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A MULTICLASS STATION WITH MARKOVIAN FEEDBACK 
IN HEAVY TRAFFIC 

J..G. DAI AND THOMAS G. KURTZ 

This paper proves a heavy traffic limit theorem for a multiclass service station with 
Markovian feedback. This result generalizes the one proved by Reiman (1988). Our approach 
also significantly simplifies Reiman's original proof. Numerical examples are presented to 
illustrate the effectiveness of the QNET method which is rooted in the theorem. 

1. Introduction. We consider a multiclass single server station. There are c 
classes of customers, and each class k has its own exogenous arrival process 
Ek = {Ek(t), t > 0} (possibly null), where Ek(t) is the number of class k customers 
who arrive at the network by time t. For each customer class k = 1,..., c, it is 
assumed that Ek(O) = 0. We denote by E the c-dimensional process with components 
E1, ..., Ec. (All vectors are envisioned as column vectors.) The service time for the 
ith class k customer is vk(i). Let Vk(n) = vk(1) + *. +Vk(n). We call {Vk(n), n > 1} 
the class k service process. Upon completion of service at the station, a class k 
customer becomes a customer of class I with probability Pk, and exits the network 
with probability 1 - EIPkl, independent of all previous history. To be more precise for 
the last statement, let 4bk(n) be the routing vector for the nth class k customer who 
finishes service at the station. The Ith component of fk(n) is one if this customer 
becomes a class 1 customer and zero otherwise. Therefore, 4k(n) is a c-dimensional 
"Bernoulli random variable" with parameter Pk, where Pk denotes the kth row of 
P = (Pk,) and prime denotes transpose. We assume that bk = {(k(n), n > 1} is i.i.d., 
and 41,..., c are independent and are independent of the arrival processes and 
service processes. Such a routing mechanism is often called Bernoulli routing. The 
transition matrix P = (Pk,) is taken to be transient. That is, 

(1.1) I + P + P2 + ... is convergent. 

This condition implies that all customers eventually leave the system. Hence the 
systems we are considering are open queueing systems. We assume that the waiting 
buffer at the station has infinite capacity, and that customers are served on a 
first-in-first-out (FIFO) basis. Hereafter, we will refer to such a system as a multiclass 
station. Our multiclass station model is very general by conventional standards. 
Besides that inter-arrival time and service time distributions for each customer class 
can be general, arrival processes and service processes among different classes can be 
dependent. Furthermore, the arrival processes can also be dependent on the service 
processes. The main assumption we will make is that the 2c-dimensional vector of 
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arrival processes and service processes jointly satisfies a functional central limit 
theorem, see (2.6). This assumption is quite mild. 

The main result of this paper is to prove a heavy traffic limit theorem (Theorem 2.1) 
which says that the workload process, properly normalized, will converge to a 
one-dimensional reflecting Brownian motion (RBM) under the heavy traffic condi- 
tion. Reiman proved a similar heavy traffic limit theorem in Reiman (1988) under the 
additional assumption that the number of visits to the station by each customer is 
bounded by some prespecified bound. There are two major contributions in this 
paper. First, the model considered here is more general than the one considered by 
Reiman (1988). The major added generality is that we allow Markouian feedback 
among different customer classes. Markovian switching among classes can be used to 
represent the sort of probabilistic routing that arises from rework, spoilage, and the 
like. Because there is no prespecified bound on the number of visits to the station by 
each customer, this generality cannot be handled by Reiman's original proof. Next, 
the approach used in our proof is new. In many ways it is more systematic. It has the 
potential to be generalized to certain multiclass networks with feedback. 

It is known that to prove a heavy traffic limit theorem for a general multiclass 
network is difficult, see Dai and Wang (1993), Whitt (1993) and Dai and Nguyen 
(1994) for more elaborate discussions. Indeed, Bramson (1994) has recently shown 
that the fundamental question of stability for FIFO queueing discipline in a nonde- 
terministic multiclass queueing network has not been resolved; in particular, the 
traditional definition of heavy traffic in terms of nominal traffic intensities being close 
to one at each station is not appropriate for all multiclass networks. It is a challenging 
open problem to determine a suitable class of multiclass networks with feedback for 
which the heavy traffic limit theorem prevails. Known heavy traffic limit theorems of 
the type discussed in this paper for open networks were proved by Iglehart and Whitt 
(1970a, b), Reiman (1984), Johnson (1983), Peterson (1991), Reiman (1988) and Chen 
and Shanthikumar (1994). 

The primary motivation in proving heavy traffic limit theorems is for performance 
analysis of queueing networks. In the case that a heavy traffic limit theorem prevails 
for a queueing network, a Brownian system can be used to approximate the queueing 
network. Such approximations, known as the QNET methods, were proposed in 
Harrison and Nguyen (1993). Even under the assumption that all arrival processes are 
independent Poisson processes and class k service times are independent identically 
distributed (i.i.d.) exponential random variables and some additional independence 
assumptions, the multiclass station discussed in this paper is not subject to exact 
mathematical analysis. This is the nature of many multiclass networks with class 
dependent service times. The heavy traffic limit theorem proved in this paper provides 
a rigorous justification for using a Brownian model to approximate the queueing 
system. Hence the Brownian model provides a practical tool for performance analysis 
of a multiclass station. In ?5, we present two numerical examples to illustrate the 
effectiveness of the QNET method for performance analysis of the multiclass station. 

Let us introduce notation that will be used in this paper. As mentioned earlier, all 
vectors are envisioned as column vectors. Prime denotes transpose. We use e to 
denote the vector of ones, whose dimension will be determined from the context. 
Unless otherwise stated, vector operations and relations are interpreted component- 
wise. Therefore for x = (x1,..., x)', Ixl = (lxl,..., lxclY. To rigorously state our 
convergence result, we need to introduce the path space DC[O, oo), which is the space 
all functions f: [0, oo) -o fRI which are right continuous on [0, oo) and have finite left 
limits on (0, oo). The path space D[0O, oo) is endowed with the Skorohod topology, see 
?3.5 of Ethier and Kurtz (1986). For a sequence {X"} of DO[, oo)-valued stochastic 
processes and X E D[O, oo), we write X"(.) = X(.) if X" converges to X in distribu- 
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tion. For a function f: [0, oo) -> IR and t > 0, put 

Ilflit- sup If(s)l, 
O<s<t 

and for a vector of functions f = (f1,..., fkY: [0, oo) -> 1Rk and t > 0, put 

lifllt = (llflllt, ... I llfkllt)' 

A sequence {f'}" of functions f'": [0, 0) - Rk is said to converge uniformly on 

compact sets (u.o.c.) to f: [0, oo) - Rk if for each t > 0, Illf"- fIIl -> 0 as n -> oc. 
(The symbol zero denotes either the zero vector or the zero scalar, depending on the 
context.) For a sequence {X"} of DC[0, oo)-valued stochastic processes and Xe 
DC[O, oo), we write X"(.) -* X(.) u.o.c. if almost surely, X'" converges to X uniformly 
on compact sets. 

