
STABILIZING BATCH-PROCESSING NETWORKS

J. G. DAI
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205,

dai@isye.gatech.edu

CAIWEI LI
Oracle, 300 Oracle Parkway, Room 1084, Redwood City, California 94065, caiwei.li@oracle.com

In a batch-processing network, multiple jobs can be formed into a batch to be processed in a single service operation. The network is
multiclass in that several job classes may be processed at a server. Jobs in different classes cannot be mixed into a single batch. A batch
policy specifies which class of jobs is to be served next. Throughput of a batch-processing network depends on the batch policy used. When
the maximum batch sizes are equal to one, the corresponding network is called a standard-processing network, and the corresponding service
policy is called a dispatch policy. There are many dispatch policies that have been proven to maximize the throughput in standard networks.
This paper shows that any normal dispatch policy can be converted into a batch policy that preserves key stability properties. Examples of
normal policies are given. These include static buffer priority (SBP), first-in–first-out (FIFO), and generalized round robin (GRR) policies.

Received February 2001; revision received August 2001; accepted December 2001.
Subject classifications: Production/scheduling: sequencing, stochastic. Queues: networks, batch/bulk.
Area of review: Stochastic Models.

1. INTRODUCTION

Our study involves batch-processing networks in which
multiple jobs can be processed as a batch in a single service
operation. The size of a batch is limited by the physical
capacity of the server or by the number of jobs available.
The processing time of a batch is independent of the size
of the batch. A semiconductor wafer fabrication facility,
known as a wafer fab, is an example of a batch-processing
network. In a wafer fab, diffusion furnaces can often pro-
cess up to a dozen jobs at a time. However, the processing
time of a batch may be as long as eight hours, as much
as 100 times longer than a typical processing step in other
areas.
In a batch-processing network such as a wafer fab, prod-

uct flows are reentrant. Multiple processing steps, called
job classes in this paper, compete for service at a single ser-
vice station. When a server is ready to load the next batch,
the class of jobs to be loaded next must be determined. A
policy specifying such decisions is called a batch policy.
A common issue is whether a server should wait for a full
batch in order to fully utilize the server’s capacity.
This paper is concerned with the throughput or produc-

tion rate in a batch-processing network. As discussed fur-
ther at the end of this introduction, the throughput in such
a network depends not only on the processing speeds of
the servers, but also on the batch policy employed. We
contend that throughput is a more important performance
measure than utilization of each individual server. When a
good throughput is achieved, the servers are automatically
utilized at proper levels. Our research shows that to have
a good throughput: (1) full batch classes should have high
priority; (2) when there are no full batch classes at a station,
it does not matter whether the server waits for a full batch;
and (3) which full batch class is loaded next is important.
When there is no batch operation in a batch-processing

network, we call the network a standard-processing net-

work. Although a standard-processing network is in a spe-
cial class of batch-processing networks, with maximum
batch sizes being one, we call the corresponding service
policy in the standard network a dispatch policy. There
have been many dispatch policies that have been proven
to maximize the throughput; see, for example, Kumar
and Seidman (1990), Bramson (1996a, b), Kumar and
Kumar (1996), Dai and Weiss (1996), and Chen and Zhang
(1997a, b). In this paper, we present a general scheme for
converting a dispatch policy into a batch policy. We prove
that the corresponding batch policy preserves certain sta-
bility properties of the dispatch policy. In particular, a dis-
patch policy that maximizes the throughput in a standard
network can be turned into a batch policy that maximizes
the throughput in the corresponding batch-processing net-
work.
Most of the stability analyses in literature have

been limited to standard-processing networks, also called
multiclass-queueing networks, as advanced by Harrison
(1988). Two exceptions are Maglaras and Kumar (1999)
and Kumar and Zhang (2000), in which batch-processing
networks were studied. In Maglaras and Kumar, a fam-
ily of discrete review batch policies was shown to max-
imize the throughput. In Kumar and Zhang, a family of
fluctuation-smoothing batch policies was shown to maxi-
mize the throughput in special networks called reentrant
lines by Kumar (1993).
In the stability analysis for a standard-processing net-

work, the standard tool is to use fluid models; see, Rybko
and Stolyar (1992), Dai (1995), Stolyar (1995), Dai and
Meyn (1995), Chene (1995), and Bramson (1998). Jen-
nings (2000b) extended the fluid model tool for process-
ing networks with setups. In this paper, as in Kumar and
Zhang (2000), we also extend the fluid model tool to batch-
processing networks.

0030-364X/03/5101-0123 $05.00
1526-5463 electronic ISSN 123

Operations Research © 2003 INFORMS
Vol. 51, No. 1, January–February 2003, pp. 123–136

124 / Dai and Li

Figure 1. A two-station, four-class batch-processing
network.

m1=1.8

m3=2.7 m4=10.8

m2=7.2
a=1

The following is an example of a batch-processing net-
work, illustrating that throughput depends on the batch
policy employed. The network has two single-server service
stations serving four job classes, as illustrated in Figure 1.
Each job follows four processing steps, alternating between
stations 1 and 2. Jobs being processed or waiting to be pro-
cessed in step k are called class k jobs and reside in buffer
k. The maximum batch sizes for servers 1 and 2 are 5 and
20, respectively. Jobs are assumed to arrive from the outside
following a Poisson process with rate �= 1 job per minute.
The processing times for class k batches are independent,
exponentially distributed with mean mk, k= 1�2�3�4. The
mean service times are set to be m1 = 1�8, m2 = 7�2,
m3 = 2�7, and m4 = 10�8 minutes, as shown in the figure.
The traffic intensities for stations 1 and 2, to be defined in
(2.5) in §2, are given by

�1=��m1+m3�/5=0�9 and �2=��m2+m4�/20=0�9�

Therefore, the usual traffic condition (2.6) is satisfied for
the parameter set. Intuitively, the batch-processing network
should have enough capacity to handle all incoming jobs,
achieving a throughput of 1 job per minute.

Figure 2. The total number of jobs in system.

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500 4000 4500

W
IP

time

"WIP"

Since last-buffer-first-serve (LBFS) dispatch policy max-
imizes the throughput in a standard reentrant line (Dai and
Weiss (1996), Kumar and Kumar (1996)), we employ the
LBFS batch-policy in the batch-processing network. Under
the LBFS policy, each server always loads the highest
nonempty class to form a batch, even though the selected
class may have only 1 job in it. We simulate this process-
ing network by using the ASAP software package produced
by AutoSimulations Inc. The following shows the average
times in system:

Number of jobs
leaving the system 50 500 5,000 50,000

Average time in system 54.2 208.4 1,057.3 6,831.6

Figure 2 plots the total number of jobs in the system as
time increases. Clearly, the system is unstable, thus it can-
not handle the offered load in the long-run. On the other
hand, the same simulation shows that, after completing
50,000 jobs, server 1 is busy 96% of the time with average
batch size 4�19 jobs and server 2 is busy 99.97% of the time
with average batch size 16�41 jobs. The servers are appar-
ently heavily utilized, yet the system is unstable. Under the
LBFS batch policy, server 2 keeps serving class 4 batches
that may have only 5 jobs, sent recently from class 3 by
server 1, although class 2 has a large number of jobs wait-
ing. This example shows that a naive implementation of a
service policy may lead to an extremely inefficient system,
although the policy performs well in a standard network.
This source of inefficiency can be eliminated by employing
the full batch policies to be described in §2. Under the full
LBFS batch policy, server 2 gives high priority to class 2
when class 2 has a large number of jobs and class 4 has
fewer than 20 jobs. Under this modified LBFS policy, the

Dai and Li / 125

system can handle the offered load, achieving throughput
of 1 job per minute.
The preceding source of inefficiency seems easy to iden-

tify and to correct. There is another source of inefficiency
that is subtle and difficult to identify. This inefficiency
occurs in processing networks having reentrant flows even
when there are no batch operations. The challenge here is
to decide which full batch class to load next when there
are multiple full batch classes. Poor decisions lead to low
utilization of servers, and at the same time the number of
jobs in the system building up to infinity. Because this inef-
ficiency phenomenon has been well studied in the litera-
ture (Kumar-Seidman 1990, Lu and Kumar 1991, Rybko
and Stolyar 1992, Bramson 1994, and Seidman 1994), we
refer readers to these papers for further discussion. (A
more recent explanation can be found in Dai and Vande
Vate 2000 and Hasenbein 1997 through virtual and pseudo
stations.)
The rest of this paper is organized as follows. In §2,

we introduce batch-processing networks and their corre-
sponding standard-processing networks. We then describe
a general scheme for converting a dispatch policy into a
batch policy. We also define the notion of rate stability and
present the main theorem of the paper. In §3, we intro-
duce the fluid models of batch- and standard-processing
networks. We establish that the stability of a fluid model
implies the stability of the corresponding processing net-
work, and introduce fluid limits that are used to justify fluid
equations defining a fluid model. In §4, we study the rela-
tionship between batch- and standard-fluid models; through
the relationship, we then define normal dispatch policies in
a standard network, a key notion used in the statement of
our main theorem. Finally, we present examples of normal
dispatch policies in §5. These include static buffer priority,
first-in–first-out, and generalized round robin policies. The
paper concludes with a discussion of possible extensions
in §6.

