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For multiclass queueing networks, dispatch policies govern the assignment of servers to the jobs they process.
Production policies perform the analogous task for queueing networks whose servers are subject to switch-over
delays or setups, a model we refer to as setup networks. It is well known that a poorly chosen dispatch policy
may lead to instability of a multiclass queueing network, even when the traffic intensity at each station is less than
one and the policy is nonidling. Not surprisingly, setup networks and production policies inherit these instability
concerns. With this in mind, we define a family of “sensible” production policies that are adaptations of dispatch
policies and restrict the frequency of setup performance.
We provide a framework for proving the stability of a setup network operating under a sensible production

policy. Central to this framework is the artificial fluid model of a setup network. The artificial fluid models presented
are generalizations of standard fluid models of multiclass queueing networks; see, for example, Dai (1995). Unlike
their standard fluid model counterparts, artificial fluid models do not arise directly from a limiting procedure on
some discrete network process; hence the “artificial” qualifier. Nevertheless, stability of the artificial fluid model
implies stability of the associated setup network, a connection paralleling the main result of Dai (1995).
As an exercise in using the artificial fluid model framework for proving stability of setup networks, we inves-

tigate several production policies adapted from dispatch policies. One production policy of particular interest
involves a modification of the first-in-first-out dispatch policy.
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1. Introduction. Multiclass queueing networks are effective tools for modelling many
industrial settings. One setting for which the model is particularly attractive is the production
flow within semiconductor manufacturing facilities. Still, there are some significant aspects
of industrial settings that escape the modelling scope of multiclass queueing networks,
which henceforth we refer to as standard networks. One such feature is the effect of server
switch-over delays or setups. For some workstations, the processing resource (server) must
first incur a delay before switching its processing efforts from one class of job to another.
Hence, there is a natural deterrent to switching, measured in lost potential server effort, that
the standard network model cannot capture. In this paper, we extend the standard network
model by including setups at each station. The resulting model, queueing networks with
setups, or setup networks for short, is formally presented in §2. Other works that consider
setup networks are Bertsimas and Nino-Mora (1999), Warren (1997), and Jennings (2000).
Beyond the presentation of our setup network model, the primary concern of this paper

is the stability of such networks. Our notion of stability, formalized in §2.4, is analogous
to rate stability of standard networks. Rate stability has been advanced by Stidham and
coauthors under the name pathwise stability (see El-Taha and Stidham 1999 and references
therein). In short, a network is rate stable if the long-run input rate of the system is matched
by the long-run output rate.
The study of single server systems subject to setups has an extensive history; see, for

example, Takagi (1986, 1990) for surveys of early work related to telecommunications and
Lan and Olsen (2004) for a more contemporary review. One of the more frequently inves-
tigated server scheduling policies is exhaustive service, also referred to as setup avoidance.
As the name suggests, exhaustive service involves processing all jobs of a given class until
jobs of that class are no longer available. Only then is the server allowed to switch to
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another class. An immediate benefit is that, among all policies that do not idle when work
is present, exhaustive service generates the largest stability region. That is, if the system
can be stable, then it will be stable under exhaustive service.
Ideally, the benefits of exhaustive service would extend to the network setting.

Gershwin (1995) warns against employing exhaustive service or other policies that spend
long stretches of time on a single job class in a network setting, claiming such practices
result in large inventories and delays. Moreover, Kumar and Seidman (1990) show that
exhaustive service can lead to instability in a standard network, a more immediate concern.
Jennings (2000) provides a simulation example, illustrating how exhaustive service may
lead to instability in a setup network.
Ensuring stability is a concern for both setup and standard networks. Still, directing the

processing efforts of servers that incur setups is fundamentally different from doing so for
setup-exempt servers. Hence, we refer to the server scheduling rule in standard networks as
the dispatch policy and the analogous rule in the setup network setting as the production
policy.
In this paper, we define a family of “sensible” production policies that are adaptations

of dispatch policies and restrict the frequency of setup performance. Then, we provide a
framework, using artificial fluid models of setup networks, to prove the stability of a setup
network operating under a specific sensible production policy. Finally, we illustrate the use
of the framework by proving the stability of setup networks operating under three sensible
production policies.
The artificial fluid model presented here is a generalization of fluid models of stan-

dard networks. Having achieved widespread acceptance in the literature, fluid models of
standard networks will be referred to as standard fluid models. Unlike their standard fluid
model counterparts, artificial fluid models do not arise directly from a limiting procedure
of some discrete network process, hence, the “artificial” qualifier. Nevertheless, stability
of the artificial fluid model implies stability of the setup network (see Theorem 3.3), a
connection paralleling the relation between standard fluid models and standard networks;
see Dai (1995).
The sensible production policies that we use as test cases are modifications of three

dispatch policies: first-in-first-out (FIFO), early-steps-first (ESF), and generalized round
robin (GRR). We highlight the first of these, FIFO, which requires special network structure.
It was shown in Bramson (1996) that a Kelly-type standard network operating under the
FIFO dispatch policy is stable. (All jobs processed at a given station in a Kelly-type network
have the same mean processing time, regardless of the class in which they reside.) In this
paper, we show that a class of sensible FIFO production policies stabilizes a setup network
if its corresponding standard network is Kelly-type; see Theorem 5.2.
The study of the stability of networks with setups is limited. Perkins and Kumar (1989)

consider a deterministic system and provide stabilizing production policies. Jennings (2000)
provides a framework for demonstrating that a setup network is positive Harris recurrent, a
stronger notion of stability than the one considered here. Warren (1997) uses an approxi-
mation method to predict the stability of setup networks.
There are recent works in the literature that extend the standard network model in other

directions. For example, Dai and Li (2003) treat the batch processing operations issue.
A similar service was performed by Andradóttir et al. (2003) for networks of flexible
servers subject to setups. Dai and Jennings (2003) present a model including setups, batch
processing, and multiserver workstations.
The remainder of this paper will progress as follows. Immediately following, we present

the setup network model and formalize our definition of rate stability. In §3, we present a
collection of equations governing the dynamics of the setup network and the continuous-
flow analog of these equations, the artificial fluid model. Next, we draw the connection
between artificial fluid models and standard fluid models in §4. In particular, we discuss
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how the Lyapunov functions used to demonstrate stability of the latter may be as effective
for the former. Three examples of sensible production policies are examined in §5. Section 6
gives concluding remarks. For ease of exposition, some technical proofs are delayed until
the appendix.

2. Open queueing networks with setups. In this section, we present the family of
networks under study throughout this paper. The model is an extension of open multiclass
queueing networks, as presented by Harrison (1988). For the purpose of this paper, we
will refer to that model as the standard network. Our model, which adds setup times to
the standard network, will be referred to as the open queueing network with setups, or
setup network, for short. After drawing connections between scheduling the resources of
both standard and setup networks, we conclude this section with a formal definition of rate
stability.