The paper is organized as follows. The main theorem is stated in ?2 with 
preliminaries presented in ?3. Section 4 proves the main theorem. The paper 
concludes with ?5, where two numerical examples are presented. 

2. The heavy traffic limit theorem. Recall that {(k(1), pk(2),... is a sequence 
of i.i.d. routing vectors for class k customers. The Ith component of the vector kk(i) 

equals 1 if the ith class k customer next goes to class 1, and all other components are 
zero. Also, define the c-dimensional cumulative sum processes 

(2.1) (Dk(r) = k(l) + ... +k(r). 

Let W(t) be the immediate workload at time t. It is the amount of time that the server 
has to work to empty out everyone at the station provided that no more external and 
internal arrivals to the station are allowed. In order to rigorously state a heavy traffic 
limit theorem, we need to consider a "sequence of systems" indexed by n. Our setup 
here follows closely that of Harrison and Nguyen (1993). Let a" and m" be two 
sequences of nonnegative vectors. We interpret a" the external arrival rate for class 
k customers associated with the nth system. Similarly, 1/m" will be the service rate 
for class k customers. We assume, however, that the routing vector does not depend 
on n. Because P is transient, (I - P') is invertible and 

00oo 

(2.2) (I P') = (P'). 
i=o 

Let 

(2.3) A" = (I - P')-". 

We define the traffic intensity for the nth system p" to be 

C 

(2.4) p" = Am. 
k=l 

Before we state the main theorem, we need to define some scaled processes. For 
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each t > 0 and n > 1, set 

E"(t) ( E"(nt)- a"nt), 

V"(t) = (V'([nt]) - mnt), 

-~.t 
1 

k (t) ((k([nt]) -Pknt), i =,..., c,k =l,...,c, 

W"(t) = W"(nt), 

where [x] is the integer part of x, and E'"(), V"() and W"() are corresponding 
processes associated with the nth system. (Again, note that the processes P do not 
change with n.) It follows from the classical functional central limit theorem (Donsker's 
Theorem) that as n ->oo , 

(2.5) <>i, " , i= 1,...,c. 

where is is a c-dimensional zero-drift Brownian motion with covariance matrix 
ri (i = 1,..., c), and 1,..., c are independent. It can be verified that 

Pik(1 -Pik) if k =l, 

-PikPi, if k 1. 

We now assume that 

(2.6) E" and V" satisfy a joint functional central limit theorem. 

Because the Brownian motion has continuous sample paths and the Skorohod 
representation theorem holds, we may assume throughout this paper that the se- 
quences {E"(t), t > 0} and {V"([t]), t > 0}, and {di'"([t]), t > 0} can be constructed 
on a common probability space such that as n - o, 

(2.7) E" /- ca, u.o.c. 

(2.8) V" >S , u.o.c. 

(2.9) (i,, _ ', u.o.c. i =, ,c, 

where ( a, ~s) is a 2c-dimensional zero-drift Brownian motion with covariance matrix 
r, and it is independent of (c1,..., c). 

THEOREM 2.1. Assume that (2.6)-(2.9) hold. Assume further that as n -4 o, 

(2.10) A"= ( P')-l" - A 0, 

(2.11) m" - m > 0, 

(1n ( p" - 1) -- o. 
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Then the sequence of normalized workload processes 

(2.13) WT'(t) - W*(t) - Z*(t), u.o.c., asn - o, 

where 

(2.14) 8 = 1 + m'(P ') 

(2.15) Z*(t) = (*(t) + Ot- inf (5*(s) + Os), 
O s <t 

(2.16) s*(t) = e'se(At) + m'(I - P)- a(t) + E (lt) 
/=1 

REMARK 1. Assumptions (2.6)-(2.9) are quite mild. First, if arrival process E'" is a 
vector of independent renewal processes, V'" is a vector of independent random 
walks and it is independent of E', then by conventional Donsker type functional 
central limit theorem (E"V, V', )1,l,.. ., C 'l") converges weakly to a multidimen- 
sional Brownian motion under some additional moment assumptions on E" and V'. 
The Skorohod representation theorem allows all these processes be constructed in 
one probability space such that the convergence takes place as in (2.7)-(2.9). 

REMARK 2. Assumptions (2.10) and (2.11) are quite natural. The key assumption 
is condition (2.12). This is the so-called heavy traffic condition. It not only requires 
that p" - 1, but also that p'" converges to one at the specified rate. 

REMARK 3. It can be checked that * (t) is a one-dimensional Brownian motion 
with zero drift and variance 

o2 - (m'(I - p,)-', F)r(m(I -_ pI) ) 

(2.17) c 
+ m'(I - P')- E Ar (I-P)- , 

where VXW = (/A,..., /c). It follows that Z* is a one-dimensional reflecting 
Brownian motion with drift 0, and variance 0-2, see ?5.6 of Harrison (1985). 
Therefore, W* is an RBM with drift 0/13 and variance 02/132. As we will see in 
later sections, Z* is the heavy traffic limit of the total workload process of the 
multiclass station. This fact was also proved by Iglehart and Whitt (1970b). While it is 
straightforward to obtain this limit, it is difficult to get the kind of convergence in our 
theorem. 

REMARK 4. The limit {W* (t), t > 0} of immediate workload processes can be used 
to estimate performance measures of the multiclass station (see ?5). From this 
theorem, one can also easily establish that normalized class level queue length 
processes and class level workload processes converge to a constant times W*(t); see 
Corollary 4.1. This result was also proved by Reiman (1988). Peterson (1991) proved 
an analogous result for feedforward networks. 

3. Preliminaries. Let us for the moment fix a system in the sequence and 
temporarily drop the superscript n for notational convenience. First let Z(t) denote 
the sum of all future service times at the station for customers who are present at the 
station at time t, plus the remaining service time of any customer who may be in 
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service at the station at time t. If there were no new external arrivals to the station 
after time t, the Z(t) would represent the total amount of work required from the 
server to empty out the system. Thus, it is also called the total workload at the station. 
Let Nk(t) be the total number of visits to class k made by those customers who enter 
the system before time t (regardless of the entering customers original class designa- 
tion). Assuming initially that the system is empty, we have 

c 

Nk(t) = Ek(t) + E (N(t)), 
1=1 

or in vector form 

(3.1) N(t) = E(t) + E PI(NI(t)). 
/=1 

Let Y(t) be the cumulative idleness time for the server by time t. Then t - Y(t) is the 
cumulative time that the server has been busy by time t. Hence, we have 

Z(t) = E Vk(Nk(t)) -t + Y(t), 
k=l 

Z(t) > 0, 

Y(') is nondecreasing and Y(0) = 0, 

Y(.) increases only when Z(t) = 0. 