2. OPEN MULTICLASS BATCH-PROCESSING
NETWORKS

In this section, we first introduce the open multiclass batch-
processing networks, called batch-processing networks, that
are the focus of this study. In a batch-processing network,
multiple jobs can form a batch to be served in a single
service operation. We then introduce their corresponding
standard-processing networks that are identical to batch-
processing networks except that jobs are processed one at
a time. Finally, we describe a general mechanism of con-
structing an (induced) batch policy for the batch network
from a dispatch policy for the standard network.

2.1. The Batch-Processing Network

The network under study has J single-server stations and K
job classes. Stations are labeled by j = 1� � � � � J and classes
by k�
 = 1� � � � �K. Class k jobs are served at a unique
station ��k�. For each station, more than one class might

be served. Each station has an unlimited waiting space for
each job class. Multiple jobs can form a batch that is to be
processed in a single service operation. Each server always
forms a batch as large as possible and the largest batch size
for class k is Bk. We assume that jobs in different classes
cannot be merged into a batch. The processing time for a
batch is independent of the batch size.
Jobs arrive at the network from outside, and change

classes as they move through the network. When a batch
finishes its processing, it is split into individual jobs again,
and these jobs are individually routed to the next class or
outside. Each job eventually will leave the network. The
ordered sequence of classes that a job visits in the network
is called a route.
We use ��j� to denote the set of classes that belong

to station j . When j and k appear together, we implicitly
set j = ��k�. For each class k, there are three groups of
cumulative processes: Ek = �Ek�t�� t� 0�, Vk = �Vk�n�� n=
1�2� � � � �, and �k = ��k�n�� n = 1�2� � � � �. For each time
t � 0, Ek�t� counts the number of external arrivals to class
k in �0� t�. For each positive integer n, Vk�n� is the total
service time requirement for the first n batches (regardless
of batch size) in class k. For each positive integer n, �k�n�
is a K-dimensional vector taking values in �K

+. For each
class
, �k

�n� is the total number of jobs going to class

 among the first n jobs finishing services at class k. By
convention, we assume

Ek�0�= 0� Vk�0�= 0� and �k�0�= 0�

For each time t � 0, we extend the definitions of Vk�t� and
�k�t� as

Vk�t�= Vk��t�� and �k�t�=�k��t���
where �t� denotes the largest integer less than or
equal to t. We call �E�V ��� the primitive processes,
where E = �E�t�� t � 0�, V = �V �t�� t � 0�, and � =
���t�� t � 0�, with E�t� = �E1�t��E2�t�� � � � �EK�t��

′,
V �t� = �V1�t��V2�t�� � � � � VK�t��

′, and ��t� = ��1�t��
�2�t�� � � � ��K�t��′. We assume that the strong law of large
numbers holds for the primitive processes, namely, with
probability one,

lim
t→�

Ek�t�

t
= �k� lim

t→�
Vk�t�

t
=mk� and

lim
t→�

��t�

t
= P� (2.1)

The parameter ���m�P� with �= ��1� � � � ��K�
′ and m=

�m1� � � � �mK�
′ has the following natural interpretations: For

each class k, �k is the external job arrival rate at class
k and mk is the mean service time for class k batches.
(Recall that the processing time of a batch is independent
of its batch size.) For classes k and
, Pk
 is the long-run
fraction of class k jobs that become class
. It is also called
the routing probability from class k to class
. The K×K

126 / Dai and Li

matrix P = �Pk
� is called the routing matrix. We assume
that the network is open, i.e., the matrix

Q = I +P ′ + �P ′�2+· · ·
is finite, which is equivalent to the fact that �I − P ′� is
invertible and Q = �I − P ′�−1� A reentrant line is a spe-
cial type of processing network in which all jobs follow a
deterministic route of K stages, and jobs may visit some
stations multiple times.
For future purposes, we introduce the counting process

S = �S�t�� t � 0� associated with the primitive service pro-
cess V . For each time t � 0, S�t� = �S1�t�� � � � � SK�t��

′,
with

Sk�t�=max�n� Vk�n�� t�� k = 1�2� � � � �K�

It follows from the strong law of large numbers (2.1) that

lim
t→�

Sk�t�

t
= �k� k = 1� � � � �K� (2.2)

where �k = 1/mk.
Whenever a server is ready to load a batch, it needs a

policy to decide which batch to serve next. Such a policy is
called a batch policy. We assume that, within a class, first-
in-first-serve (FIFO) policy is used to form a batch. Once
class k is selected by a server, the server always attempts
to form a batch of size Bk if possible. Once a service is
started, the service cannot be preempted. A class k with at
least Bk jobs is called a full batch class. In this paper, we
restrict ourselves to full batch policies. Namely, at the end
of a service, the server has to load a full batch class when
one is available at the station. When there is no full batch
class at a station, the server can choose to idle. Waiting
for additional jobs to form full batches is a common prac-
tice in some industries including wafer fabs. The full batch
policies can and should be relaxed in some cases; see §6
for possible extensions.

2.2. The Standard-Processing Network

We now define the standard-processing network that cor-
responds to a batch-processing network. The standard net-
work is identical to the batch-processing network except
that (a) the maximum batch size is one, and (b) the prim-
itive service process is given by Ṽk = �Ṽk�n�� n = 1� � � � �
where Ṽk�n�= Vk�n�/Bk and Bk is the batch size of class k
in the original network. As a result, the counting process S̃
associated with the primitive service process Ṽ is described
by S̃k�t�=max�n � Ṽk�n�� t�= Sk�Bkt�, k = 1�2� � � � �K,
and the strong law of large numbers becomes

lim
n→�

Ṽk�n�

n
=mk/Bk and lim

t→�
S̃k�t�

t
= Bk�k�

k = 1� � � � �K� (2.3)

In short, the standard network processes one job at a time,
and when class k jobs are in service, the server speeds up
by a factor of Bk over the service in the batch network.

For a batch-processing network driven by the prim-
itive processes �E�V ��� with maximum batch sizes
�B1� � � � �BK�

′, the corresponding standard-processing net-
work is driven by the primitive processes �E� Ṽ ��� and
the maximum batch sizes is one.
Because a standard network is a special case of a batch-

processing network, a service or batch policy is also needed
to operate such a network. We call a service policy in such
a network a dispatch policy. The alternative term is needed
to distinguish the batch policy introduced in the previous
section. A major result of this paper is to use a dispatch pol-
icy to construct a corresponding batch policy that preserves
the stability property of the dispatch policy. The construc-
tion will be carried out in the next section.

2.3. The Induced Batch Policy

In this section, we describe a procedure to construct the
corresponding batch policy for a batch network from a dis-
patch policy for a standard network. Let � be a dispatch
policy for the standard network.
We now define an induced batch policy �̃ for the batch

network. The policy � dictates which nonempty class
should be served next based on the system state of the
corresponding standard network. In the batch network, any
class k with fewer than Bk jobs is considered to be “empty."
In other words, the system state component corresponding
to class k is set at 0. Based on that revised state, each server
in the batch-processing network uses the dispatch policy �
to select a “nonempty" class
 to work on. Once class
 is
selected according to policy �, the server serves exactly B

jobs of class
 in a single batch. If all classes at a station
are “empty," the server employs any batch policy to select
a job to work on, including idling. To be concrete, when a
station is “empty," we still use � to pick a nonempty class
to work on according to the original system state.
The goal of this paper is to show that the batch-

processing network operating under batch policy �̃ is stable
if the standard network operating under � is stable. (The
stability definition will be given in §2.4 below.) In formu-
lating our main theorem, Theorem 2.1, we need to restrict
ourselves to a family of normal dispatch policies, whose
precise definition will be given in §4. Most practical dis-
patch policies are normal. As an illustration, we prove in
§5 that three families of dispatch policies are normal. They
are static buffer priority (SBP), first-in-first-out (FIFO), and
generalized round robin (GRR) policies.