2.1. Network description. Consider a network of stations, labelled j = 1� � � � � J . The
stations are populated by classes, labelled k�k′ = 1� � � � �K, where class k is associated
with a unique station ��k	. Whenever k and j appear together, it is implied that j = ��k	.
The collection ��j	 of all classes associated with station j is referred to as the station’s
constituents.
Jobs, the basic unit of flow, enter the network exogenously and change classes as they

move through the network. While awaiting processing, class k jobs are said to reside in
buffer k. There is a one-to-one relationship between classes and buffers. “Buffer” is used
to connote physical location, as in a storage place for jobs awaiting processing. The “class”
label has a more metaphysical interpretation. For example, one removes a job from a buffer
for processing, but the job retains its class designation until processing is complete.
Each station is manned by a single server responsible for processing the resident jobs.

A server may process at most one job at a time. Once the processing of a job begins it cannot
be interrupted; in other words, there is no preemption of service. (There may be occasions
where it makes sense to allow preemption of service. We exclude it for modelling ease.)
We will occasionally say that a server is processing a class or buffer, meaning, processing
the jobs from that class.
Suppose a server last processed class k and is about to process a job from a different

class k′ �= k. Before the actual processing can begin, the server must perform a setup. That
is, a delay is incurred whenever a server switches its processing efforts between classes.
Setups are denoted by the pair �k� k′	, where k signifies the class just processed and k′ is the
subsequent class. Generally, the duration of a type �k� k′	 setup, or setup time, depends on
both k and k′, as well as their order. In this sense, setups are sequence dependent. With the
inclusion of setups in our model, servers are always in one of three states: idle, in-service,
or in-setup. In addition to not being interrupted while processing jobs, servers are never
preempted while performing a setup.
For each class k, we have the cumulative processes Ek = �Ek�t	� t ≥ 0, Vk = �Vk�n	� n=

1�2� � � � , and �k = ��k�n	� n= 1�2� � � � . For each time t ≥ 0, Ek�t	 counts the number
of external arrivals to class k in �0� t�. For each positive integer n, Vk�n	 records the total
service time requirement for the first n class k jobs. For each positive integer n, �k�n	 is a
K-dimensional vector with each component being a nonnegative integer. For each class k′,
�k

k′�n	 records the number of the first n processed class k jobs that are routed to buffer
k′ upon completion of service. When �k�n− 1	 = �k�n	, the nth processed class k job
immediately leaves the system. By convention, we assume

Ek�0	= 0� Vk�0	= 0� and �k�0	= 0�
For each t ≥ 0, we extend the definitions of Vk�t	 and �k�t	 as follows:

Vk�t	= Vk��t�	 and �k�t	=�k��t�	�
where �t� denotes the largest integer less than or equal to t.
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In addition, we define the cumulative process Fkk′ = �Fkk′�n	� n= 1�2� � � � , associated
with type �k� k′	 setups. When k and k′ appear together in the same subscript of a setup
quantity, it is implied that the classes are distinct, k �= k′, and that they reside at the same
station, ��k	 = ��k′	. For each positive integer n, Fkk′�n	 records the total time required
for the first n setups from class k to k′. Again, we assume Fkk′�0	 = 0. Furthermore, for
each t ≥ 0, we extend the definition so that Fkk′�t	= Fkk′��t�	.
We call �E�V ���F 	 the set of primitive processes, where E = �E�t	� t ≥ 0, V =

�V �t	� t ≥ 0, � = ���t	� t ≥ 0, and F = �F �t	� t ≥ 0, with E�t	 = �E1�t	�E2�t	� � � � �
EK�t′		, V �t	= �V1�t	�V2�t	� � � � � VK�t′		,��t	= ��1�t		��2�t	� � � � � �K�t		, and F �t	=
�Fkk′�t	� k� k′ ∈ ��j	� j = 1� � � � � J . (All vectors are envisioned as column vectors unless
otherwise stated. Prime on a vector or a matrix denotes transpose.)
We assume that the strong law of large numbers holds for the primitive processes; namely,

with probability one,

lim
t→�

Ek�t	

t
= �k� lim

t→�
Vk�t	

t
=mk�(1)

lim
t→�

�k
k′�t	

t
= Pkk′ � and lim

t→�
Fkk′�t	

t
= skk′ �

The parameter set ���m�P� s	 with � = ��1� � � � ��K	′, m = �m1� � � � �mK	′, P = �Pkk′	,
and s = �skk′ � k� k

′ ∈ ��j	� j = 1� � � � � J  has the following interpretation: For each k, �k

is the external job arrival rate to buffer k and mk is the mean service time for class k
jobs. For classes k and k′, the quantity Pkk′ , referred to as the routing probability from k
to k′, captures the long-run fraction of class k jobs that become class k′ jobs immediately
after being processed. The K × K matrix P is called the routing matrix. For each pair
�k� k′	, skk′ is the mean setup time when a server switches from class k to class k′. Let
sk =maxk′∈��j	 sk′k be the maximum possible mean setup time to class k.
We introduce the counting processes � = ���t	� t ≥ 0 and � = ���t	� t ≥ 0, associ-

ated with the primitive service process V and the primitive setup process F , respectively.
For each time t ≥ 0, ��t	= ��1�t	� � � � ��K�t		′, with

�k�t	=max�n� Vk�n	≤ t� k= 1� � � � �K�

and ��t	= ��kk′�t	� k� k′ ∈��j	� j = 1� � � � � J , with

�kk′�t	=max�n� Fkk′�n	≤ t� k� k′ ∈��j	� j = 1� � � � � J �

The process �kk′ is only defined when skk′ > 0. It follows from the strong law of large
numbers (1) that, with probability one,

(2) lim
t→�

�k�t	

t
=�k� k= 1� � � � �K�

where �k = 1/mk, and that, for each setup pair �k� k
′	 such that skk′ > 0,

(3) lim
t→�

�kk′�t	

t
= 1/skk′ �

We assume that the network is open, i.e., the matrix

Q= I +P ′ + �P ′	2+ · · ·
is finite, which is equivalent to the fact that �I −P ′	 is invertible such that Q= �I −P ′	−1�
Let ! = �!1� � � � � !K	′ be the vector of nominal total arrival rates. It is defined by the
following system of equations:

(4) !k = �k+
K∑

k′=1
!k′Pk′k for each k= 1� � � � �K�
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In vector form, != �+ P ′!. Because �I − P ′	 is invertible, the unique solution to (4) is
given by !=Q�. We define the traffic intensity "j for station j as

(5) "j =
∑

k∈��j	

!kmk� j = 1� � � � � J �

with " = �"1� "2� � � � � "J 	
′ being the corresponding vector. When, for each station j =

1� � � � � J � we have

(6) "j < 1�

we say that the usual traffic condition is satisfied for the setup network.