The last assertion holds because FIFO is a work-conserving queueing discipline. 
Define the following centered processes 

(3.2) Ek(t) = Ek(t) - kt, 

(3.3) Vk(r) = Vk(r) - mkr, 

(3.4) 4k(r) = (dF(r) - Pikr, 

(3.5) Nk(t) = Nk(t) - Akt. 

It follows from (3.1) that 

c 

N(t) =E(t) + E 4 (N(t)) + P'(t), 
-=1 

or 

(3.6) N(t) = (I-P')-1E(t) + IN(t)) 
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One can rewrite Z as 

Z(t) = E ()k2(Nk(t)) + mk (t)) + (p- l)t + Y(t) 
k-1 

- (t) + (p - 1)t + Y(t), 

where 

c 

(3.7) ;(t) = E (Ik(Nk(t)) + mkAk(t)). 
k=l 

It follows by the usual reflection argument, see ?2.2 of Harrison (1985), that 

(3.8) Z(t) = ;(t) + ( p- l)t- inf ( ;(s) + (p- 1)s). 

Recall that W(t) is the immediate workload at the station at time t. Obviously, we 
have 

(3.9) W(t) < Z(t) for t > 0. 

It turns out that proving the heavy traffic limit for Z is relatively easy. However, to 
prove the heavy traffic limit for W is difficult. In order to make the connection 
between W and Z, we derive a set of equations for W. Let Ak(t) be the total number 
of customer visits to class k by time t and 

Ak(t) =Ak(t) - Akt. 

Then, 

(3.10) W(t) = Vk(Ak(t)) - t + Y(t) 
k=l 

E (Vk(Ak(t)) + mkAk()) + ( - 1)t + Y(t), 
k=l 

W(t) > 0, 

Y(') is nondecreasing and Y(0) = 0, 

Y(.) increases only when W(t) = 0. 

For each t > 0, define r(t) to be the arrival time of the customer who has the most 
recent service completion or the beginning of the most recent idle period, whichever 
is later. Note that this definition makes r(t) monotone. This definition of r was first 
introduced by Reiman (1988) and later used by Peterson (1991) and Dai and Nguyen 
(1994). It is a key quantity linking workload for different classes to the immediate 
workload under the FIFO queueing discipline. One can first check that Ak(r(t)) is 
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the total number of customer departures from class k by time t. One can next check 
that 

C 

(3.11) Ak(t) Ek(t) + (A (t)) 
i=1 

Let 

(3.12) (t) = t - r(t). 

Using (2.3) and the vector form of (3.11), we have 

c 

(3.13) A(t) =E(t) + E Q'(Aj(r(t))) + Pt(r(t)) - PA(t). 
1=1 

Iterating (3.13) k - 1 times, we have 

k k c 
(3.14) At) 

= 

E (P'i-l(ri-l(t)) + E (p,)i- l(A(i(t)))| 
i-= i-1 -=1 

k 

- E (P')iA(-l(t)) + (P')kA(rk(t)), 
i=1l 

where 

(3.15) ri(t) = i-1(T(t)) for i > 1 and r?(t) = t. 

Because P is transient and Tk(t) < t for all k > 0, we have 

(3.16) A(t)= E ( ')i- (i-(t)) + (pi- A(i ())) 
i-i i-1 I=1 

-E (P')iA('i-A (t))? 
i=1 

In the remainder of this section, we derive an alternative expression for ri(t). Let 

(3.17) e~(t) - A(t) - W(r(t)). 

Because we assume the FIFO discipline, el(t) has the following interpretations. If the 
server is idle at time t, e1(t) is the idle time the server has experienced in the current 
idle period. When the server is currently serving the first customer in the current busy 
period, el(t) is equal to the amount of service that the customer has received plus the 
last idle period. When the server is currently serving a customer who is not the first 
customer in the current busy period, e1(t) is the amount of service that the customer 
has received. Let 

(3.18) 

e2(t) be the amount of service that the current customer has received or zero 

if the server is currently in idle. 
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It follows that we have the following alternative expression for W: 

C 

W(t) = E (Vk(Ak(t)) - Vk(Ak(r(t)))) - 2(t) 
k-l 

= e'(V(A(t)) - V(A(r(t))) + m'(A(t) -A(r(t))) - 62(t) 

e'(V(A(t)) - V(A(r(t))) + m'(A(t) -A(r(t))) + pr(t) - E2(t) 

= (t)- ((t)) + E m'(P')(I- P')Ar(ri(t))- E2(t) 
i=0 

where the last equality is based on (3.16) and 

00 

i=1 

+ E m'(P')i O'(Aj(i(t))) 
i=l 1=1 

Noting that (I - P')A = a, we have 

W(r(t)) = ((r(t)) 
- 

(72(t)) - 62(r(t)) + Em'(P')T( (t). 
i=0 

Using (3.17), we have 

(3.20) r(t) = el(t) + (rT(t)) - 
s(r2(t)) - 2(T(t)) 

00 

+ Em'(P')iaTr(il'(t)). 
i=O 

Put 

(3.21) = m'(P')a, i 0,,..., 

(3.22) (t) = ((t), T(r(t)), (Tt)),...)', 

(3.23) el = (1, 0, 0,...)', 

(3.24) E3(t) -= e(t) + (rT(t)) - 5(2(t))- E2(r(t)) 

and 

Po0 1 '' Pi ' .' 
1 0 ... 0 ... 
0 1 ... 0 . 

(3.25) Q= . : 

0 0 1 .. 
? 

. 
* ., . 

*, 



730 J. G. DAI AND T. G. KURTZ 

Then we can rewrite (3.20) in matrix form, 

r(t) = elE3(t) + Qr7(r(t)). 