2.4. Rate Stability and the Main Result

For both the batch- and standard-processing networks, the
nominal total arrival rates and traffic intensities are identi-
cal. Let = � 1� � � � � K�

′ be the vector of nominal total
arrival rates (for both the batch- and standard-processing
networks). It satisfies the following system of equations:

 l = �l+
K∑
k=1

 kPkl for
= 1�2� � � � �K� (2.4)

Dai and Li / 127

In vector form, =�+P ′ . Since P is transient, the unique
solution to (2.4) of is given by = Q�. We define the
traffic intensity �j for server j (in both networks) as

�j =
∑

k∈��j�
 k�mk/Bk�� j = 1� � � � � J � (2.5)

with � being the corresponding vector. Note that in the
batch network, �j is the nominal utilization of server j if
every batch is of the maximum size. Because class k batch
sizes can be smaller than Bk, the fraction of time that server
j is busy may be greater than �j in the batch network.
When

�j � 1� j = 1� � � � � J � (2.6)

we say that the usual traffic condition is satisfied.
We now define the rate stability for a batch-processing

network. Let Dk�t� denote the number of jobs that have
departed from class k in �0� t� in the batch-processing net-
work. In the following definition, the term state is used.
The precise definition of a state depends on the particular
batch policy used. It typically includes, but is not limited
to, the number of jobs in each class, the remaining process-
ing times and batch sizes of the batches that are being pro-
cessed, and the remaining interarrival times for jobs arriv-
ing from outside. We do not attempt a precise definition
here. Roughly speaking, a state is a snapshot of the network
at any given time. It should contain enough information that
once the current state of the network is given, the future
evolution of the network is completely determined in dis-
tribution. Readers are referred to Dai (1995) and Bramson
(1998) for examples and additional discussions of states in
standard networks under various policies.

Definition 2.1. The batch-processing network is rate sta-
ble if, for each fixed initial state with probability one,

lim
t→�

Dk�t�

t
= k for k = 1� � � � �K� (2.7)

The batch network is rate stable if the throughput rate
or departure rate from a class is equal to the nominal total
arrival rate to that class. Rate stability has been advanced
by Stidham and his co-authors (see El-Taha and Stidham
(1999) and the references there). This notion of stability
was first introduced for multiclass queueing network set-
tings in Chen (1995). As in a standard network, the usual
traffic condition is necessary for rate stability of a batch-
processing network (Dai 1999). There are other definitions
of stability, such as positive Harris recurrence (Dai 1995).
The results in this paper can be extended to those settings
as well.
As mentioned before, the main result of this paper is that

a dispatch policy of a standard network can be turned into
a batch policy that shares a similar stability property. The
precise form of the result is stated in the following theo-
rem. The definitions of “normal policy" and “fluid model"
used in the following theorem are delayed to later sections.
The fluid model and its stability will be introduced in the
next section. The definition of a normal policy will be intro-
duced in §4.

Theorem 2.1. For a given batch-processing network,
assume that a dispatch policy � is normal for the corre-
sponding standard network. The batch-processing network
operating under the induced batch policy �̃ is rate stable
if the standard fluid model operating under � is weakly
stable.

The proof of Theorem 2.1 will be presented in §4. Sec-
tion 5 is devoted to the applications of the theorem.

3. PROCESSING NETWORK AND FLUID
MODEL EQUATIONS

In this section, we define fluid models corresponding to
the batch- and standard-processing networks. Fluid mod-
els are continuous, deterministic analogs of batch- and
standard-processing networks, and are defined through a set
of equations. To describe the fluid models, we start with the
dynamic equations for batch- and standard-processing net-
works. Unless explicitly stated otherwise, we assume that
the batch-processing network is operated under a full batch
policy �̃ and the standard-processing network is operated
under a nonidling dispatch policy �.

3.1. Dynamics of Batch and Standard Networks

The dynamics of the batch network can be described
by process � = �A�D�T �U �Y �Z�. The components A =
�A�t�� t � 0�, D = �D�t�� t � 0�, T = �T �t�� t � 0�, and
Z = �Z�t�� t � 0� are K-dimensional. For each class k,
Ak�t� denotes the number of jobs that have arrived to
class k (from external and internal sources) in �0� t�, Dk�t�
denotes the number of jobs that have departed from class
k in �0� t�, Tk�t� denotes the amount of time that server
j = ��k� has spent in serving class k batches during inter-
val �0� t�, and Zk�t� denotes the number of jobs in class k
that are buffered or being served at station j at time t. The
processes A, D, T , and Z are called the arrival, departure,
server allocation, and jobcount processes, respectively. The
components U = �U�t�� t � 0� and Y = �Y �t�� t � 0� are
J -dimensional. For each station j , Uj�t� denotes the total
number of jobs at station j that are buffered or being served
at time t, and Yj�t� denotes the total amount of time that
server j has been idle in the time interval �0� t�. The pro-
cess Y is called the cumulative idle time process. One can
check that � = �A�D�T �U �Y �Z� satisfies the following
set of equations:

A�t�= E�t�+∑
k

�k�D�t��� t � 0� (3.1)

Z�t�= Z�0�+A�t�−D�t�� t � 0� (3.2)

Z�t�� 0� t � 0� (3.3)

U�t�= CZ�t�� t � 0� (3.4)

CT �t�+Y �t�= et� t � 0� (3.5)

Yj�t� increases only when Zk�t� < Bk

for each k ∈��j�� j = 1� � � � � J � (3.6)

additional equations associated with the particular
batch policy �̃� (3.7)

128 / Dai and Li

Here C is the constituency matrix defined as

Cjk =
{
1 if k ∈��j��

0 otherwise,

and e denotes the J vector of all 1’s. Because we assume
that, within a class, the FIFO policy is used to form batches,
we have the following additional equations: for 0� t1 < t2
and k = 1� � � � �K,

Sk�Tk�t2��−Sk�Tk�t1��

�
1
Bk

�Dk�t2�−Dk�t1�+Bk−1� (3.8)

when Zk�s�� Bk for s ∈ �t1� t2�� and

Sk�Tk�t2��−Sk�Tk�t1���
1
Bk

�Dk�t2�−Dk�t1��� (3.9)

To check (3.8), we note that the left side is the number
of class k batches completed in �t1� t2�. Because there are
enough jobs in class k throughout the time interval �t1� t2�,
any class k batch formed in �t1� t2� has batch size Bk. How-
ever, if there is a class k batch in service time at t1, this
batch was formed before t1 and whose size may be smaller
than Bk. In any case, the right side of (3.8) provides an
upper bound on the number of class k batches completed
in �t1� t2�. Thus, inequality (3.8) holds. Inequality (3.9) can
be justified similarly. We call Equations (3.1)–(3.9) batch
network equations. We note that T and Y are continuous,
and that A, D, and Z are right continuous with left limits.
All variables are nonnegative in each component, with A,
D, T , and Y being nondecreasing. By assumption,

A�0�=D�0�= T �0�= Y �0�= 0�

For each batch network driven by �E�V ���, the corre-
sponding standard network driven by �E� Ṽ ��� has similar
processes. To contrast with batch-network processes, they
are denoted by �Ã, D̃, T̃ , Ũ , Ỹ , Z̃�. The equations gov-
erning these processes are the same as the ones for batch
networks, except that Equations (3.8)–(3.9) are reduced to

S̃�T̃ �t��= D̃�t� for all t � 0� (3.10)

which is well known for standard networks operating
under a head-of-line dispatch policy, and Equation (3.7) is
replaced by

additional equations associated with the particular
dispatch policy �� (3.11)

3.2. Batch and Standard Fluid Models

Let �̄ = �Ā� D̄� T̄ � Ū � Ȳ � Z̄� be the continuous, deter-
ministic analog of the batch network process � =
�A�D�T �U �Y �Z�. Its components satisfy the following
equations:

Ā�t�= �′t+P ′D̄�t�� t � 0� (3.12)

Z̄�t�= Z̄�0�+ Ā�t�− D̄�t�� t � 0� (3.13)

Z̄�t�� 0� t � 0� (3.14)

Ū �t�= CZ̄�t�� t � 0� (3.15)

CT̄ �t�+ Ȳ �t�= et� t � 0� (3.16)

Ȳj �t� increases only when Ūj�t�= 0� j = 1� � � � � J � (3.17)

D̄k�t2�− D̄k�t1�� Bk�k�T̄k�t2�− T̄k�t1��

for 0� t1 < t2� k = 1� � � � �K� (3.18)

D̄k�t2�− D̄k�t1�= Bk�k�T̄k�t2�− T̄k�t1��

if Ūj�s� > 0 ∀s ∈ �t1� t2�� 0� t1 < t2� (3.19)

additional equations associated with the particular
batch policy �̃� (3.20)

In (3.19), as before, j is set to be s�k�. Equations
(3.12)–(3.20) are called batch fluid model equations, and
they define the batch fluid model. Any process �̄ =
�Ā�t�� D̄�t�� T̄ �t�� Ū �t�� Ȳ �t�� Z̄�t�� satisfying (3.12)–
(3.20) is called a batch fluid model solution. Similarly, we
can define the standard fluid model, which consists of the
same set of fluid model equations except that Equations
(3.18) and (3.19) are replaced by

D̂k�t�= Bk�kT̂k�t� for all t � 0� k = 1� � � � �K� (3.21)

and (3.20) is replaced by

additional equations associated
with the particular dispatch policy �. (3.22)

Any process �̂ = �Â� D̂� T̂ � Û � Ŷ � Ẑ� satisfying Equations
(3.12)–(3.17) and Equations (3.21)–(3.22) is called a stan-
dard fluid model solution.