2.2. The standard network and dispatch policies. We now define the corresponding
standard network of a setup network. The corresponding standard network is identical to the
setup network except that the setup times are zero such that the server exists in either the
idle state or the in-service state. Moreover, the traffic intensity for station j in the standard
network is the same as in the setup network, i.e., �"j = "j . (Our notational convention is
to use a tilde when referring to a quantity associated with the standard network.) It goes
without saying that the usual traffic condition for the standard network holds if and only
if the traffic condition for the setup network (6) holds. For a setup network driven by
the primitive processes �E�V ���F 	 the corresponding standard network is driven by the
primitive processes �E�V ��	.
Whenever multiple jobs reside at a station, there is discretion in the processing order of

those jobs. For standard networks, the dispatch policy �$ is the sole mechanism by which
servers are assigned to classes. That is, when a server becomes available for processing, the
dispatch policy selects the class from which the next job will be processed. Given the class
assignment, the oldest job, based on arrival to the associated buffer, is processed. In this
sense, jobs within a single buffer are processed in a FIFO fashion. A dispatch policy is said
to be nonidling if a server is never in the idle state when jobs are present at the station.
Not surprisingly, scheduling of servers in a standard network is less complex than in a

setup network. To stress this point, an alternative term is used to distinguish between the
two scheduling tasks. A production policy is to the setup network what a dispatch policy
is to a standard network. One of the main themes of this paper is that dispatch policies
that work well for standard networks are useful in crafting effective production policies for
setup networks.

2.3. Production policies and sensible policies. The decision process governing the
processing of jobs in a setup network is embodied in the production policy. Because of
the complex nature of each station, we envision most “useful” production policies having
the following three-tiered approach. When a server requires an assignment to a class for
processing, one first filters the set of constituent classes into a subset of eligible classes.
Second, the server is dispatched to one of the eligible classes. The final decision involves
setting the termination time of the assignment.
Throughout this paper, we assume production policies have the form $ = �%� �$� l	. The

K-dimensional vector % = �%1� %2� � � � � %K	 of positive integers enforces the filtering func-
tion. When a server at station j requires an assignment, the constants determine which
constituent classes are eligible. Class k is eligible if the number of class k jobs is greater
than or equal to %k. (Exceptions that relax the eligibility requirement can be found in §5.3.)
It is possible that the collection of eligible classes at station j is empty. In cases where
no class passes the first eligibility test, the criterion is relaxed. Under the relaxed test, any
class with a nonempty buffer is eligible. From the standpoint of the first eligibility test,
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if the number of class k jobs is less than %k, that class is effectively empty. In this sense,
the components of % can be thought of as thresholds.
The second component of the production policy $ is the dispatch policy �$. This termi-

nology is borrowed from literature on standard networks. The idea here is the same. Given
the current state of the system, dispatch policies perform the actual assignment of servers to
classes. With the standard network, the assignment lasts at most through the processing of a
single job. For setup networks, however, the assignment lasts (potentially) for the processing
of several jobs. Moreover, the assignment is restricted to the set of eligible classes.
The stretch of time during which the dispatched assignment holds is referred to as the

production run. The length of the production run or, equivalently, the number of jobs pro-
cessed before seeking a new assignment, is the third and final decision to be made. The
vector l determines the length of the production run. If the assignment is for a class k that
passed the first eligibility test, then we process lk jobs before seeking a new assignment, if
possible. If the class only passed the relaxed eligibility test, we process one job and termi-
nate the production run immediately, allowing the opportunity to make another production
run decision based on updated system information.
The nonidling property for setup networks is not as straightforward as for the standard

network. As the name suggests, nonidling now refers to both the in-service and in-setup
states. A server in the setup network is said to be busy if it is either in-service or in-setup.
A production policy is said to be nonidling if each server is allowed to idle only when
there are no jobs at the corresponding station. (This is not to say that nonidling policies are
ideal. Indeed, in some instances it may beneficial to delay commitment to the processing
of a given buffer until some buffer accumulates a critical number of jobs; see, e.g., Cooper
et al. (1998) and references therein.)
Assuming that a server is assigned to a class k that passed the first eligibility test, we

are assured that at least %k class k jobs are available at the beginning of the production run
to be processed. If we assume the thresholds are set such that they exceed the maximum
number of jobs processed in a production run, i.e.,

(7) %k ≥ lk�

then lk class k jobs will be processed during the production run. One can amortize the
average setup time incurred from switching to class k over all of the jobs processed during
the subsequent production run. The results are setup-adjusted mean processing times and
rates, which are defined, respectively, to be

(8) m̆k ≡mk+ sk/lk and �̆k ≡ 1/m̆k� k= 1� � � � �K�

With the adjusted mean processing times, one can compute a setup-adjusted traffic intensity

(9) "̆j =
∑

k∈��j	

!km̆k� j = 1� � � � � J �

Throughout this paper, the convention x̆ signifies an inflation of the quantity x, due to the
amortization of setup time, or simply an adjustment to the quantity x related to the influence
of setups.
We conclude with a further restriction of the type of production policies under consider-

ation. A production policy is said to be sensible if it is nonidling, condition (7) holds, and
"̆ obeys the usual traffic condition; i.e.,

(10) "̆j < 1 for each j = 1� � � � � J �

The reasoning behind the restriction to sensible policies is straightforward. By ensuring
that the servers avoid spending an inordinate amount of time performing setups, sensible
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policies eliminate setups as sources of instability. Furthermore, implicit in the sensible
policy condition is the ability to make trade-offs of production run lengths. For example,
it is simple to compensate for setting a relatively short production run for one class with
a long production run for another class at the same station. One might use such trade-
offs as a mechanism for accommodating high priority “hot lots,” for which production run
considerations are secondary at best. Condition (10) ensures that no job can be ignored
indefinitely under any nonidling policy.

2.4. Rate stability. We now define rate stability for setup networks. Let Dk�t	 denote
the number of jobs in the setup network that have departed class k during the interval �0� t�.
In the following definition, the term state is used. The precise definition of a state depends
on the particular production policy used. The system state typically includes, but is not
limited to, the number of jobs in each class, the status and assignment of each server, the
remaining processing times of the jobs being processed, the remaining interarrival times
for jobs arriving from outside the network, the lengths so far of the current production
runs, and the remaining setup time for each server. We do not attempt a precise definition
of state here. Roughly speaking, a state is a snapshot of the network at any given time.
It should contain enough information such that once the current state of the network is
given, the future evolution of the network is completely determined in distribution. Readers
are referred to Dai (1995) and Bramson (1998) for examples and additional discussions of
states in standard networks under various dispatch policies.
Definition 2.1. A setup network is rate stable if, for each fixed initial state, with

probability one,

(11) lim
t→�

Dk�t	

t
= !k for each k= 1� � � � �K�

The setup network is rate stable if the throughput rate or departure rate from each class
is equal to the nominal total arrival rate to that class. Rate stability has been advanced by
Stidham and co-authors under the title pathwise stability; see El-Taha and Stidham (1999)
and references therein. (There are other definitions of stability, such as positive Harris
recurrence; see Dai 1995. The results in this paper can be extended to those settings as
well; see, e.g., Jennings 2000.) This notion of stability, for the standard network setting, is
discussed in Chen (1995). As in a standard network, "j ≤ 1 for each station j is a necessary
condition for rate stability of a setup network; see Dai (1999). The case when "j = 1 for
some stations j is more subtle, and is not considered in this paper. As stated earlier, even
though we specify that the setup-adjusted traffic intensities for sensible policies must obey
the usual traffic condition, this is not necessary for stability of the setup network.