Iterating this identity k times, we have 

k 

(3.26) r(t) = Qie13(ri(t)) + Qk+lr(Tk+l(t)). 
i=0 

4. Proof of the heavy traffic limit theorem. Recall that we are considering a 

sequence of systems indexed by n. Hence all processes introduced in ?3 will have a 
superscript n. The only exception is that we use r,(t) to denote r(t) in the nth system 
because we have used ri(t) to denote the ith iteration of r(t). Let 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

1 
N"(t) =--N (nt) 

,(t = -,,t 

1 
"(t) = 

-n ,(nt), 

e,f(t) = n e/'(nt), I 
r 

A"(t)- n (nt) 
1 

A'(t) = ^A"(nt), 
n 

Z(t) Ant= 

Z"l(t) = -Z"(nt), 
n( t) =t) 

N"(f) = -N"(nt). 
V/i~ 

LEMMA 4.1. For each k = 1,..., c, 

Nkl (t) -ok t u.o.c., asn -> oo. 

PROOF. Let ~kk(i) be the number of visits to class 1 by the ith external arrival to 
class k. Then for each pair (k, l), {;k(i), i > 1} is i.i.d., and for each 1, 

c Ek(nt) 

N/'(nt) = E E k(i). 
k=l i=1 

Therefore, 

nE (nt) 1 c El (nt) 1 Ek 

lim Nl"(nt) = lim E Ekt 1 E 
k 
(i) 

n--->oo n n-oo k= 
n Ek (nt) i=1 

c 

= 
aktE[ (1)] a.s. 

k=l 

Because 
o00 

E[ ((1l)] = kl, 
+ E P= [(I-P)-']l 

m=l 

we have 

1 
= lim -N "(nt) = ,t a.s., 

n -- oo 

where Ski = 1 if k = 1 and zero otherwise, and pm is the mth power of P. Because 
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N'(t) is a nondecreasing function of t for each n, and At is a continuous function of 
t, one can show that N"(t) -o At u.o.c., see Lemma 4.1 of Dai (1994). o 

LEMMA 4.2. As n -- oo, 

N"(t) -* (I-PI) -(a(t) 
+ E 1(A!t)) u.o.c. 

PROOF. It follows from Lemma 4.1 that 

Nkl(t) -t ->0 u.o.c. 

The lemma then follows from (3.6), (2.7), (2.9) and the continuity of Brownian 
motions (a and i', i = 1,..., c. o 

THEOREM 4.1. As n -> oo, Y"(t) - Y*(t) u.o.c. and Z'" converges to the one- 
dimensional reflecting Brownian motion Z*, where 

Y*(t) = - inf (*((s) + Os) and Z*(t) = 5*(t) + Ot + Y*(t) 
0<s <t 

and *(t) is defined in (2.16). 

PROOF. By Lemma 4.2, (3.7) and (2.8), one can check that "(t) = '"(nt)/ n -4 

:*(t) u.o.c. The proof follows from (2.12) and the continuity of the mapping (3.8). o 
LEMMA 4.3. For each t > 0 and for i = 1, 2, 

1- ei"(n - 0 asn -oo, 
Vn ~ ~ /~t 

where e1 and 62 are defined in (3.17) and (3.18). 

PROOF. The lemma follows from Lemma 3.3 of Iglehart and Whitt (1970a). o 

LEMMA 4.4. There exists a random variable K independent of n such that for each 
sample path and each t > 0, 

II()|llt < K for alln. 

PROOF. From (3.17), we have 

s = Wlt(/I(s)) + el(s) 
(4.5) 

< ZI(7,t(S)) + -6(S). 

The lemma follows from (4.5), Lemma 4.3 and Theorem 4.1. o 

LEMMA 4.5. For each k = 1,...,c, as n - oo, 

A'(t) -> Akt, u.o.c. 

PROOF. First A'-(t) - A t A(nt)/n can be written as the summation of three 
terms as in (3.16). Note that r,,(t) < t. We have the following estimate for the term 
corresponding to the first term in (3.16). (Recall that for a vector x = (x,... , xc)' we 
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use Ixl to denote (Ixll,..., IxJ)'.) 

00sup (p) 00 

sup E<(tP)1 n I(7,-(ns)) < sup E (p'i-' 1 t1,( i- () 
0<s<t i=l 0<s<t i=l 

< (P') i ll E"(n )lit = (I 
- 

P) n^E(n )llt. n n 

The last expression converges to the zero vector because of (2.7). Similarly, we can 
prove that the term corresponding to the middle term in (3.16) converges to zero 
u.o.c. The term corresponding to the last term in (3.16) converges to zero u.o.c. by 
Lemma 4.4. It follows that A"(t) - Akt - 0 u.o.c. c 

LEMMA 4.6. As n -- oo, 

"t(t) -- e*(t), u.o.c., 

where ~* is a one-dimensional Brownian motion defined in (2.16), with drift zero and 
variance a2 defined in (2.17). 

PROOF. First from the definition of s in (3.19) and (2.2), it follows that for any 
s > 0, 

|e' ("(s) - s*(s))l < e'(Vl"(A,'(s)) - S(As))| 
00 

1 )i(P)) E- m^(P)T (ns) - m'(P') 
i-l 

) 

(m () , r,i-l(ns) 
- 

(4.6) + ?(m.?Y(P')i=l 
i ci i=1 l 

+ El(m - m)m'(P')i- lI T 
a(iS)) 

For any 0 < s < t, one has 

( n)'(P')'i-l 
n 

T,-l (ns)) - (P'i- (n)) 

+(m )'(P )il |a(1Ti-(ns)) - a(s)) +I(m"-m)'I(P')i- a(s) 
+S(m"-)'(p)'-lEr)'_ Ma( pn)l - 

< (m")'(P')- 11 Er -(ns)) 
- 1ns) | 

+ (m ( n-1, ,-1 (ns)|- a(s) ) 

+ (m")(P)'(-'MI(' ) i(- e;-(S)-I 

+l(m"-rn) El(p)'-l a(s)l. 
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Therefore, for any 0 < s < t the second expression in (4.6) is 

i=l (m')P') 1( '-(ns) m'(P')i-1 a(S) 

00 

< - (m" )'(P')ill ( .)I-/)1 

+ E (m")'(P')i'1 a 
I,i-1 (rns)) a(S) 

i=1 

i=1 

+ 0 (m)' I(Pf)i-l (a(T1(f)- t() 

= (mt)t( _- P't) -1 | *) _ (a.)llt 

k 

++(m m)I( - PM)-1 PI l 1a(.)It- 

+ E (m")'(pe')'-i n () 
- 

ta(S) 

Similarly, we can prove the first term and the third term converge to zero u.o.c. 

+(m,")'(I -P')- (P')k211:(.)lt +I(m - 
m)j(-P)-1a('.) 

Because (p,)k -_ 0 as k -- oc, ~(.) is continuous, (2.11), (2.7) and Lemma 4.4 hold, 
we have 

i w p''"--^ 
- 

t 

Similarly, we can prove the first term and the third term converge to zero u.o.c. 
Hence we have "e(t) -> s*(t) u.o.c. nThe following lemma is the most critical to 
the proof of our main theorem. 