Definition 3.1. A batch fluid model is said to be weakly
stable if for each batch fluid model solution �̄ with
Z̄�0�= 0, Z̄�t�= 0 for t � 0.

Weak stability of a standard fluid model can be defined
similarly as in Chen (1995).

3.3. Connection Between Processing Networks
and Fluid Models

The criterion for including an equation in the batch or
standard fluid model is that the equation is satisfied by
fluid limits. A fluid limit of a batch-processing network is
obtained through a law-of-large-number procedure on the
batch network process. Note that the batch network process
� is random, depending on the sample - in an underly-
ing probability space. To denote such dependence explic-
itly, we sometimes use ��-� to denote the batch network
process with sample -. For an integer d, �d�0��� denotes
the set of functions x� �0���→ �d that are right continu-
ous on �0��� and have left limits on �0���. An element
x in �d�0��� is sometimes denoted by x�·� to emphasize
that x is a function of time. For each -, ��-� is an ele-
ment in �4K+2J �0���.

Dai and Li / 129

For each r > 0, define

�̄r �t�-�= r−1��rt�-�� t � 0� (3.23)

Note that again for each r > 0, X̄r �·�-� is an element in
�4K+2J �0���. The scaling in (3.23) is called the fluid or
law-of-large-number scaling.

Definition 3.2. A function �̄∈�4K+2J �0��� is said to be
a fluid limit of the batch-processing network if there exists
a sequence rn → � and a sample - satisfying (2.1) such
that

lim
n→� �̄rn �·�-�→ �̄�·��

where, here and later, the convergence is interpreted as the
uniform convergence on compact sets (u.o.c.).

The existence of fluid limits is well known. A standard
argument like the one in Dai (1995) shows that for any
r →� and any sample -, there is a sequence rn such that
T̄ rn �·�-� converges as n→�. Fix an - that satisfies (2.1).
The convergence of T̄ rn , together with Equation (3.9) and
condition (2.1), implies that D̄rn converges. This latter con-
vergence, together with Equation (3.1) and condition (2.1),
implies that Ārn converges. The convergence of other com-
ponents of �̄rn then readily follows. Thus, �̄rn converges
to a fluid limit as n→�.

Proposition 3.1. Each fluid limit of the batch-processing
network operating under a full batch policy �̃ is a fluid
model solution to the batch fluid model.

Proof. Let �̄ be a fluid limit. Equation (3.18) follows from
(3.9). To prove (3.19), it is enough to show that for each s
such that Ūj�s� > 0 and �̄ is differential at s,

˙̄Dk�s�= Bk�k
˙̄T k�s�� (3.24)

where, for a function f , ḟ �s� denotes the derivative of f
at s. To prove (3.24), let rn →� be a sequence such that
�̄rn → �̄ as n→�. Since Ūj�s� > 0, there exists a class

 at station j such that Z̄
�s� > 0. By the continuity of
Z̄, there exists a 3 > 0 such that mint∈�s−3�s+3� Z̄
�t� > 0.
Because Z̄rn�·�→ Z̄�·� u.o.c., similar to the derivation of
(5.3) in the proof of Proposition 5.1, one has that for large
enough n,

Z
�u�� B
 for u ∈ �rn�s−3�� rn�s+3���

Now, fix a class k at station j . Because class
 can always
form full batches in �rn�s−3�� rn�s+3��, any class k batch
formed during �rn�s−3�� rn�s+3�� has to be a full batch as
well. Thus, (3.8) holds for t1 = rn�s−3� and t2 = rn�s+3�.
Namely,

Sk�Tk�rn�s+3���−Sk�Tk�rn�s−3���

�
1
Bk

�Dk�rn�s+3��−Dk�rn�s−3��+Bk−1��

Dividing both sides of the preceding inequality by rn and
letting n→�, one has

�k�T̄k�s+3�− T̄k�s−3���
1
Bk

�D̄k�s+3�− D̄k�s−3���

Dividing both sides of the preceding inequality by 3 and
letting 3 ↓ 0, one has

�k
˙̄T k�s��

1
Bk

˙̄Dk�s�� (3.25)

Equation (3.24) now follows from (3.25) and (3.18). Other
fluid model equations can be verified as in Dai (1995). �

Theorem 3.2. Let a batch policy �̃ be fixed. If the batch
fluid model is weakly stable, then the corresponding batch-
processing network is rate stable.

Proof. The theorem was first explicitly stated in Chen
(1995) for the standard-processing networks. The proof of
our theorem is identical to one for the standard network.
See, for example, Dai (1999). �

4. CONNECTION BETWEEN STANDARD AND
BATCH FLUID MODELS

Let �̄= �Ā� D̄� T̄ � Ū � Ȳ � Z̄� be a batch fluid model solution.
We would like to convert it into a standard fluid model
solution, �̂= �Â� D̂� T̂ � Û � Ŷ � Ẑ�. We define �̂ as follows:
for each t � 0,

Â�t�= Ā�t�� (4.1)

D̂�t�= D̄�t�� (4.2)

T̂k�t�=
mk

Bk

D̂k�t�� k = 1�2� � � � �K� (4.3)

Ŷj �t�= t− ∑
k∈��j�

T̂k�t�� j = 1� � � � � J � (4.4)

Û �t�= Ū �t�� (4.5)

Ẑ�t�= Z̄�t�� (4.6)

Proposition 4.1. The �̂ constructed from �̄ by (4.1)–
(4.6) satisfies standard fluid model Equations (3.12)–
(3.17) and (3.21).

Proof. Because Ẑ�t� = Z̄�t�, Â�t� = Ā�t�, Û �t� = Ū �t�,
and D̂�t�= D̄�t�, and because Z̄�t�, Ā�t�, Ū �t�, and D̄�t�
satisfy Equations (3.12)–(3.15), Ẑ�t�� Â�t�� Û �t�, and D̂�t�
also satisfy (3.12)–(3.15). By (4.4), Equation (3.16) is auto-
matically satisfied. Since D̂�t� is nondecreasing, T̂ �t� is
also nondecreasing. To show that Ŷj is nondecreasing, we
note that for any 0� t1 < t2,

Ŷj �t2�− Ŷj �t1�= t2− t1−
(∑

k∈��j�
T̂k�t2�−

∑
k∈��j�

T̂k�t1�

)
�

By definitions (4.2)–(4.3), we have

T̂k�t2�− T̂k�t1�=
mk

Bk

�D̂k�t2�− D̂k�t1��

= mk

Bk

�D̄k�t2�− D̄k�t1��� T̄k�t2�− T̄k�t1��

130 / Dai and Li

where the inequality follows from (3.18). Thus, we have

Ŷj �t2�− Ŷj �t1�� t2− t1−
(∑
k∈��j�

T̄k�t2�−
∑

k∈��j�
T̄k�t1�

)
� 0�

The last inequality follows from (3.16) and the fact that
Ȳj �·� is nondecreasing. Thus, Ŷj �t� is nondecreasing. More-
over, Ŷj �t2�− Ŷj �t1� = 0 when Ûj�t� > 0 for t ∈ �t1� t2�

because (3.19), (3.16), and (3.17) are satisfied for �̄. Thus,
Equation (3.17) is also satisfied for �̂. By (4.3), Equation
(3.21) is also true. �

We hope that �̂ also satisfies standard fluid model Equa-
tion (3.22). This, of course, depends on the particular dis-
patch policy used. As will be shown in the next section,
�̂ satisfies (3.22) for many policies including static buffer
priority, first-in–first-out, and generalized round robin poli-
cies. Anticipating the future growth of the list of dispatch
policies, we define the notion of normal policy as follows.

Definition 4.1. A dispatch policy � is called normal if
for any batch fluid model solution �̄ under batch policy �̃
induced from �, �̂ constructed by (4.1)–(4.6) also satisfies
(3.22).

Proposition 4.2. If a dispatch policy � operating in a
standard-processing network is normal, then the batch fluid
model under the induced batch policy �̃ is weakly stable if
the standard fluid model under policy � is weakly stable.