3. Network and fluid model equations. In this section, we define fluid models of both
setup networks and standard networks. Fluid models are continuous, deterministic analogs
of discrete networks and are defined through a set of equations. To describe the fluid models,
we start with equations governing the dynamics of the discrete networks. Unless explicitly
stated otherwise, we assume that the setup network is operated under a sensible production
policy $ and the standard network is operated under a nonidling dispatch policy �$.

3.1. Network dynamics. The dynamics of the setup network are captured by the pro-
cess � = �A�D�S�T �U �Y �Z	. The components A = �A�t	� t ≥ 0, D = �D�t	� t ≥ 0,
T = �T �t	� t ≥ 0, S = �S�t	� t ≥ 0, and Z = �Z�t	� t ≥ 0 are K-dimensional. For each
class k, Ak�t	 denotes the number of jobs that have arrived to class k (from external and
internal sources) in �0� t�, Dk�t	 denotes the number of jobs that have departed from class k
in �0� t�, Sk�t	 denotes the amount of time the server at station j = ��k	 has spent setting
up for class k during the interval �0� t�, Tk�t	 denotes the amount of time the server at
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station j = ��k	 has spent processing class k jobs during interval �0� t�, and Zk�t	 denotes
the total number of class k jobs that are buffered or being served at station j at time t.
The processes A, D, S, T , and Z are called the arrival, departure, setup allocation, service
allocation, and job-count processes, respectively. The components U = �U�t	� t ≥ 0 and
Y = �Y �t	� t ≥ 0 are J -dimensional. For each station j , Uj�t	 denotes the total number of
jobs at station j that are buffered or being served at time t, and Yj�t	 denotes the amount
of time the server at station j has been idle in the time interval �0� t�. The process Y is
called the cumulative idle time process. The process �= �A�D�S�T �U �Y �Z	 satisfies the
following set of equations:

A�t	=E�t	+∑
k �k�Dk�t		� t ≥ 0�(12)

Z�t	=Z�0	+A�t	−D�t	� t ≥ 0�(13)

Z�t	≥ 0� t ≥ 0�(14)

U�t	=CZ�t	� t ≥ 0�(15)

C�S�t	+ T �t		+ Y �t	= et� t ≥ 0�(16)

Yj�t	 can increase only if Uj�t	= 0� j = 1� � � � � J �(17)

�k�Tk�t		=Dk�t	� t ≥ 0� k= 1� � � � �K�(18)

additional equations associated with the particular production policy $�(19)

Here, C is the constituency matrix defined as

Cjk =
{
1 if k ∈��j	�

0 otherwise,

and e is the J -dimensional vector of 1s.
We provide a brief interpretation of Equations (12)–(19); where convenient, the interpre-

tation is componentwise. Equation (12) implies the cumulative arrivals to buffer k consists
of those jobs arriving to k from the outside �Ek�t		, and those jobs routed to class k after
being processed in some other class. As for (13), the class k job-count process at time t,
Zk�t	, is equal to the number of class k jobs present initially, plus all jobs that have arrived
to buffer k thus far, net those class k jobs that have been processed. Expression (14),
referred to as the nonnegativity constraint, is self-explanatory. For each j , the stationwide
job-count quantities are computed in (15). Equation (16) tracks, for each station j , how
the total server time has been distributed, up until time t, i.e., between performing setups,
processing jobs, and idling. Equation (17) reflects the nonidling condition. We capture the
departures as a function of dedicated server effort in (18). The equation is well known for
standard networks operating under a head-of-line dispatch policy. Finally, the production
policy $, used to govern the scheduling of servers, will have a major effect on system
dynamics, hence, the provision in (19).
When enough jobs are present at the station, a sensible production policy restricts the

frequency of class k setups to one for every lk jobs. To facilitate capturing the restric-
tion mathematically, we expand the definition of Sk�t	 to Sk′k�t	, the cumulative server
time spent performing setups from k′ to k. Clearly, Sk�t	=

∑
k′ Sk′k�t	. Suppose (7) holds.

Then, for every 0 < t1 < t2, if, for every s ∈ �t1� t2�, Zk�s	 ≥ %k for some k ∈ ��j	,
then

(20) Dk�t2	−Dk�t1	≥ lk

( ∑
k′∈��j	

[
�k′k�Sk′k�t2		−�k′k�Sk′k�t1		

]− 2)
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for each k ∈��j	 and j = 1� � � � � J � The left-hand side of (20) is the number of processed
jobs within the interval �t1� t2�. Because class k is eligible throughout this interval, when
both a setup for class k and the subsequent production run lie entirely within the interval,
the production run consists of exactly lk jobs. Hence, the lk term on the right-hand side.
The −2 term accounts for the setups and production runs at the beginning and end of the
interval. The setup at the beginning of the time horizon could have been initiated when no
class passed the first (stricter) eligibility test. Hence, the setup is not necessarily followed
by the processing of lk jobs. Likewise, the production run succeeding the last setup within
the interval may extend beyond time t2, again preempting the service of lk jobs. Finally, if
two class k production runs occur in succession, no setup is incurred between the runs and
the inequality in (20) obtains more slack. We call Equations (12)–(20) the setup network
equations. Note that S, T , and Y are continuous, and that A, D, and Z are right continuous
with left limits. All variables are nonnegative in each component, with A, D, S, T , and Y
being nondecreasing. By assumption,

A�0	=D�0	= S�0	= T �0	= Y �0	= 0�
For each setup network driven by �E�V ���F 	, the corresponding standard network

driven by �E�V ��	 has similar processes. In contrast with the setup network process
�= �A�D�S�T �U �Y �Z	, the standard network process is denoted ��= � �A� �D� �T � �U� �Y � �Z	.
(Again, we attach tildes to terms specific to standard networks.) Note that �S is missing
from �� because there are no setups in the standard network. The equations governing the
standard network process are almost identical to those of the setup network. The exceptions
are that Equation (16) lacks the S�t	 term and Equation (19) is replaced by

(21) additional equations associated with the particular dispatch policy �$�

3.2. Fluid models. Let ��= �Â� �D� �T � �U� �Y � �Z	 be the formal deterministic analog of
the standard network process ��= � �A� �D� �T � �U� �Y � �Z	. Consider the following collection of
equations:

Â�t	= �t+P ′ �D�t	� t ≥ 0�(22)

�Z�t	= �Z�0	+ Â�t	− �D�t	� t ≥ 0�(23)

�Z�t	≥ 0� t ≥ 0�(24)

�U�t	=C �Z�t	� t ≥ 0�(25)

C �T �t	+ �Y �t	= et� t ≥ 0�(26)

�Yj�t	 can increase only if �Uj�t	= 0� j = 1� � � � � J �(27)