LEMMA 4.7. For each t > 0, 

~ ,,(n-) - ~ T,(T(n .)) ?0, as n --o. 
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PROOF. Let Q(l') be defined as in (3.25) and 7f' be defined as in (3.22) for the nth 
system. From (3.26), we have 

k 1 k+l 
(4.7) rJ Q(nt) E ((1))el) E(r,(nt) + (Q())k 

1 
I(k+ )) 

Let = (1, -1,0, 0,...)' and i"(t) = q'(nt)/ fn. Premultiplying both sides of (4.7) 
by e', we have for each s such that 0 < s < t, 

^'l"(s) l< E e^(Q(')iL e ll;'(i n)(s)/ ) + I e (Q(l)) ()) 
i=0 

It follows from Lemmas 4.3, 4.4 and 4.6 that 

k 'e (n.) -O0, asn- oo, 
Vrn t 

where E3(t) is defined in (3.24). Also, for each i > 1 we have le(Q('))I -- leQi as 
n -- oo. Therefore, 

AA1 lisup -Ooi- n) - ',,(r,(n) = limsup sup |I"(s)| 
no00 '^ nn t n?oo OsSt 

k 
< E WQ'Qlel limsup 11 3l(.) |t + - 'Qk+ limsup I||n(.) || 

i=O n --oo n-0c 

k 

< EI'Q'e ll imsup Ie(.)ll + kle limsup + lI"(l) ||t 
i=0 n->oo n -oo 

= [Qk+elIe limsup ||tI"(. ) it 

E -k+l Q+r1-r limsup I|i"(.)tl, 
i=l n-oo 

where e is the column vector of ones. Because k is arbitrary, the next lemma implies 
that 

limsup -n ,(n) - - 
,(r,(n.)) =0, 

n --oo t vn 

and hence the lemma is proved. o 

LEMMA 4.8. For the matrix Q defined in (3.25), 
00 

lim E I Ql, + - Q,+i = O. 
?k-*0-2, i1 

PROOF. Recall the definition of i. = m'(P')i. One can check that E-0 i = 1 
because of (2.12). Hence the corresponding matrix Q is stochastic. Because each 
component of m is strictly positive by assumption (2.11), one has fi+3 = 0 if i = 0. 
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Let p be the largest index i such that P3i # 0 (or = cc if none of the 3i is zero). 
Assume that p = oc. (For the case that p < oo, we can consider the p X p stochastic 
submatrix of Q. The corresponding proof is analogous.) Because 3i > 0 for each i, 
the matrix Q is irreducible. Therefore, Q can be considered to be a transition matrix 
of an irreducible, aperiodic discrete time Markov chain on state space {0, 1,...,}. 
Because P is transient, one can readily verify from (1.1) that 

00 

Eiio < X iX 
<cc. 

i=1 

Thus, the expected return time for the Markov chain to state zero is finite. Hence, 
the Markov chain is positive recurrent. Because the Markov chain is aperiodic, it 
follows that for each starting state 1, 

lim Qk i = =0,1,..., 
k-oo> 

where XT = (7r1, 72,... )' is the stationary distribution for the Markov chain. Because 
Q is row stochastic and 7r is a probability distribution, it follows from Chung (1974, 
Theorem 4.5.4) that 

00 

lim lIQi 7/ril- 0. 
k-oo i=1 

Hence, we have 

k --> oo 2,00 
lim EjQ1j'-Qk1\=0. O 

k-o0 i=l 

LEMMA 4.9. For each t > O, as n -> oo, 

sup . (m)(P')A"((s) - ,r,;(ns))) -o 0. 
o<s<t i=1 (I (n ) 

PROOF. Because m" -> m and A" -> A, it can be checked that 

00 

limsup sup E (m n)'(P')'A" (s) - 
r( n (ns) 

n -oo <s<t ni= 

O<sit i=1 
< lim sup sup .(m" ( ) r, (Al r, , n (ns ) 

-o 0 O <s < 00t i=1 

+limsup sup E (m")(P')i' ,,) ,- r,(,s) 
n->o, 0<sj<t i=k+l 

k 

< E(m)'(P')A limsup sup i(S) - 
T(,,T (n)) 

i=l nf->0o, O6s<t 

+m'(P)k+l(I - P')-A2 limsup sup T,,(s)l. 
nl-*oo 0<s<t 
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Because (p,)k+l - 0 and lim sup,,,, supo <t ,, I(s)I is finite, it suffices to show that 
for each i, 

limsup sup r,(s) - r (ns)) =0. 
n->oo 0<s<t 

n 

This follows from Lemma 4.7 and 

limsup sup zri,(s) - r ,n - ((ns) 
n-4oc0 <S<t 

n->oo O s < 1s < A 
S limsup E eI(r ?(n')) - i(r,((n)) 

1 1 

n< l im sup v r,,(n )- ~'n r,', n )) . n 
n--->oo 1=1 , (, 

< limsup (n - (,,(n . 

PROOF OF THEOREM 2.1. By (3.10) and (3.16), we have 

W(t) = e'(A(t)) + m'A(t) + ( p - l)t + Y(t) 

(4.8) 
= (t) - E m'(P')ih (r'-'(t)) + ( p - l)t + Y(t) 

i=l 

where e is the c-dimensional vector of ones, p is defined as in (2.4) and ~ is defined 
in (3.19). Hence 

00oo 

W(r(t)) = ((t))- E m'(P')A(r(t)) + (p - 1)T(t) + Y((t)). 
i=1 

Therefore, by (3.17), 

00 

1 + m'(P' ) '(t) 

(4.9) = ((t)) (p - 1)(t) + Y(T(t)) + el(t) 
00 

+ Em'(P')iA(r(t) - (i(t))). 
i=1l 

Because r,,(nt)/n -, t u.o.c., &1((nt))/ /n *(t u.o.c., ( . (p" - 1)- 0, 
Y"(Tr,(nt))/ n -4 Y*(t) u.o.c. and Lemma 4.9 holds, we have 

,(t) -o t(*"(t) + Ot + Y*(t)) = Z(t) = W*(t) u.o.c., 

where 8 is defined in (2.14). Thus for each i > 1, 

,-l (nt)/n()-, Z*(t) u.o.c. 
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Also, similar to the proof of Lemma 4.9, one can show that 

sup E (m")'(P') A"((T, (-l(ns)/n) - 1Z (s) -. 
O<s<t i=1 

It follows from (4.8) that 

W"(t) *() + Ot + Y*(t) - m'(P')'AZ*(t) 
i=l 

=Z*(t)- Em'(P')i AZ* (t) = Z*(t) u.o.c. o 
i=1 

COROLLARY 4.1. Let Wk'(t) and Q`(t) be the workload process and the queue length 
process for class k customers in the nth system. Under the condition of Theorem 2.1, as 
n ->oo, 

(4.10) Qk(nt) - AkW*(t) u.o.c., 

(4.l1) --Wk'(nt) - AkmkW*(t) u.o.c. 