Proof. Let �̄ be any batch fluid model solution with
Z̄�0� = 0 under batch policy �̃. One can construct �̂ by
(4.1)–(4.6). By Proposition 4.1 and the definition of a nor-
mal policy, �̂ is a standard fluid model solution under dis-
patch policy �. Because the standard fluid model is weakly
stable and Ẑ�0� = 0, Ẑ�t� = 0 for t � 0. But Z̄�t� = Ẑ�t�
for t � 0. Hence, we have Z̄�t�= 0 for all t � 0. Thus, the
batch fluid model under policy �̃ is weakly stable. �

With this preparation, the proof of Theorem 2.1 follows
trivially.

Proof of Theorem 2.1. Assume that � is a normal dis-
patch policy in the standard network. Assume further that
the corresponding standard fluid model is weakly stable.
By Proposition 4.2, the batch fluid model operating under
the induced batch policy �̃ is weakly stable. Theorem 2.1
then follows from Theorem 3.2. �

In the batch and standard fluid models, Equations (3.20)
and (3.22) are determined by the batch policy and dispatch
policy employed. Examples of these equations will be stud-
ied in the next section for SBP, FIFO, and GRR policies.
Recall that T̄ and T̂ are server allocation processes for the
batch and standard fluid models. Their derivatives ˙̄T �t� and
˙̂T �t� at time t indicate the instantaneous server allocation
efforts among various classes. Thus, Equation (3.22) often
involves ˙̄T �t� and (3.20) often involves ˙̂T �t�. The following
proposition is often useful to check that a dispatch policy
is normal.

Proposition 4.3. Let �̄ be a standard fluid model solution
and �̂ be constructed from �̄ by (4.1)–(4.6). Then, for

k = 1� � � � �K,

˙̂T k�t�= ˙̄T k�t�

at each time t such that �̄ is differentiable at t and
Ūj�t� > 0, where, as always, j = ��k�.

Proof. Assume that Ūj�t� > 0. Since �̄�t� is a continuous
function of time t, there exists a 3 > 0 such that Ūj�s� > 0
for s ∈ �t−3� t+3�. It follows from (3.19) and (4.2)–(4.3)
that we have

T̂k�t2�− T̂k�t1�= T̄k�t2�− T̄k�t1�

for any t1 and t2 with t−3 < t1 < t2 < t+3, thus proving
the proposition. �

5. EXAMPLES OF NORMAL POLICIES

In this section, we prove several dispatch policies that
are normal. The policies, including static buffer priority
(SBP), first-in-first-out (FIFO), and generalized round robin
(GRR), have been extensively studied in the literature; see,
for example, Bramson (1996a), Chen and Zhang (1997a,
2000) and Dai (1999). Our Theorem 2.1 shows that their
corresponding induced batch policies preserve the stability
property in batch-processing networks. Recall that all batch
policies are assumed to be nonpreemptive, i.e., once a ser-
vice is started, the server has to finish the service.

5.1. Static Buffer Priority Policies

Under a static buffer priority (SBP) dispatch policy, classes
within a standard network are ranked. Higher ranked
classes have higher priorities. Such an SBP policy can be
denoted by a permutation � among classes. Let ��k� indi-
cate the priority of class k. If ��k� > ��
�, class k has
higher priority than class
.
For the SBP policy �, its induced batch policy is oper-

ated in the batch-processing network as follows: If ��k� >
��
� and class k has at least Bk jobs, then class k has
higher priority than class
. If ��k� >��
�, but class k has
fewer than Bk jobs and class
 has at least B
 jobs, then
class
 has higher priority than class k because class k is
treated as “empty.”
Let Hk = �
�
 ∈ ��j����
� � ��k�� denote the set of

classes whose priorities are at least as high as class k. Let
�̂ be a standard fluid model solution. Define

T̂ +
k �t�=

∑

∈Hk

T̂
�t�

as the cumulative time that server j = ��k� has spent on
all classes whose priorities are at least as high as class
k. Define Ẑ+

k �t� similarly. It follows from Dai and Weiss
(1996) that the standard fluid model Equation (3.22) takes
the form
˙̂T +
k �t�= 1 for each time t such that Ẑ+

k �t� > 0
and �̂ is differential at time t� (5.1)

The batch fluid model Equation (3.20) under the induced
batch policy �̃ is identical to that of a standard fluid model.
The justification through fluid limits is the same as the

Dai and Li / 131

one in a standard network. For completeness, we provide a
proof of Proposition 5.1 at the end of this section.

Proposition 5.1. Each fluid limit �̄ of the batch-
processing network operating under an induced SBP policy
satisfies the following equations: for k = 1� � � � �K,

˙̄T +
k �t�= 1 for each time t such that Z̄+

k �t� > 0
and �̄ is differential at time t� (5.2)

The main result of this section is the following proposi-
tion.

Proposition 5.2. Any SBP dispatch policy is normal.

Proof. Let �̄ be a solution to the batch fluid model oper-
ating under the induced batch SBP policy. Let �̂ be a fluid
solution constructed from �̄ by (4.1)–(4.6). Assume that
Ẑ+
k �t� > 0 and �̂ is differential at time t. From Proposition

4.3 and (5.2), we have

˙̂T +
k �t�= ˙̄T +

k �t�= 1�

Thus, �̂ satisfies (5.1) and, therefore, is a solution to the
standard fluid model. It follows from Definition 4.1 that the
SBP dispatch policy is normal. �

A batch-processing reentrant line is a special batch-
processing network. Classes can be arranged so that �k = 0
for k= 2� � � � �K, and Pk�k+1 = 1 for k= 1� � � � �K−1. Two
SPB dispatch policies: last-buffer-first-serve (LBFS) and
first-buffer-first-serve (FBFS), have been studied in the lit-
erature. Under the LBFS policy, classes in later stages have
higher priorities. Under the FBFS policy, classs in earlier
stages have higher priorities.

Corollary 5.3. A batch-processing reentrant line operat-
ing under either the induced LBFS or induced FBFS batch
policy is rate stable whenever the usual traffic condition is
satisfied.

Proof. Assume the usual traffic condition. It follows from
Dai and Weiss (1996) and Kumar and Kumar (1996) that
the standard fluid model is weakly stable under FBFS and
LBFS dispatch policies. Because these policies are normal,
the corollary follows from Theorem 2.1. �

Proof of Proposition 5.1. Let �̄ be a fluid limit of the
batch-processing network operating under the induced SBP
policy. Let rn → � be a corresponding sequence such
that �̄rn → �̄ as n → �. Let t > 0 be fixed. Assume
that �̄ is differential at time t and Z̄+

k �t� > 0. To prove
(5.2), it is enough to show that ˙̄Y +

k �t�= 0, where Ȳ +
k �t�=

t− T̄ +
k �t� is the cumulative time that server j = ��k� can

spend on classes outside Hk in �0� t�. Because Z̄+
k �t� > 0,

by the continuity of �̄, there exists a 3 > 0 such that
6 = mint−3<s<t+3 Z̄

+
k �s� > 0. We would like to show that

Ȳ +
k �t + 3�− Ȳ +

k �t − 3� = 0, from which the proposition
follows.
Because Z̄rn�·� → Z̄�·� uniformly on compact sets

(u.o.c.), and rn →� as n→�, there exists an N such that

for all n > N ,

sup
0�s�t+3

�Z+
k �rns�/rn− Z̄+

k �s��< 6/2 and

rn6/2� ���j�� max

∈��j�

B
�

where Z+
k �t� is the total number of jobs in Hk at time t

and ���j�� is the number of classes at station j . Hence
Z+
k �rns� > rn6/2 for n>N and s ∈ �t−3� t+3�, or equiva-

lently, Z+
k �s�� rn6/2 for s ∈ �rnt−rn3� rnt+rn3�. Because

rn6/2 � ���j��max
∈��j� B
, for each s ∈ �rnt− rn3� rnt+
rn3�, there exists an
 ∈Hk such that

Z
�s�� B
� (5.3)

Because the induced SBP batch policy is employed, in
time interval �rnt−rn3� rnt+rn3�, it follows from (5.3) that
server j = ��k� will not work on any classes that are not in
Hk, except during the initial service period covering time
instant rnt− rn3. It is possible for the server to continue
working on a low priority class that is not in Hk because
preemption is not allowed. (The server must be busy at
time rnt− rn3 because there are enough jobs at the station
at that time.) Let Rn be the remaining service time for
the batch that is currently in service at time rnt− rn3. We
have Y +

k �rnt+ rn3�−Y +
k �rnt− rn3�� Rn for n > N , where

Y +
k �s�=

∑

∈Hk

Y
�s� is the cumulative time that server j =
��k� can spend on classes that are not in Hk in �0� s� in
the batch-processing network.
Recall that S
�T
�rnt− rn3�� is the number of class

batches completed by time rnt− rn3. If class
 is currently
in service at time rnt− rn3, the server is working on the
�S
�T
�rnt− rn3��+1�th batch. The total time for server j
to finish all S
�T
�rnt− rn3��+1 batches is V
�S
�T
�rnt−
rn3��+ 1�. But the server has already spent T
�rnt− rn3�
amount of time on class
. Thus, the remaining processing
time is equal to