�Dk�t	=�k
�Tk�t	� k= 1� � � � �K�(28)

additional equations associated with the particular dispatch policy �$�(29)

where, as before, e is the J -dimensional column vector of 1s. Equations (22)–(29), which
define the standard fluid model, are referred to as the standard fluid model equations. As
with the equations describing the setup network and the corresponding standard network,
we assume that the components of the processes �T and �Y are zero at time zero and are
nondecreasing thereafter. Any process ��= �Â� �D� �T � �U� �Y � �Z	 satisfying (22)–(29) is called
a standard fluid model solution. The component processes Â, �D, �T , and �Z are called the fluid
arrival, departure, service allocation, and buffer level processes, respectively. The quantity
�Uj�t	 denotes the total amount of fluid at station j at time t. The process �Yj is referred to
as the server idle time for station j . Standard fluid models and their solutions are fairly well
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known; see, for example, Dai (1999). Such models arise from taking fluid limits of standard
networks, a topic we explore in the following section.
One can make qualitative comparisons between the standard fluid model and the equations

governing the standard network. The major difference is that jobs are (discrete) units of
flow in the standard network whereas flow in the fluid model is continuous; hence, the
term “fluid.” Along these same lines, the nonidling condition in the fluid model states that
the station j cumulative idling process �Yj cannot increase in the presence of any positive
amount of fluid at the station, as opposed to any jobs in the corresponding standard network
equation.
Next, we present a generalization of the standard fluid model. Consider the process �̆=

�Ă� D̆� T̆ � Ŭ � Y̆ � Z̆	 and the following set of equations:

Ă�t	= �t+P ′D̆�t	� t ≥ 0�(30)

Z̆�t	= Z̆�0	+ Ă�t	− D̆�t	� t ≥ 0�(31)

Z̆�t	≥ 0� t ≥ 0�(32)

Ŭ �t	=CZ̆�t	� t ≥ 0�(33)

CT̆ �t	+ Y̆ �t	= et� t ≥ 0�(34)

Y̆j �t	 can increase only if Ŭj�t	= 0� j = 1� � � � � J �(35)

D̆k�t2	− D̆k�t1	≤�k�T̆k�t2	− T̆k�t1		� 0≤ t1 < t2� k= 1� � � � �K�(36)

D̆k�t2	− D̆k�t1	≥ �̆k�T̆k�t2	− T̆k�t1		

if Ŭj�s	 > 0 ∀ s ∈ �t1� t2�� 0≤ t1 < t2� k ∈��j	�

(37)

additional equations associated with the particular production policy $�(38)

where �̆k is the setup-adjusted quantity, defined in (8). Equations (30)–(38) are called arti-
ficial fluid model equations, and they define the artificial fluid model of the setup network.
Any process �̆= �Ă� D̆� T̆ � Ŭ � Y̆ � Z̆	 satisfying (30)–(38) is called an artificial fluid model
solution. As with the standard fluid model, the components of T̆ and Y̆ are initially zero at
time zero and are nondecreasing for all t > 0.
Although the connection between the standard fluid model and the standard (discrete)

network is straightforward, we cannot claim a direct derivation of the artificial fluid model
from a limiting procedure on the setup network; hence the “artificial” moniker. We delay
the formal justification of the artificial fluid model until the next section. Nevertheless,
it is instructive to consider the salient features of the artificial fluid model. For example,
note that the setup allocation process S of the setup network is missing from the artificial
fluid model. The component process T̆ , which parallels the service allocation process T ,
subsumes the role of the setup allocation process S as well. Because of its dual role, we refer
to T̆ as the artificial server allocation process. The remaining processes, Ă, D̆, Z̆, Ŭ , and
Y̆ , retain their interpretations from the standard fluid model. Next, note that Equation (28)
in the standard fluid model is replaced by (36) and (37) in the artificial fluid model. In
the standard fluid model, the departure rate of fluid is directly proportional to the allocated
server effort. However, in the artificial fluid model, the returns on artificial server effort are
not necessarily constant. Condition (36) gives the maximum rate at which allocated server
effort is converted into departing units of fluid. This is analogous to avoiding switch-overs
in the setup network by processing a single class for an extended period of time. Likewise,
condition (37) provides a lower bound on the departure rate of fluid as a function of the rate
of artificial server allocation, assuming there is positive fluid at the station. The analogous
setup network scenario in this case is that the server is incurring the worse possible setups
at the most frequent rate possible for an eligible class. Condition (37) is simpler than (20)
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because thresholds disappear in the limit. Finally, replacing (29) with (38) acknowledges
that additional standard fluid model equations associated with the dispatch policy �$ may
differ from artificial fluid model equations associated with the production policy $.
Definition 3.1. An artificial fluid model is said to be weakly stable if for each artificial

fluid model solution �̆ with Z̆�0	= 0, Z̆�t	= 0 for t ≥ 0.
Weak stability of a standard fluid model can be defined similarly; see, for example,

Chen (1995).

3.3. The connection between setup networks and fluid models. The criterion for
including an equation in the standard fluid model is that the equation is satisfied by a fluid
limit. As suggested in the previous section, the inclusion of an equation in the artificial fluid
model has an additional step. In this section, we provide the details of both the fluid limits
and the additional steps.
A fluid limit of a standard network is obtained through a law-of-large-numbers limiting

procedure on the standard network process. Identically, a fluid limit of a setup network is
obtained through a law-of-large-numbers limiting procedure on the setup network process.
Note that the setup network process � (respectively, standard network process ��) is ran-
dom, depending on the sample path 1 in an underlying probability space. To denote such
dependence explicitly, we sometimes use ��·�1	 to denote the network process with sam-
ple path 1. For an integer d, �d�0��	 denotes the set of functions x� �0��	→ �d that
are right continuous on �0��	 and have left limits on �0��	. An element x in �d�0��	 is
sometimes denoted by x�·	 to emphasize that x is a function of time. For each 1, ��1	 is
an element in �5K+2J �0��	.
For each r > 0, define

(39) ��r �t�1	= r−1��rt�1	� t ≥ 0�
Again, note that for each r > 0, ��r �·�1	 is an element in �5K+2J �0��	. The scaling in (39)
is called the fluid or law-of-large-numbers scaling.
Definition 3.2. A function �� ∈ �5K+2J �0��	 is said to be a fluid limit of the setup

network if there exists a sequence rn→� and a sample path 1 satisfying (1) such that

lim
n→�

��rn �·�1	→ ���·	�
where, throughout this paper, the convergence is interpreted as the uniform convergence on
compact sets (u.o.c.).
Uniform convergence on compact sets, as it pertains to fluid limits of networks, is dis-

cussed, for example, in Chen and Mandelbaum (1991).