PROOF. Recall the definition of ,,(t) defined in ?3. The number of class k 
customers in the system at time t is 

Ql( t ) = A'( t) - Ak(, (t) ). 

Let A"(t) = A'(nt)/ '. Then 

Q(nt) = (t -A((T(t)) + A,(t). 

Following the proof of Theorem 2.1 and (3.16), we have 

A"(t) -* (I- P')-( a(t) + E k 
(Akt) -P'AW*(t)), u.o.c. 

k=1 

Therefore, 

"Qk Q(nt) AkW*(t). 

Similarly, we can show that 

Wk'(nt) 
= 

(Vk'(A(nt))) - V~k(A"(rT,(nt))) AkmkW*(t), u.o.c. 
[ 

5. QNET analysis. In this section we apply Harrison and Nguyen's QNET 
method to the performance analysis of the queueing system introduced in ?1. The 
QNET method was proposed by Harrison and Nguyen (1990, 1993) for the perfor- mance analysis of general multiclass queueing networks. The heavy traffic limit 
theorem proved in this paper justifies the QNET method for our system. 
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Based on Theorem 2.1, the workload process W = {W(t) t > 0} can be approxi- 
mated by a one-dimensional reflecting Brownian motion (RBM) with variance (1 + 
g)-2o.2 and drift (1 + g)-l(p - 1), where a2 is definend in (2.17), p is the traffic 
intensity defined in (2.4) and 

o00 

(5.1) g = E m'(P')' = m'(I - P') - p. 
i=1 

Note that from the definition in (2.14), 1 + g is simply 13. The introduction of the 
extra symbol g makes our analysis completely analogous to the one given by Harrison 
and Nguyen (1993). (They used matrix G instead of g in their paper.) Assume that 
p < 1. Then the limiting RBM has the exponential stationary distribution with mean 

(2/(2(1 - p)(1 + g)) (see, for example, ?5.6 of Harrison (1985)). Therefore, the 
QNET estimate of the average waiting time per visit to the station is 

2 
(5.2) E(W(c))o z 

2(1 +g)(1 - p) 

Harrison and Nguyen (1993, ?6) proposed a refined QNET method, which coin- 
cides with their original QNET method proposed in Harrison and Nguyen (1990). 
Specializing to our case, their refined QNET estimate can be obtained by replacing g 
in (5.1) by g - g/p. The resulting average waiting time formula is the same as in (5.2) 
except that g is replaced by g. When the system is in heavy traffic, these two 
estimates are close. However, when the traffic intensity is moderate, say, less than 
70%, the difference between these two estimates can be significant. It is expected 
that this refined QNET should perform better most of the time. Readers are referred 
to ?6 of Harrison and Nguyen (1993) for an informal defense of the refinement. In 
the remainder of this section, we present two network examples, where the refined 
QNET estimates are compared with simulation estimates. 

5.1. A feedback station with one type of customer. Pictured in Figure 1 is a 
multiclass station, where customers arrive at the station according to a renewal 
process with rate 1 and interarrival time squared coefficient of variation (SCV) c2. 
(SCV of a positive random variable is defined as variance divided by mean squared.) 
Each customer visits the station exactly twice and then exits. It is assumed that service 
times {Vk(i), i > 1} in the kth visit are i.i.d. random variables with mean mk and SCV 
c2k, k = 1,2. We further assume that {vu(i), i > 1} and {v2(i), i > 1} are mutually 
independent and they are independent of the arrival process. One can check that for 
this model a = (1, 0)', m = (mI, m)', 

0= (? ) a1 d r=diagc,,m 
2 

s,m2c2 0 0 and F = diag(ca c C s,2c m ) 

FIGURE 1. A multiclass station with feedback. 
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Therefore, we have g = m2, n 2 = (mI + m2)2C2 + c1 + m2c2 and 

E(W()) (m1 2 + mm2)22 + m2 22 
E(W(oo)) 

2(1 + m2/p)(1 - p) 

In Harrison and Nguyen (1993), the authors also proposed the QNET estimates of 
the total mean sojourn time in a network. Specializing to our case, the QNET 
estimates of the total mean sojourn time is 

2E(W(oc)) + ml + m2 = 2E(W(oc)) + p 

We consider four versions of this queueing system. Each version corresponds to a 
different triad of SCV's (c2, c2, C 2) chosen from the set: (1,1,1), (2,0.25,2), 
(2,2,0.25) and (0.25,2,2). We label these four versions as systems A, B, C and D. In 
each system we consider three cases: (mI = 0.8, m2 = 0.1), (m1 = 0.1, m2 =0.8) and 
(m1 =0.45, m2 = 0.45). Cases 1 and 2 have very different service requirements for 
the two visits. Whereas for Case 3, each customer's two mean service requirements 
are the same. Table 1 gives the simulation estimates and QNET estimates of the total 
mean sojourn time in the system and the mean waiting time for each visit to the 
station. In simulation, service times and interarrival times are fitted with an Erlang 
distribution, exponential distributions, or gamma distributions depending on the SCV 
being less than one, equal to one, or larger than one, respectively. For example, when 
service times have mean m and SCV c2 = 2, we use a gamma distribution with 
density function 

f(x) = e X/, x > 0, 
Pfr(a) 

to fit the service time distribution, where the shape parameter a = 1/c2 = 1/2 and 
the scale parameter B mc2. The simulations were performed using SIMAN IV. In 
all cases 10 replications were run. In each run we let 10,000 customers leave the 
system. In this table as in all subsequent tables, the numbers in parentheses after the 
simulation results represent the half-width of 95% confidence intervals, expressed as 

TABLE 1. Simulation estimates and QNET estimates for the total mean sojourn 
time and mean waiting time for each visit. 

