ( g )  for g E LT.  To obtain such results, it is most convenient 
to work with a version of the infinitesimal generator. Let E 
denote the extended generator for the process, as defined in 
Davis [49]. From Lemma 4.1 of Down et al. [SO], the function 
Rh is in the domain of E, and we have the formula 

whenever J R(x,  dy) lh(y) l  is finite for each x. From this fact 
and the results of the previous section we obtain the following 
Lyapunov drift property for the network. 

Proposition 6.1: Suppose that Assumptions AI) and A2) 
hold and that the fluid model is stable. Then there exists a 
function Vp+l in the domain of E, a compact set C c X, and 
a finite constant b such that 

where fp is defined in (6.1). The function Vp+l satisfies the 
bound &+I I kp+lfp+l for a finite constant kp+l.  

Proof: From Propositions 5.3 and 5.4, it follows that 
(5.11) holds with V(x) = E5[Jp(6) (1 + IX( t ) lP)d t] ,  and 
f(x) = 1 + 1xIp. Multiplying both sides of the inequality 
(5.11) by te-t and integrating gives 

where fp is given in (6.1). Since f p ( x )  + CO as 1x1 + CO, 

we may find a suitably large compact set C c X, and some 
bo < m, such that 

This represents a "drift" for the Markov chain with transition 
kernel R, which easily translates to a drift property for the 
process X. On combining (6.3) and (6.2) we have with 
Vp+l = 2RV 

EVP+l = 2[RV - VI I - f p ( x )  + 2bolc(z) 

which is the desired inequality. 
The required bound on &+, follows directly from (5.4). 

0 
We now apply this result to obtain convergence of moments. 

B. Convergence of Moments 

If 'IT is an invariant probability with ~ ( f )  := $ f d7r < CO, 

then we write II: LT + LT as the simple projection operator 
IIf = ~ ( f ) .  It is then of interest to know whether or not 
lJPt - IIl\f -t 0 as t --t CO, where 11 . I I f  is the induced 
operator norm. This turns out to be equivalent to exponential 
ergodicity [SI], [52] which appears to be a difficult property 
to obtain, given only stability of the fluid model, although this 
behavior is typical of queueing models when f is taken to be 
an exponential (cf., [36, Section 16.41). Instead we bound the 

pointwise norm defined as 

x € X  

which is also called the f-total variation norm between the 
probability measures Pt (x, .) and T (  -) . 

The following result shows that the f-total variation norm 
distance between the transient and steady-state distributions 
converges to zero with only minor extra conditions beyond 
what was assumed in Theorem 5.5. The proof follows from 
the drift property Proposition 6.1 and Theorem 5.3 of [23]. 

Theorem 6.2: Suppose that Assumptions Al)-A3) hold and 
that the fluid model is stable. Then we have 

llP"x, .) - ?r(.)((fp -t 0, t + m,x E x. 
In particular, for each initial condition 

t+w fim E,[IQ(t)lP] = ETIIQ(0)IPl < 00. 

0 

C. Rates of Convergence 

We now show how Theorem 6.2 may be strengthened to 
give rates of convergence of the first moment to its stationary 
value. 

Theorem 6.3: Suppose that Assumptions Al)-A3) hold and 
that the fluid model is stable. Then with f(x) = fl(x) we have 

lim t(p-')llPt(z, .) - 'IT(.)I~~ = 0, x E X. 
t+w 

In particular, for each initial condition 

lim t(P-1) IE,[Qt] - E,[Qo]I = 0. 
t-w 

Proof: It is most convenient to first obtain the result for 
the skeleton chain X = { X O ,  X1, X 2 , .  . e}, where Xi = X ( i ) .  
As shown in [53], it is necessary to obtain a bound of the form 

E, [ E 1 n P - ' f ( X n )  < CO, x E X (6.4) 

where +C is the first entrance time, +C = min{k 2 1 : X k  E 

n=O 1 
C}.  

From Proposition 6.1 we have for any q 5 p 

EVq+l I -f&) + blc(.) 
where f q  is defined in (6.1), C is a compact set, and the 
function V, satisfies V, I k, f, for some constant k,. From 
the definition of the generator, it then follows that 

PIV,+l(x) - V,+l(Z) = P"EV,+l(.) ds J,' 
I - 1' Psf,(x) + bPS(x, C )  ds.  

From the definition of f, we have that P"f, I e s f q .  Using 
this bound and the fact that f q ( x )  + CO as 1x1 -t CO we have 
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for a possibly larger compact set C and constant b, and some 
constant S > 0 

PIV,+l I V,+l - Sf, + blc(z). 