V
�S
�T
�rnt− rn3��+1�−T
�rnt− rn3��

provided that class
 is in service at time rnt− rn3. Thus,
we have
1
rn
�Y +

k �rnt+ rn3�−Y +
k �rnt− rn3��

� max

∈��j�

V
�S
�T
�rn�t−3���+1�−T
�rn�t−3��

rn

for n>N . Because T̄ rn �·�→ T̄ �·�, and (2.1) and (2.2) hold,
we have

lim
n→�

V
�S
�T
�rn�t−3���+1�
rn

= T̄
�t−3�

and

lim
n→�

T
�rn�t−3��

rn
= T̄
�t−3��

Taking n→�, we have

Ȳ +
k �t+3�− Ȳ +

k �t−3�� 0�

Because Ȳ +
k �·� is nondecreasing, we have Ȳ +

k �t + 3�−
Ȳ +
k �t − 3� � 0. Hence Ȳ +

k �t + 3�− Ȳ +
k �t − 3� = 0, thus

˙̄Y +
k �t�= 0, proving ˙̄T +

k �t�= 1. �

132 / Dai and Li

5.2. First-In–First-Out Policy

In a standard network, under the first-in-first-out (FIFO)
dispatch policy, a server always picks a class whose head-
of-line job arrived at its station earliest. The induced batch
policy, called FIFO, works as follows in a batch-processing
network. Whenever a server looks for a new class to load,
it chooses the class, among the full batch classes, whose
head-of-line job reached the station earliest. If there is no
full batch class at the station, the server picks a class whose
head-of-line job reached the station earliest. Thus, in a
batch network operating under the FIFO policy, a server
does not serve jobs according to a strict FIFO policy. The
oldest job at a station may have to wait for more jobs in
its class to arrive to form a full batch.
For the standard FIFO fluid model, the additional Equa-

tion (3.22) takes the form

D̂k�t+ Ŵj�t��= Âk�t�� k = 1� � � � �K, (5.4)

for all t > 0, where

Ŵj�t�=
∑

k∈��j�

mk

Bk

Ẑk�t�� j = 1� � � � � J � (5.5)

See, for example, Bramson (1996a).
For the batch FIFO fluid model, the additional fluid

model Equation (3.20) takes the same form as in (5.4) and
(5.5). This is the content of our next proposition.

Proposition 5.4. Let �̄ be a fluid limit of the batch-
processing network operating under the FIFO batch policy.
It satisfies the following equations:

D̄k�t+ W̄j�t��= Āk�t�� k = 1� � � � �K, (5.6)

for all t > 0, where

W̄j�t�=
∑

k∈��j�

mk

Bk

Z̄k�t�� j = 1�2� � � � � J � (5.7)

We delay the proof until the end of this section.

Proposition 5.5. The FIFO dispatch policy is normal.

Proof. Let �̄ be a batch fluid model solution under the
FIFO batch policy. Namely, �̄ satisfies Equations (3.12)–
(3.19) and (5.6)–(5.7). Let �̂ be a fluid solution constructed
from �̄ by (4.1)–(4.6). One can check that �̂ satisfies
Equations (5.4)–(5.5). Thus, by Proposition 4.1, �̂ is a stan-
dard fluid model solution under the FIFO dispatch policy.
Therefore, the FIFO dispatch policy is normal. �

A standard network is of Kelly type if, for each station,
the mean processing times for all classes at a station are the
same. Here we extend this definition to batch-processing
networks. A batch-processing network is said to be of Kelly
type if Bk�k are the same for all classes k at each station.

Corollary 5.6. Assume that the usual traffic condition is
satisfied in a FIFO batch-processing network of Kelly type.
The batch network is rate stable.

Proof. It was proven in Bramson (1996a) that the standard
FIFO fluid model of Kelly type is weakly stable under the
usual traffic condition. Because the FIFO dispatch policy is
normal, the corollary follows from Theorem 2.1. �

Proof of Proposition 5.4. For the standard FIFO pro-
cessing network,

Dk�t+Wj�t��= Zk�0�+Ak�t�� k = 1� � � � �K� (5.8)

where Wj�t� is the (immediate) workload at station j at
time t, from which standard fluid model Equations (5.4)
and (5.5) are derived. (See Harrison and Nguyen 1993 and
Bramson 1996a).
For a batch-processing network, the definition of imme-

diate workload for a server needs to be properly defined.
Similar to the definition in a standard network, we define
Wj�t� to be the amount of total processing time that server
j needs to spend to finish all the jobs that are currently at
the station, assuming no more arrivals are allowed to the
station after t. We now would like to establish a relation-
ship that is analogous to (5.8). Two inequalities will be
presented, one upper bound and the other lower bound. To
explain these bounds, we take a closer look at time inter-
val �t� t+Wj�t��. Recall that there are Uj�t� jobs at station
j at time t. Some of these jobs (first type) are currently in
service. Some (second type) will be served full batch with
other jobs that are currently at the station. The remain-
ing ones (third type) will be served either nonfull batch or
together with jobs that arrive after time t. Note that it is
possible for a job that arrives after time t to be processed
before type 2 jobs. This job necessarily joins a batch with
type 3 jobs, taking advantage of the early arrival of a type
3 job. The lower bound is given by

Zk�0�+Ak�t�−Bk < Dk�t+Wj�t�� for t � 0�

k = 1� � � � �K� (5.9)

This bound follows from the fact that by time t+Wj�t�,
all first and second types of jobs have left. To describe the
upper bound, we let :j�t� be the total processing time of
type 3 jobs. We claim that

Dk�t+Wj�t�− :j�t�� < Zk�0�+Ak�t�+Bk�

k = 1� � � � �K� (5.10)

To check (5.10), in �t� t+Wj�t�−:j�t��, the server j cannot
process more than Zk�t�+Bk class jobs. Thus, we have
(5.10).
Assume that �̄rn converges to a fluid limit �̄ as n→�.

To show that �̄ satisfies (5.6) and (5.7), because of (5.9)
and (5.10) it suffices to show that

W̄
rn
j �·�→

∑
k∈��j�

mk

Bk

Z̄k�·� (5.11)

and

:̄
rn
j �·�→ 0� (5.12)

where for r > 0, W̄ r �t�=W�rt�/r and :̄ r �t�= :�rt�/r .

Dai and Li / 133

Let time t � 0 be fixed. Let Fk�t� be the number of class
k batches that can be formed from Zk�t� jobs that are at
station j at time t. If class k is currently not in service,
one can check that Fk�t�= �Zk�t�/Bk� in this case, where
�x� is the smallest integer that is as big as a nonnegative
number x. If class k is currently in service, Fk�t�− 1 is
the number of class k batches that can be formed from
remaining jobs that are in class k at time t, excluding those
currently in service. Thus, Fk�t�= 1+��Zk�t�−3k�t��/Bk�,
where 3k�t� is the size of the batch that is currently in
service at time t. By our definition of immediate workload,
we have

Wj�t�=
∑

k∈��j�
Vk �Sk�Tk�t��+Fk�t��− t+Yj�t�� (5.13)

So

W̄
rn
j �t�=

∑
k∈��j�

V̄
rn
k

(
S̄
rn
k �T̄

rn
k �t��+ F̄ rn �t�

)− t+ Ȳ
rn
j �t�

where, as usual, V̄ rn �·�, F̄ rn �·�, and F̄ rn �·� are fluid scal-
ings of V �·�, S�·�, and F �·�, respectively. Because Z̄rn

k �·�→
Z̄k�·� and 3k�t� � Bk for all t � 0, we have F̄

rn
k �·� →

Z̄k�·�/Bk. As before, the uniform convergence on compact
sets (u.o.c.) is used.
Because as n → �, S̄rnk �·� → S̄k�·�, V̄ rn

k �·� → V̄k�·�,
T̄
rn
k �·�→ T̄k�·�, and Ȳ rn

j �·�→ Ȳj �·�, where S̄k�t�= �kt and
V̄k�t�=mkt for t � 0, we have

V̄
rn
k

(
S̄
rn
k �T̄

rn
k �t��+ F̄ rn �t�

)
→ T̄k�t�+mkZ̄k�t�/Bk� u.o.c. (5.14)

Hence,

W̄
rn
j �t�→

∑
k∈��j�

T̄k�t�+
∑

k∈��j�

mk

Bk

Z̄k�t�+ t− Ȳj �t�� u.o.c.