Proposition 3.1. Take any sample path on which the strong law-of-large-numbers for
the primitive processes holds; that is, (1) holds. For any sequence �rn⊂�+, with rn→�
as n→�, there exists a subsequence �rnp

, with np →� as p→�, such that

��rnp = � �Arnp � �Drnp � �Srnp � �T rnp � �Urnp � �Y rnp � �Zrnp 	→ ��= � �A� �D� �S� �T � �U� �Y � �Z	 as p→��

We refer to the process �� as a fluid limit. The existence of fluid limits is well known.
A standard argument, like the one in Dai (1995), shows that, for any rn→� as n→� and
almost every sample path 1, there is a subsequence rnp

such that �Srnp �·�1	 and �T rnp �·�1	

converge as p →� and np →�. Fix an 1 that satisfies (1). The convergence of �T rn ,
Equation (18), and condition (1) imply that �Drn converges. This latter convergence, together
with Equation (12) and condition (1), implies that �Arn converges. The convergence of other
components of ��rn then readily follows. Thus, ��rn converges to a fluid limit as n→�.
We now convert the fluid limit �� into an artificial fluid “limit” �̆. We use the term “limit”

facetiously. In fact, the process �̆ is not a limit at all. Our true intentions are embodied in
the following proposition. By the expression T̆ = �S + �T we mean T̆ �t	= �S�t	+ �T �t	 for
each t ≥ 0.
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Proposition 3.2. Given a fluid limit �� = � �A� �D� �S� �T � �U� �Y � �Z	 of a setup network
operating under a sensible production policy $, the process �̆ = �Ă� D̆� T̆ � Ŭ � Y̆ � Z̆	 =
� �A� �D� �S+ �T � �U� �Y � �Z	 is an artificial fluid model solution.

Proof. Fix the fluid limit �� and construct �̆ by collapsing the allocation processes �S
and �T to T̆ , i.e., T̆ = �S + �T . Equation (36) follows from (18) and the fact that T̆k�t2	−
T̆k�t1	≥ �Tk�t2	− �Tk�t1	 for every 0≤ t1 ≤ t2. As for Equation (37), from the strong law-of-
large-numbers (3) (which follows from (1)), for each k= 1� � � � �K and 0≤ t1 < t2,

(40) lim
rn→�

∑
k′∈��j	

���rn
k′k� �Srn

k′k�t2		− ��rn
k′k� �Srn

k′k�t1			≥
1
sk

� �Sk�t2	− �Sk�t1		�

and, from (18),

(41) �Dk�t2	− �Dk�t1	=�k� �Tk�t2	− �Tk�t1		 for each k ∈��j	�

whenever �Uj�s	 > 0 for each s ∈ �t1� t2�. By (20), (40), and (41) we have

(42) �Sk�t2	− �Sk�t1	≤
sk

lkmk

� �Tk�t2	− �Tk�t1		�

and, hence, by (8),

T̆k�t2	− T̆k�t1	 = �Tk�t2	+ �Sk�t2	− � �Tk�t1	+ �Sk�t1		(43)

≤ m̆k

mk

� �Tk�t2	− �Tk�t1		�

whenever �Uj�s	= Ŭj�s	 > 0 for each s ∈ �t1� t2�. Equation (37) follows from (41) and (43).
Other fluid model equations can be verified as in Dai (1995). �

By now it should be abundantly clear that artificial fluid models are the combination of
a law-of-large-numbers limiting procedure, the limitations on setup allocation via sensible
policy constraints, and the collapsing of setup and service allocation processes into a single
artificial server allocation process.

Theorem 3.3. Let a sensible production policy $ be fixed. If the artificial fluid model
is weakly stable, then the corresponding setup network is rate stable.

Proof. For standard networks, the analogous result is a simple consequence of
Theorem 4.1 of Chen (1995). The only difference here is recognizing that a fluid limit of
the setup network is a solution to the artificial fluid model once the allocation processes are
collapsed. The remainder of the proof is identical to one for the standard network. See, for
example, Dai (1999). �

4. The connection between the artificial and standard fluid models. Our ultimate
goal is to craft a sensible production policy $ such that the setup network operating under
the policy $ is rate stable, if at all possible. As stated earlier, this pursuit is possible only
if the usual traffic condition (6) holds. It turns out that when (6) holds, coming up with a
stabilizing $ is always possible; see Theorems 5.8 and 5.9 in the next section.
The standard fluid model has become the conventional tool for demonstrating stability of

the standard network operating under a given dispatch policy. The connection between sta-
bility of the standard network and its associated fluid model was made concrete through the
standard network analog to Theorem 3.3, that is, Theorem 4.1 of Chen (1995). A sizeable
body of literature is devoted to investigating standard fluid models, primarily in demonstrat-
ing some form of stability. One particularly useful technique for demonstrating stability is
via Lyapunov functions. Not surprisingly, a large portion of the literature focuses on finding
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the right Lyapunov function to demonstrate stability, given the dispatch policy in ques-
tion. For example, Bramson (1996, 1997) uses entropy type Lyapunov functions, Down and
Meyn (1997) and Dai and VandeVate (2000) advocate piecewise linear Lyapunov functions,
and Chen and Zhang (2000) forward linear Lyapunov functions.
Given the similarities between the standard fluid model and the artificial fluid model, we

would like to piggyback on these efforts. In particular, it would be ideal if the Lyapunov
function that demonstrates the stability of a given standard fluid model also works for the
artificial fluid model analog. Along these lines, Dai and Li (2003) analyze standard networks
that have batch processing, or batch processing networks. They adapt dispatch policies that
work well for standard networks into so-called full batch policies for use in scheduling batch
processing networks. For the special class of “normal” dispatch policies �$, the fluid model
of the standard network operating under �$ is effectively identical to the fluid model of the
batch processing network operating under the adapted full batch policy. Hence, Lyapunov
functions that prove weak stability of the standard fluid model also work for the batch fluid
model. So all of the work in stabilizing a batch processing network is embodied in locating
normal policies.
The presence of processing delays due to setups renders the techniques for proving the

stability of batch processing networks difficult to transfer to the setup network setting. For
one, extending the definition of normal policies would not be fruitful under our framework
for production policies. The problem is that, for the artificial fluid model, conversion of
allocated server effort to the departure process (embodied in Equations (36) and (37)) is
not constant, as it is for a batch fluid model. Accordingly, we require a more hands-on
approach.
The use of Lyapunov functions being our main thrust, naturally we should consider more

carefully how the functions are generally employed. The following is one method of using
a Lyapunov function. For more examples of its usage, see Dai (1999). Given a standard
fluid model solution �� ∈�4K+2J �0��	: Find a functional L which maps �� to a nonnegative
function f such that
• f �t	= L���	�t	 is absolutely continuous in t,
• f �t	 > 0 if and only if �Z�t	 �= 0,
• �Z�t	 �= 0 implies �d/dt	f �t	≤ 0� when the derivative exists.

Points t, for which the derivative of �� exists, are referred to as regular. Given such a
functional L with the absolute continuity of f , one has �Z�t	= 0 for all t whenever �Z�0	= 0.
Clearly, Lyapunov functions can also be used for showing weak stability of artificial fluid

models. In fact, in some instances:
The Lyapunov function that shows a given dispatch policy �$ stabilizes a standard network

may also show that a corresponding sensible production policy $ = �%� �$� l	 stabilizes a
setup network.
This nebulous statement is the closest we can come to replicating, for general setup

networks, the normal policy paradigm for batch fluid models. However, in the following
section, we carry out the details with three examples.