Sys / Case Mean Waiting Time Mean Sojourn Time 
SIM QNET SIM QNET 

A 1 6.63 (8.87%) 6.57 (-0.90%) 14.10 (8.37%) 14.04 (-0.43%) 
2 3.78 (8.65%) 3.87 (2.38%) 8.46 (7.72%) 8.63 (2.01%) 
3 4.01 (8.20%) 4.05 (1.00%) 8.93 (7.37%) 10.00 (11.98%) 

B 1 8.56 (8.47%) 8.10 (-5.37%) 18.00 (8.06%) 17.10 (-5.00%) 
2 7.36 (7.55%) 7.68 (4.39%) 15.60 (7.12%) 16.27 (4.29%) 
3 7.11 (10.60%) 6.92 (-2.67%) 15.10 (10.00%) 14.74 (-2.38%) 

C 1 12.50 (9.28%) 13.06 (4.48%) 25.90 (8.96%) 27.02 (4.32%) 
2 5.05 (13.25%) 4.77 (-5.54%) 11.00 (12.18%) 10.44 (-5.09%) 
3 7.08 (11.53%) 6.92 (-2.26%) 15.00 (10.87%) 14.74 (-1.73%) 

D 1 5.85 (12.44%) 6.76 (15.56%) 12.60 (11.59%) 14.42 (14.44%) 
2 3.84 (9.79%) 3.98 (3.65%) 8.58 (8.85%) 8.86 (3.26%) 
3 3.10 (8.90%) 3.38 (9.03%) 7.09 (7.88%) 7.66 (8.04%) 

Average absolute 9.80% 4.77% 9.08% 5.25% 
percentage error 
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a percentage of the simulation average. The number in parentheses after the QNET 
estimates represent percentage errors from the simulation average. This format, 
suggested by Reiman (1990), makes it easy to determine the statistical significance of 
the errors. As we can see from the table, the QNET estimates (except in Case D/1) 
are almost always within the 95% confidence intervals of the simulation results. It is 
worth noting that having the shorter service time in the first visit will significantly 
reduce mean waiting time as well as the total mean sojourn time. For example, in 
System C, both the QNET and simulation predict that Case 2 has a reduction of 
waiting time by a factor larger than 2 compared with Case I. Reduction ratio can be 
estimated from our QNET analysis. For example, when c2 = 2 the ratio of the s,1 s, 2 t 
mean waiting times in Case 1 and Case 2 is 

1 + mase 2/p = 1.7. 
1 + mcase lp 

5.2. A system with two types of customers. Consider a multiclass station with two 
types of customers. Type 1 customers visit the station five times and then exit and 
type 2 customers visit the station twice and then exit. We assume that type k 
customers arrive at the station according to a Poisson process with rate 1, k = 1, 2 
and service times in each stage are i.i.d. random variables. We assume that two arrival 
processes are mutually independent, all service time sequences are mutually indepen- 
dent and are independent of the arrival processes. The service times during the ith 
visit for type 1 customers have mean mi and SCV c2 i, i = 1,2,3,4,5. The service 
times during the first and second visit for type 2 customers have mean m6, SCV c2,6 
and m7, SCV c7, respectively. Therefore the station traffic intensity is p E=1mi. 
We consider four versions of the system. Systems A, B, C and D corresponds to 

C2 2 2 2 2 2 2 \ 
s,(C , c s, 3, C s ,4 , 5,5, C,6, s,7) 

being equal to (0.25, 2, 1, 0.25, 2, 2, 0.25), (2, 0.25, 0.25, 1, 1, 2, 2), (1, 0.25, 2, 
2, 0.25, 1, 0.25) and (2, 2, 1, 2, 2, 0.25, 0.25). We assume p = 0.90 and we consider four 
cases for each system. Case 1, 2, 3 and 4 have 

(mI m, m3, m4,5, m 6, m ,m7) 

chosen from (0.1, 0.1, 0.05, 0.1, 0.1, 0.2, 0.25), (0.05, 0.05, 0.05, 0.2, 0.1, 0.2, 0.25), 
(0.2,0.1,0.1,0.2,0.1,0.1,0.1) and (0.05,0.05,0.05,0.025,0.025,0.6,0.1). For Cases 1 
and 2, we have ES = mi = m6 + m7 = 0.45, which indicates that type 1 customers and 
type 2 customers have the same average offered load. For Case 3 and 4, we have 
EL=mi 

= 0.7, m = 0.2 and Ef1lm 
= 0.2, m6 + m7 = 0.7, respecitvely. Table 

2 gives the simulation estimates and QNET estimates of mean waiting time for each 
visit and mean sojourn time for each customer type. The QNET estimates of the 
mean waiting time and sojourn time for type 2 customers are quite impressive 
compared with the simulation estimates. Note that both QNET and simulation 
predict that Case 4 always causes much longer delay than the other three cases for all 
four systems. It is interesting, however, to observe that the QNET always significantly 
underestimates the sojourn time for type 1 customers. We have no theoretical 
explanation for it at the moment. 
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TABLE 2. Simulation estimates and QNET estimates of mean sojourn times and mean 
waiting time for the multiclass station with two types of customers 

Waiting Time Sojourn Time Sojourn Time 
For Each Visit For Type 1 Customers For Type 2 Customers 

SIM QNET SIM QNET SIM QNET 

Al 1.15 (7.97%) 1.20 (4.63%) 6.10 (7.51%) 5.26 (-13.77%) 2.82 (6.67%) 2.86 (1.42%) 
2 1.01 (7.59%) 1.05 (4.37%) 5.42 (7.07%) 4.67 (-13.84%) 2.57 (6.11%) 2.56 (-0.39%) 
3 1.19 (0.90%) 1.22 (2.35%) 6.68 (8.10%) 5.57 (-16.62%) 2.56 (8.40%) 2.64 (3.13%) 
4 3.64 (10.30%) 4.29 (17.76%) 17.50 (10.98%) 17.35 (-0.86%) 8.83 (8.88%) 9.27 (4.98%) 

B1 1.34 (7.46%) 1.43 (6.99%) 7.03 (7.40%) 6.18 (-12.09%) 3.22 (6.52%) 3.32 (3.11%) 
2 1.23 (7.32%) 1.30 (5.98%) 6.47 (7.11%) 5.66 (-12.52%) 3.02 (6.29%) 3.06 (1.32%) 
3 1.35 (6.74%) 1.38 (2.18%) 7.46 (6.26%) 6.22 (-16.62%) 2.88 (6.15%) 2.96 (2.78%) 
4 3.80 (11.11%) 4.34 (14.18%) 18.20 (11.60%) 17.56 (-3.52%) 9.15 (9.73%) 9.38 (2.51o%) 