By (3.16), we have
∑

k∈��j� T̄k�t�+ t− Ȳj �t�= 0. Thus,

W̄
rn
j �t�→

∑
k∈��j�

mk

Bk

Z̄k�t�� u.o.c.�

proving (5.11).
By the definition of :j�t�, we have

:j�t��
∑

k∈��j�

[
Vk �Sk�Tk�t��+Fk�t��

−Vk �Sk�Tk�t��+Fk�t�−1�
]
�

So

:̄
rn
j �t��

∑
k∈��j�

[
V̄
rn
k �S̄

rn
k �T̄

rn
k �t��+ F̄

rn
k �t��

− V̄
rn
k �S̄

rn
k �T̄

rn
k �t��+ F̄

rn
k �t�−1�

]
� (5.15)

As in (5.14), we have

V̄
rn
k

(
S̄
rn
k �T̄

rn
k �t��+ F̄ rn �t�−1

)
→ T̄k�t�+mkZ̄k�t�/Bk� u.o.c. (5.16)

as n→�. Convergence (5.12) follows from (5.15), (5.14),
and (5.16). �

5.3. Generalized Round Robin Policies

For a standard network, a generalized round robin (GRR)
dispatch policy associated with weight parameter < =
�<2� � � � �<K� is defined as follows. Here each <k is a pos-
itive real number. Recall that ��j� is the set of classes at
station j . We assume that the set is ordered and the order
is fixed. To describe the policy, we first assume that <k’s
are integers. Server j visits the ordered list of classes cycli-
cally: once it enters class k, it serves exactly <k jobs or
exhausts the class k jobs; at the end of this period, it enters
the next class on the list (or the first class if class k is the
last class on the list). For a class k at the station, a cycle
starting from k is defined to be the period between the
time the server first enters the class and the time it reenters
the class. Any class (fixed) at a station can initiate cycles.
When <k’s are integers, the nominal allocation in a cycle
to class k is exactly <k, although that allocation is redis-
tributed when the class has fewer than <k jobs during the
class k service period.
Now we let <k’s be arbitrary positive real numbers. The

GRR dispatch policy works as before except that the nomi-
nal allocation to class k during a cycle needs to be adjusted.
For each cycle n, let ak�n� denote the nominal allocation
to class k during cycle n and bk�n� be the residual alloca-
tion to class k after cycle n. They are defined recursively
as follows:

ak�n+1�= �bk�n�+<k�� (5.17)

bk�n+1�= bk�n�+<k−ak�n+1�� (5.18)

for n = 0�1� � � � , where bk�0� = 0 and, as before, �x�
denotes the integer part of a real number x. A GRR dispatch
policy is among the family of fair queueing policies widely
studied in computer network literature; see, for example,
Demers et al. (1989) or Parekh and Gallager (1993).
The additional standard fluid model Equation (3.22)

takes the form

˙̂T k�t��
<k�mk/Bk�∑

∈��j� <
�m
/B
�
� k = 1�2� � � � �K� (5.19)

for each time t such that T̂k�t� is differentiable and
Ẑk�t� > 0. The intuitive explanation of (5.19) is as follows:
the average cycle length is at least

∑

∈��j� <
�m
/B
�.

When there are enough jobs in class k, the average time
spent in class k during a cycle is <kmk/Bk. Thus, when
there are enough jobs in class k, server j spends at
least <k�mk/Bk��

∑

∈��j� <
�m
/B
��

−1 amount of effort in
class k.
Now we describe the induced batch policy correspond-

ing to the GRR dispatch policy associated with vector
< = �<2� � � � �<K� > 0. Here ak�n� denotes the nominal
number of full class k batches to be served during cycle n.
It is defined recursively through

ak�n+1�= �bk�n�+<k/Bk�� (5.20)

bk�n+1�= bk�n�+<k/Bk−ak�n+1�� (5.21)

134 / Dai and Li

for n= 0�1� � � � with bk�0�= 0. When server j enters class
k at cycle n, it attempts to serve up to ak�n� full batches
if it can. Then it moves to the next class. If <k/Bk’s are
integers, the nominal number of class k batches during a
cycle is <k/Bk.
Again, for the GRR batch fluid model, it turns out that

the additional fluid model Equation (3.20) takes the same
form as (5.19). We offer the following proposition.

Proposition 5.7. For each fluid limit �̄ of the batch-
processing network operating under the induced GRR batch
policy, we have

˙̄T k�t��
�<k/Bk�mk∑

∈��j��<
/B
�m

� (5.22)

for all time t such that T̄k�t� is differentiable and Z̄k�t� > 0,
k = 1�2� � � � �K.

The proof is provided at the end of this section.

Proposition 5.8. Any GRR dispatch policy is a normal
policy.

Proof. Let �̄ be a fluid solution to the batch fluid model
under the induced GRR batch policy. Let �̂ be a fluid solu-
tion constructed from �̄ by (4.1)–(4.6). Then at any time
t such that Ẑk�t� > 0 and ˙̂Zk�t� exists, we have Z̄k�t� > 0
and ˙̄Zk�t� exists. Thus, by Proposition 4.3 and (5.22), we
have

˙̂T k�t�= ˙̄T k�t��
�<k/Bk�mk∑

∈��j��<
/B
�m

�

Thus, �̂ satisfies (5.19) and, hence, is a standard fluid
model solution. �

Corollary 5.9. Let <= �<2� � � � �<K� be a vector of pos-
itive real numbers. Assume that for each class k,

�<k/Bk�mk∑
l∈��j��<
/B
�m

� kmk/Bk� (5.23)

Then the batch-processing network operating under the
induced GRR batch policy with weight < is rate stable.

Proof. Let �̂ be a standard fluid model solution with
Ẑ�0� = 0. Under conditions (5.19) and (5.23), ˙̂Dk�t� � k
for time t such that Ẑk�t� > 0 and �̂ is differential at t.
It follows the proof of Theorem 4 of Bramson (1998) that
Ẑ�t�= 0 for t � 0. Thus, the standard GRR fluid model is
weakly stable. Since any GRR dispatch policy is normal,
the corollary follows from Theorem 2.1. �

Notice that condition (5.23) is equivalent to

 k

(∑

∈��j�

�<
/B
�m

)
< <k� k = 1� � � � �K�

The latter form of the condition has the following intuitive
interpretation: the average number of job arrivals to class

k during a cycle is less than the number of class k jobs
that can be served during a cycle. When the usual traffic
condition is satisfied, one can find a weight parameter <
that satisfies the condition.

Proof of Proposition 5.7. Let �̄ be a fluid limit of the
batch-processing network with the corresponding sequence
rn →� such that �̄�·�= limn→� �̄rn �·�. We would like to
show that (5.22) holds for �̄.
Let u > 0 be a time such that T̄ �·� is differential and

Z̄k�u� > 0. By the continuity of Z̄, there exists a 3> 0 such
that Z̄k�s� > 0 for s ∈ �u−3�u+3�. It suffices to show that

T̄k�t�− T̄k�s�

t− s
�

�<k/Bk�mk∑
l∈��j��<
/B
�m

�

for any u−3 < s < t < u+3. Since �̄rn → �̄ as n→�,
it is enough to show that

lim
n→�

Tk�rnt�−Tk�rns�

rn�t− s�
�

�<k/Bk�mk∑
l∈��j��<
/B
�m

� (5.24)

To study the limit in (5.24), we focus the batch-
processing network in the time interval �rns� rnt� for large
n. Let Cn be the number of cycles that are initiated and
completed in the time interval. Note that time rns may be
in the middle of a cycle that was initiated before time rns,
and time rnt may be in the middle of a cycle that ends after
rnt. Following the same argument as in Proposition 5.1, one
can choose n large enough and 3 small enough such that

Zk�t
′� > <k+Bk for t′ ∈ �rns� rnt�� (5.25)

Thus, class k always forms full batches in any one of the
Cn cycles in �rns� rnt�.
Define G
�t

′� to be the number of class
 batches com-
pleted by time t′. Then V
�G
�t

′�� is the time spent by
server j = ��
� to complete these batches. We then have

Tk�rnt�−Tk�rns�� Vk�Gk�rnt��−Vk�Gk�rns�+1��

The difference between the two sides is due to the remain-
ing processing time of batch Gk�rns� and the time already
spent on batch Gk�rnt�+ 1. By (5.25), there are at least
�Cn<k/Bk� class k batches that have been initiated and
completed in �rns� rnt�. Thus,

Tk�rnt�−Tk�rns�� Vk�Gk�rns�+1+�Cn</Bk��
−Vk�Gk�rns�+1��

Similarly, since server j = ��k� has been busy in �rns� rnt�,
we have

rnt− rns �
∑

∈��j�
V
�G
�rnt�+1�−V
�G
�rns���

Because there are at most Cn + 2 cycles that have been
initiated or completed in �rns� rnt� (Cn full cycles and 2
partial cycles), class
 has at most ��Cn+2�<
/B
� batches

Dai and Li / 135

that have been served (completed or initiated) in �rns� rnt�,
G
�rnt�−G
�rns�� ��Cn+2�<
/B
�. Hence,
rnt− rns �

∑

∈��j�

V
 �G
�rns�+��Cn+2�<
/B
��

−V
�G
�rns���

Therefore, we have the following inequality:

Tk�rnt�−Tk�rns�

rn�t−s�

�
C−1
n �Vk�Gk�rns�+1+�Cn</Bk��−Vk�Gk�rns�+1��∑

∈��j�C−1
n �V
�G
�rns�+��Cn+2�<
/B
��−V
�G
�rns���

�

(5.26)

We now claim that

lim
n→�C

−1
n

[
Vk�Gk�rns�+1+�Cn</Bk��

−Vk�Gk�rns�+1�
]
= <kmk/Bk� (5.27)

The claim follows from assumption (2.1) and an exten-
sion of the strong-law-of-large-numbers (see, for example,
Lemma 5.2.1 of Jennings 2000a), provided that

lim sup
n→�

Gk�rns�/Cn <�� (5.28)

Since Gk�rns� � Sk�rns� and limn→� Sk�rns�/rn → �k,
(5.28) follows from

lim inf
n→�

Cn

rn
> 0� (5.29)

which means that Cn increases at least at the same rate
as rn.
To prove (5.29), for each class
 ∈��j�, because server

j can visit class
 at most Cn+ 2 times in �rns� rnt� and
each time the server can work at most �<
 +B
� class

jobs, we have

lim inf
n→�

�Cn+2��<
+B
�

rn

� lim
n→�

D
�rnt�−D
�rns�

rn

= D̄k�t�− D̄k�s�

t− s

= �k

T̄k�t�− T̄k�s�

t− s
�

where the last equality follows from (3.19). Moving �
 to
the other side and summing up for
 ∈��j�, we have(∑

∈��j�

m
�<
+B
�

)
lim inf
n→� Cn/rn

= ∑

∈��j�

�T̄
�t�− T̄
�s��= t− s�

where the last equality follows from (3.16) and (3.17).
Hence (5.29) is true, and thus (5.27) holds.
Similarly, for each class
 ∈��j�, we can prove

lim
n→�C

−1
n �V
 �G
�rns�+��Cn+2�<
/B
��−V
�G
�rns���

= <
m
/B
� (5.30)

Inequality (5.24), and hence the proposition, follows from
(5.27), (5.30), and (5.26). �

6. EXTENSIONS

Throughput is an important performance measure for batch-
processing networks. But it is a crude one. One would like
to further differentiate policies that are throughput opti-
mal. This differentiation is based on some secondary per-
formance measure, like minimizing the long-run average
number of jobs in a system. Unfortunately, the mode of
analysis in this paper offers little insight towards the objec-
tive. In the case that the nominal utilization for some sta-
tion is well below one and the maximum batch sizes at the
station are large, full batch policies, though stable, may not
be desirable for the secondary performance measure. Sup-
pose that one can choose bk’s with 1� bk � Bk such that∑
k∈��j�

 k�mk/bk�� 1� j = 1� � � � � J �

One can relax full batch policies by allowing any class k
with at least bk jobs to be treated as nonempty. Whenever a
server selects the next class to form a batch, all “nonempty"
classes are eligible to be chosen. Once a class k is chosen,
the server loads up to Bk jobs for the batch. The size of the
batch may be smaller than Bk, but it is at least bk.
Note that while Bk represents a physical restriction from

a piece of equipment, bk comes from a management deci-
sion. Once b = �b1� � � � � bK�

′ is chosen and fixed, an anal-
ogous theory based on fluid models can be developed to
prove the stability of the relaxed batch policies. Choosing b
to minimize the secondary performance measure is impor-
tant, but is beyond the scope of this paper.

ACKNOWLEDGMENTS

Research supported in part by NSF grants DMI-9457336
and DMI-9813345, by a Chinese NSF grant, and by TLI-
AP, a partnership between National University of Singapore
and Georgia Institute of Technology.

REFERENCES

Bramson, M. 1994. Instability of FIFO queueing networks. Ann.
Appl. Probab. 4 414–431.
. 1996a. Convergence to equilibria for fluid models of FIFO
queueing networks. Queueing Systems: Theory Appl. 22
5–45.
. 1996b. Convergence to equilibria for fluid models of
head-of-the-line proportional processor sharing queueing net-
works. Queueing Systems: Theory Appl. 23 1–26.

136 / Dai and Li

. 1998. Stability of two families of queueing networks and
a discussion of fluid limits. Queueing Systems: Theory Appl.
28 7–31.

Chen, H. 1995. Fluid approximations and stability of multi-
class queueing networks I: Work-conserving disciplines. Ann.
Appl. Probab. 5 637–665.
, H. Zhang. 1997a. Diffusion approximations for re-
entrant lines with a first-buffer-first-served priority discipline.
Queueing Systems: Theory Appl. 23 177–195.
, . 1997b. Stability of multiclass queueing networks
under FIFO service discipline. Math. Oper. Res. 22 691–725.
, . 2000. Stability of multiclass queueing networks
under priority service disciplines. Oper. Res. 48 26–37.

Dai, J. G. 1995. On positive Harris recurrence of multiclass queue-
ing networks: A unified approach via fluid limit models. Ann.
Appl. Probab. 5 49–77.
. 1999. Stability of Fluid and Stochastic Processing Net-
works. MaPhySto Miscellanea Publication, No. 9 �http://
www.maphysto.dk/�.
, S. P. Meyn. 1995. Stability and convergence of moments for
multiclass queueing networks via fluid limit models. IEEE
Trans. Automatic Control 40 1889–1904.
, J. VandeVate. 2000. The stability of two-station multi-type
fluid networks. Oper. Res. 48 721–744.
, G. Weiss. 1996. Stability and instability of fluid models for
re-entrant lines. Math. Oper. Res. 21 115–134.

Demers, A., S. Keshav, S. Shenker. 1989. Analysis and simulation
of a fair queueing algorithm. Proc. Sigcomm. 19(4) 1–12.

El-Taha, M., S. Stidham Jr. 1999. Sample-Path Analysis of Queue-
ing Systems. Kluwer, Norwell, MA.

Harrison, J. M. 1998. Brownian models of queueing networks
with heterogeneous customer populations. W. Fleming, P.
L. Lions, eds. Stochastic Differential Systems, Stochastic
Control Theory and Their Applications, Vol. 10. The IMA
Volumes in Mathematics and Its Applications. Springer,
New York, 147–186.
, V. Nguyen. 1993. Brownian models of multiclass queue-
ing networks: Current status and open problems. Queueing
Systems: Theory Appl. 13 5–40.

Hasenbein, J. J. 1997. Necessary conditions for global stabil-
ity of multiclass queueing networks. Oper. Res. Lett. 21
87–94.

Jennings, O. B. 2000a. Multiclass queueing networks with setup
delays: Stability analysis and heavy traffic approximation.
Ph.D. thesis, School of Industrial and System Engineering,
Georgia Institute of Technology, Atlanta, GA.
. 2000b. On the stability of multiclass queueing networks
with setups. Preprint.

Kumar, P. R. 1993. Re-entrant lines. Queueing Systems: Theory
Appl. 13 87–110.
, T. I. Seidman. 1990. Dynamic instabilities and stabilization
methods in distributed real-time scheduling of manufacturing
systems. IEEE Trans. Automatic Control AC-35 289–298.

Kumar, S., P. R. Kumar. 1996. Fluctuation smoothing policies are
stable for stochastic reentrant lines. Discrete Event Dynami-
cal Systems 6 361–370.
, H. Zhang. 2000. Stability of reentrant lines with batch
servers. Technical report, Graduate School of Business, Stan-
ford University, Stanford, CA.

Lu, S. H., P. R. Kumar. 1991. Distributed scheduling based on due
dates and buffer priorities. IEEE Trans. Automatic Control
36 1406–1416.

Maglaras, C., S. Kumar. 1999. Capacity realization in stochas-
tic batch-processing networks using discrete review policies.
Technical report, Graduate School of Business, Stanford Uni-
versity, Stanford, CA.

Parekh, A. K., R. G. Gallager. 1993. A generalized processor
sharing approach to flow control in integrated services net-
works: The single-node case. IEEE/ACM Trans. Networking
1 344–357.

Rybko, A. N., A. L. Stolyar. 1992. Ergodicity of stochastic pro-
cesses describing the operation of open queueing networks.
Problems Information Transmission 28 199–220.

Seidman, T. I. 1994. ‘First come, first served’ can be unstable!
IEEE Trans. Automatic Control 39 2166–2171.

Stolyar, A. L. 1995. On the stability of multiclass queueing net-
works: a relaxed sufficient condition via limiting fluid pro-
cesses. Markov Processes Related Fields 1 491–512.