5. Examples. We now illustrate the techniques discussed for proving stability under
specific sensible production policies. In two of the three examples provided, we take advan-
tage of special network structure in devising our production policies. The third example
shows that there is always a stabilizing production policy, provided the usual traffic condi-
tion (6) holds.

5.1. FIFO Kelly network. Perhaps the most well-known dispatch policy for standard
networks is the first-in-first-out (FIFO) policy. Under FIFO, those jobs that have been present
at the station the longest are the first to be processed. Of course, in a setup network, the
FIFO policy must be modified to avoid an excessive number of setups.
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Even without setups, FIFO is not guaranteed to stabilize standard networks. Indeed,
in independent investigations, Bramson (1994a, b) and Seidman (1994) found standard
networks that are unstable when operating under the FIFO policy, even under the usual
traffic conditions (6). However, there is some hope of stability under FIFO when the network
has special structure.
A standard Kelly network is a network for which the mean processing times associated

with the classes at a given station are identical. That is, for any pair of classes k and
k′, mk = mk′ if k�k′ ∈ ��j	. It was shown by Bramson (1996) that as long as the traffic
intensity is less than one for each station, a standard Kelly network operating under a FIFO
dispatch policy is stable. The main result of this section is that a sensible FIFO production
policy $ = �%�FIFO� l	 is stable in a setup Kelly network when the production runs lks are
appropriately chosen. Recall that in a sensible production policy, it is assumed that %k ≥ lk
for each class k.

Theorem 5.1. Consider a setup network whose corresponding standard network is
Kelly type; that is, mk =mk′ for each k�k′ ∈��j	. Assume that the usual traffic condition
(6) is satisfied. For sufficiently large lks, the network operating under a sensible production
policy �%�FIFO� l	 is stable.

Bramson proved that a standard Kelly network operating under the FIFO dispatch policy
is stable by showing that the corresponding fluid model is stable. The standard FIFO fluid
model (not just for Kelly type) is defined by (22)–(29) with (29) taking the form

(44) �Dk�t+ �Wj�t		= �Zk�0	+ Âk�t	 ∀k ∈��j	�

where �Wj�t	, referred to as the (immediate) fluid workload for server j at time t, is defined
as

(45) �Wj�t	≡
∑

k∈��j	

mk
�Zk�t	�

In general, workload measures the effort required to process the current contents of a given
station. As depicted in (45), workload for station j in a standard fluid model is simply the
sum of that station’s buffer levels, weighted by their associated mean processing times. For
standard networks, the workload �Wj�t	 is the sum of the residual service times for all jobs
currently at station j . For a standard network operating under the FIFO policy, the associated
workload process plays as analogous role as in (44): �Dk�t + �Wj�t		= �Zk�0	+ �Ak�t	; see,
for example, Harrison and Nguyen (1990). The fluid Equation (44) follows naturally from
the functional law of large numbers.
The virtual waiting time process W in setup networks is analogous to the workload

process �W in standard networks. That is, in a setup network, the station j virtual waiting
time captures the amount of effort required to process all jobs currently residing at station j ,
where effort includes time allocated to performing setups. This definition extends to fluid
limits of setup networks as well as to artificial fluid models in the logical way, with jobs
replaced by fluid. We express W explicitly later.
Recall that the artificial fluid model is defined by Equations (30)–(38). Let �̆= �Ă� D̆�

T̆ � Ŭ � Y̆ � Z̆� W̆ 	 = � �A� �D� �S+ �T � �U� �Y � �Z� �W	 be an artificial fluid model solution. Note the
addition of the station-level virtual waiting time components W̆ and �W , missing from our
previous discussion of fluid limits. In Proposition 5.4 below, we will justify these augmented
fluid limits. By Lemma 5.1, which appears later in this section, under the sensible FIFO
production policy, Equation (38) takes the form

(46) D̆k�t+ W̆j�t		= Z̆k�0	+ Ăk�t	 for t ≥ 0� k= 1� � � � �K�
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where W̆j�t	 is the artificial fluid virtual waiting time which, by Lemma 5.5 from later in
this section, satisfies

(47)
∑

k∈��j	

mkZ̆k�t	≤ W̆j�t	≤
∑

k∈��j	

m̆kZ̆k�t	

for each station j . Equation (46) is identical to the standard FIFO fluid model Equation (44).
However, due to the setups incurred, Equation (45) becomes the pair of inequalities in (47).
To better understand the upper and lower bounds in (47), consider the role of the work-

load in the standard network analog to (44). For the standard network, the FIFO policy
dictates that in �Wj�t	 time units from time t, all jobs currently present at station j will
have been processed. The implication is that (1) the server never idles until the present jobs
are processed, and (2) jobs that have yet to arrive will not receive service before any job
present at time t. For the setup network, the production run portion of the sensible pro-
duction policy effectively alters the mean processing times, now ranging between mk and
m̆k; see Equation (8). Thus, it is intuitive that the virtual waiting time satisfies (47) in the
artificial fluid model.
In Theorem 5.2 to follow, we show that the artificial fluid model for a Kelly-type setup

network, operating under a well-chosen sensible FIFO production policy, is weakly stable.
Together with Theorem 3.3, this result proves Theorem 5.1. We first introduce the following
notation. For a K-dimensional vector a,

(48) ∨j �a	= max
k∈��j	

ak and ∧j �a	= min
k∈��j	

ak�

For two positive K-dimensional vectors a and a′, define 9�a�a′	=∑
j 9j�a�a

′	, where

9j�a�a
′	= 1

∧j �a	
− 1
∨j �a

′	
�

Using the mean processing times and their setup-adjusted analogs as parameters, an inter-
pretation is that 9j�m� m̆	= 1/∧j �m	−1/∨j �m̆	 denotes the difference between the fastest
and slowest possible departure rates from station j when there is positive fluid present.

Theorem 5.2. Consider a setup network that is of Kelly type with the inflated mean
processing times m̆ defined in (8). There exists a : > 0 such that, if 9�m� m̆	 < : and

(49) ∨j �m̆	
∑

k∈��j	

!k < 1�

the corresponding artificial fluid model operating under the sensible FIFO production policy
is weakly stable.

To prove Theorem 5.2, we borrow heavily from the proof of Theorem 1 in Bramson (1996)
for his subcritical case. Subcritical is synonymous to saying the usual traffic condition (5)
holds, a condition implied by (49). The structure of Bramson’s proof of stability requires the
strict Kelly condition (all processing times at a station are equal). However, the production
policy effectively alters the mean processing times, ranging between mk and m̆k. Thus,
the strict Kelly condition is violated for the artificial fluid model. Furthermore, conditions
(36) and (37) in the artificial fluid model, relating to processing efficiency, differ from the
corresponding standard fluid model Equation (28). As a result, significant modifications to
Bramson’s proof will be carried out here. However, one fortuitous byproduct of our analysis
is the extension of Bramson’s result to standard networks that are “almost” Kelly, i.e., when
9�m�m	 is small.
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Corollary 5.3. Consider a standard network �without setups	. There exists a : > 0
such that if 9�m�m	 < : and

∨j �m	
∑

k∈��j	

!k < 1�

the network is stable when operating under the FIFO dispatch policy.