From the Comparison Theorem again (see [36, p. 337]), 
combined with the upper bound on Vq+l, it follows that for 
4 I P  

ic-1 

~ d q f q + l ( z ) ,  z E X  (6.5) 

where d, is a finite constant. 
Let U1 = f 1 ,  and for q 2 2 define inductively 

Using (6.3,  it is easy to verify by induction that 

u,(z) I D,f,(z), 2 I q I p + 1, where 

15i5,-1 

We also have just the lower bound that is needed to infer 
(6.4). For any q 2 2 

We again prove this by induction. The case q = 2 is obvious. 
Assuming that (6.7) is valid for some arbitrary q,  we may 
then write 

r i c - i  1 

where Fn = ~ { X O , .  . . , X n } .  The last equality follows from 
the Markov property and the fact that &.iC = min(j  2 

On the event {k < ?c} we have that IC + &?C = ?c, and 
1: X k + j  E c}. 
hence the above inequality may be written 

r r i c - i  

1 1  

where the equality follows from Fubini's Theorem and the 
smoothing property of the conditional expectation. Using the 
bound 

n n 

k=O q - 1  k=O 

this then gives 

which is (6.7). 

constant c 
Bounds (6.7) and (6.6) taken together imply that for some 

This together with Theorem 2.1 of [53] implies that np-' 

I (Pn(z , - )  -7rl(f 4 0,n 4 00, where f = f 1 .  Since we have 
from the bound P" f I e"f  

this convergence rate for the skeleton carries over immediately 
to the process. 0 

D. Sample Paths 
We now consider limits involving the sample paths of the 

process. 
Theorem 6.4: Suppose that Assumptions Al)-A3) hold and 

that the fluid model is stable. Let v be any probability 
distribution on (X,f?x), and 7r be the stationary distribution 
for X.  

i) For any f :X  --t R+ 

ii) For any f :  X * R with r(lf1) < 00, (6.8) holds. 
Pro08 The proof presented here is adapted from Meyn 

and Tweedie [36, Theorem 17.1.71 for a discrete-time Markov 
chain. Under the stated assumptions of the theorem, X = 
{ X ( t ) ,  t 2 0) is positive Harris current. Let 7r be its stationary 
distribution. 

By the law of large numbers for stationary processes (see, 
e.g., [54, Theorem 2.1]), we have for any positive function 
f : X  4 R+ 

where E, is the a-field of all P,-invariant events. Following 
the proof of Proposition 17.1.4 and Theorem 17.1.5 of [36], 
we can show that C, is P,-trivial, and hence 
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By the definition of P,, it then follows that 

where fco(.) = Pz{l/t Jot f(X(s)) ds + .lr(f)}. 

A function h:X 4 R is called harmonic if, for all o E X 
and all t 2 0 

J Pt ( z7  dY)h(Y) = No). 

Using exact the same proof as in Theorem 17.1.5 of [36], one 
can show that the constants are the only bounded harmonic 
functions. Following the same proof as in Theorem 17.1.6 
of [36], we can also show that fa is harmonic, and hence 
f&) = 1. 

We have thus established the desired limit 

which implies that 

Pu{ f I” f ( X ( s ) )  ds + 7r(f) = 1 1 
for any initial distribution v. This shows that i) holds, and 
ii) follows from i) by considering the positive part and the 

0 
Corollary 6.1: Suppose that Assumptions A 1 )-A3) hold 

and that the fluid model is stable. Let v be any probability 
distribution on (X,l?x), and T be the stationary distribution 
for X. Fork = l , . . . ,K,  and T = l , . - . , p  

negative part of f. respectively. 

VII. CONCLUDING REMARKS 

In this paper we have provided a set of sufficient conditions 
for stability which is applicable to virtually any network model 
found in practice. The question then naturally arises, how 
strong are these conditions? A partial converse is given in 
Meyn [55], but the complete characterization is still not fully 
understood. We have not seen an example of a stable network 
for which the fluid model is unstable, and it does seem likely 
that in most situations stability of the fluid model is also 
necessary in some sense for stability of the network. This 
is an important open problem which if answered positively 
would greatly simplify the counterexamples which have been 
recently devised. A direct proof of instability for a network 
can be extremely difficult (cf., [3], [56]), while the analysis of 
an associated fluid model is far simpler (cf., [6]). 

Stability is largely a first step in a finer performance analysis 
of the network. For complex networks, there are presently two 
routes that one can follow. There,is the LP approach of Kumar 
et aZ. [20], [48] and Bertsimas et al. [47] which is valid for 
exponential models, and there is also computer simulation. 
It is likely that both of these approaches may be improved 
using the methods developed here. In particular, it may be 
possible to extend the LP approach to include more general 
service and arrival processes by examining the generator for 

the network. Also, bounds on simulation error may be obtained 
given precise rates of convergence of the distributions of the 
network. We expect that such results may be obtained by using 
the results presented here combined with the recent methods 
of Lund and Tweedie [57]. 
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