C1 1.04 (5.55%) 1.10 (5.67%) 5.59 (5.24%) 4.85 (-13.24%) 2.59 (4.40%) 2.65 (2.32%) 
2 1.01 (5.65%) 1.08 (6.79%) 5.40 (5.30%) 4.76 (-11.85%) 2.56 (4.57%) 2.61 (1.95%) 
3 1.30 (9.00%) 1.35 (3.47%) 7.21 (8.22%) 6.08 (-15.67%) 2.78 (8.27%) 2.89 (3.96%) 
4 2.78 (8.27%) 3.06 (10.21%) 13.40 (8.59%) 12.45 (-7.09%) 6.90 (7.00%) 6.83 (-1.01T%) 

D1 1.07 (6.03%) 1.13 (5.27%) 5.72 (5.79%) 4.96 (-13.29%) 2.65 (4.60%) 2.70 (1.89X%) 
2 0.99 (5.07%) 1.06 (7.01%) 5.32 (4.79%) 4.70 (-11.65%) 2.53 (3.94%) 2.58 (1.98%) 
3 1.41 (8.87%) 1.46 (3.38%) 7.74 (8.26%) 6.53 (-15.63%) 3.01 (7.97%) 3.12 (3.65%) 
4 1.41 (8.87%) 1.46 (3.38%) 7.74 (8.26%) 6.53 (-15.63%) 3.01 (7.97%) 3.12 (3.65%) 

Averag709% 6.82% 7.36% 11.65% 6.51% 2.50% 
absolute 
error 

Acknowledgement. We thank Hong Chen and Ruth Williams for helpful com- 
ments on an earlier draft of this paper. We are grateful to an anonymous referee for 
pointing out an error in an earlier proof of Lemma 4.1. Research of the first author 
supported in part by two grants from Texas Instruments Corporation and by NSF 
Grants DMS-9209586 and DDM-9215233. Research of the second author supported 
in part by NSF Grant DMS-8901464. 

References 

Bramson, M. (1994). Instability of FIFO queueing networks. Ann. Appl. Probab. 4 414-431. 
Chen, H., J. G. Shanthikumar (1994). Fluid limits and diffusion approximations for networks of multi-server 

queues in heavy traffic. J. Discrete Event Dynamic Systems: Theory Appl. 4 269-291. 
Chung, K. L. (1974). A Course in Probability. Wiley, New York. 
Dai, J. G. (1994). On a positive Harris recurrence of multiclass queueing networks: A unified approach via 

fluid limit models. Ann. Appl. Probab. 5 49-77. 
,V. Nguyen (1994). On the convergence of multiclass queueing networks in heavy traffic. Ann. Appl. 
Probab. 4 26-42. 
, Wang, Y. (1993). Nonexistence of Brownian models of certain multiclass queueing networks. 
Queueing Systems Theory Appl. 13 41-46. 

Ethier, S. N., Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence, Wiley, New York. 
Harrison, J. M. (1985). Brownian Motion and Stochastic Flow Systems. Wiley, New York. 

,Nguyen, V. (1990). The QNET method for two-moment analysis of open queueing networks. 
Queueing Systems Theory Appl. 6 1-32. 

, (1993). Brownian models of multiclass queueing networks: Current status and open 
problems. Queueing Systems Theory Appl. 13, 5-40. 

Iglehart, D. L., Whitt, W. (1970a). Multiple channel queues in heavy traffic I. Adv. Appl. Probab. 2 
150-177. 

(1970b). Multiple channel queues in heavy traffic II. Adv. Appl. Probab. 2 355-364. 
Johnson, D. P. (1983). Diffusion Approximations for Optimal Filtering of Jump Processes and for Queueing 

Networks. PhD Thesis, University of Wisconsin. 
Peterson, W. P. (1991). A heavy traffic limit theorem for networks of queues with multiple customer types. 

Math. Oper. Res. 16 90-118. 

741 



742 J. G. DAI AND T. G. KURTZ 

Reiman, M. I. (1984). Open queueing networks in heavy traffic. Math. Oper. Res. 9 441-458. 
(1988). A multiclass feedback queue in heavy traffic. Ado. Appl. Probab. 20 179-207. 
(1990). Asymptotically exact decomposition approximations for queueing networks. Oper. Res. Lett. 

9 363-370. 
Whitt, W. (1993). Large fluctuations in a deterministic multiclass network of queues. Management Sci. 39 

1020-1028. 

J. G. Dai: School of Industrial and Systems Engineering and School of Mathematics, Georgia Institute of 
Technology, Atlanta, Georgia 30332-0205; email: dai@isye.gatech.edu 

T. G. Kurtz: Department of Mathematics and Statistics, University of Wisconsin, Madison, Wisconsin 
53706; email: kurtz@math.wisc.edu 


	Article Contents
	p. 721
	p. 722
	p. 723
	p. 724
	p. 725
	p. 726
	p. 727
	p. 728
	p. 729
	p. 730
	p. 731
	p. 732
	p. 733
	p. 734
	p. 735
	p. 736
	p. 737
	p. 738
	p. 739
	p. 740
	p. 741
	p. 742

	Issue Table of Contents
	Mathematics of Operations Research, Vol. 20, No. 3 (Aug., 1995), pp. 513-768
	Front Matter
	Stochastic Dominance on Unidimensional Grids [pp.  513 - 525]
	An Integral Inequality for Convex Functions, with Application to Teletraffic Congestion Problems [pp.  526 - 528]
	A Randomized Algorithm to Optimize over Certain Convex Sets [pp.  529 - 549]
	Convex Relaxations of (0, 1)-Quadratic Programming [pp.  550 - 561]
	Capacitated Facility Location: Valid Inequalities and Facets [pp.  562 - 582]
	Least Majorized Elements and Generalized Polymatroids [pp.  583 - 589]
	The Simplest Semidefinite Programs Are Trivial [pp.  590 - 596]
	An Infinitely Summable Series Implementation of Interior Point Methods [pp.  597 - 616]
	On the von Neumann Economic Growth Problem [pp.  617 - 633]
	On Convergence of an Augmented Lagrangian Decomposition Method for Sparse Convex Optimization [pp.  634 - 656]
	Convergence Rate Analysis of Nonquadratic Proximal Methods for Convex and Linear Programming [pp.  657 - 677]
	Partial Affine-Scaling for Linearly Constrained Minimization [pp.  678 - 694]
	Lipschitz Continuity of Solutions of Variational Inequalities with a Parametric Polyhedral Constraint [pp.  695 - 708]
	Explicit Solution of Inventory Problems with Delivery Lags [pp.  709 - 720]
	A Multiclass Station with Markovian Feedback in Heavy Traffic [pp.  721 - 742]
	Asymptotically Efficient Adaptive Strategies in Repeated Games. Part I: Certainty Equivalence Strategies [pp.  743 - 767]
	Erratum: "Single-Machine Scheduling Polyhedra with Precedence Constraints" [p.  768]
	Back Matter