Before beginning the proof of Theorem 5.2, we manipulate Equation (46). Differentiating
(46) and taking the sum over k ∈��j	 of both sides, we have

(50) �1+ ˙̆Wj�t		
∑

k∈��j	

˙̆Dk�t+ W̆j�t		=
∑

k∈��j	

˙̆
Ak�t	�

Proof of Theorem 5.2. Again, we will borrow heavily from the proof of Theorem 1
in Bramson (1996). We will only sketch the proof, pointing out, where necessary, where
our proof differs from that of Bramson. As in the proof in Bramson, define the following
functions:

h�x	= x logx� x≥ 0�
hk�x	= !kh�x/!k	� x≥ 0� k= 1� � � � �K�

For an artificial FIFO fluid model solution �̆= �Ă� D̆� T̆ � Ŭ � Y̆ � Z̆� W̆ 	, define

��t	=∑
k

∫ t+W̆j �t	

t
hk�

˙̆Dk�r		dr�

where k and j together imply j = ��k	. The function � is referred to as the entropy
Lyapunov function. In Bramson (1996), it is shown that ��t	 ≥ 0 for all t ≥ 0 in
Proposition 4.1 and that �̇�t	 ≤ 0 in Proposition 4.2. We will show that Proposition 4.1
still holds for our system. Although Proposition 4.2 is not necessarily true in our case, we
have an alternative approach.
To see that the entropy function is nonnegative, first note that by Lemma 5.2 to follow,

W̆j�t	 > 0 implies W̆j�s	 > 0 for each s ∈ �t� t + W̆j�t		. By (47), Ŭj�s	 > 0 for each s ∈
�t� t+ W̆j�t		. By conditions (35), (37), and (49) we have

W̆j�t	 > 0 implies
∑

k∈��j	

˙̆Dk�s	

!<
j

≥ ∑
k∈��j	

m̆k

∨j �m̆	

˙̆Dk�s	

!<
j

≥ 1 ∀ s ∈ �t� t+ W̆j�t		�

where !<
j =

∑
k∈��j	 !k. Hence, the left-hand side of Equation (4.5) of Bramson is nonneg-

ative almost surely and Proposition 4.1 of Bramson holds.
Now we provide an alternative to Proposition 4.2 of Bramson. Starting at Equation (4.6)

of Bramson, considerable effort is spent dealing with the derivative of the entropy function.
We employ the same strategy. We start with the thread of reasoning at Equation (4.8) of
Bramson, which we repeat here:

(51) �̇�t	=∑
k

[
hk

( ˙̆
Ak�t	

)−hk

( ˙̆Dk�t	
)]−∑

j

( ∑
k∈��j	

˙̆
Ak�t	

)
log�1+ ˙̆Wj�t		�

The last term is the focus of Equation (4.9) and Lemmas 4.1 and 5.1 of Bramson. The first
term is the focus of his Lemma 4.2 and requires no adjustment. That is, Equation (4.12)
of Bramson, which reads

(52)
∑
k

[
hk

( ˙̆
Ak�t	

)−hk

( ˙̆Dk�t	
)]≤∑

k

˙̆Zk�t	

still holds.
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Consider the last term of (51). By (50) and Lemma 5.7 to follow, for each station j , we
have ( ∑

k∈��j	

˙̆
Ak�t	

)
log�1+ ˙̆Wj�t		 = =j�t	�1+ ˙̆Wj�t		log�1+ ˙̆Wj�t		(53)

= =j�t	h�1+ ˙̆Wj�t		�

where

(54) =j�t	=



∨j ��	 if

∑
k∈��j	

˙̆
Ak�t	= 0 and W̆j�t	 > 0�

∑
k∈��j	

˙̆Dk�t+ W̆j�t		 otherwise.

Using identical arguments from Lemma 5.1 of Bramson, we have

(55) =j�t	h�1+ ˙̆Wj�t		≥ =j�t	
[
B13

( ˙̆Wj�t	
)2+ ˙̆Wj�t	

]
for some appropriate B13 > 0 as in (5.3) of Bramson. By Equations (31), (50), and (54) and
Lemma 5.7 to follow,

(56) =j�t	
˙̆Wj�t	=

∑
k∈��j	

˙̆
Ak�t	−=j�t	=

∑
k∈��j	

� ˙̆Zk�t	+ ˙̆Dk�t	�−=j�t	�

Consider the case when W̆j�t	 > 0. By (54) and Lemma 5.6,

(57)
∑

k∈��j	

˙̆Dk�t	−=j�t	≥−9j�m� m̆	�

By (54), condition (57) also holds when W̆j�t	= 0. It follows from Equations (53), (55),
(56), and (57) that

(58)
∑
j

( ∑
k∈��j	

˙̆
Ak�t	

)
log�1+ ˙̆Wj�t		≥

∑
k

˙̆Zk�t	−9�m� m̆	+B7
∑
j

� ˙̆Wj�t		
2�

where B7 = B13 mink �̆k. Bringing (51), (52), and (58) together we have an analog to (4.22)
of Bramson:

(59) �̇�t	≤−B7�
˙̆Wj�t		

2+9�m� m̆	 for each station j�

As in §3 of Bramson, we define ?j�t	 so that t′ = t + ?j�t	 is the first time t′ ≥ t at
which the virtual waiting time at station j is zero. It is shown in (3.6) of Bramson that
?j�t	≤ B1W̆

M�t	, where W̆M�t	=maxj W̆j �t	 is the largest virtual waiting time among the
stations and B1 is some constant. As is argued in Bramson for both Equation (4.23) and the
equation that follows it, for any station j ,

��t	−��t+ ?j�t		≥
B7�W̆j�t		

2

B1W̆
M�t	

−B1W̆
M�t	9�m� m̆	�

It follows that if j is the index of the station with the largest virtual waiting time, then

��t	−��t+ ?j�t		≥ B1�B9−9�m� m̆		W̆M�t	�
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where

(60) B9 = B7/�B1	
2

is the : referred to in the statement of the theorem. Hence, we assume that 9�m� m̆	 < B9.
Now suppose that the entropy function is positive at time t. We immediately know that the
virtual waiting time must also be positive. The previous equation argues that the entropy
function will decrease by some value proportional to the virtual waiting time in an amount
of time also proportional to the virtual waiting time. We can argue then that there is a
sequence of times �ti such that ti is the first emptying time after ti−1 of the largest virtual
waiting time station at time ti−1, ti ≤ ti−1+B1W̆

M�ti−1	, and

��0	−��ti	≥ �B9−9�m� m̆		ti�

which is analogous to the equation just before (4.25) in Bramson. Because ��ti	 ≥ 0,
ti ≤ ��0	/�B9 − 9�m		 for each i. Hence, �ti is a nondecreasing sequence that has an
upper bound, and thus has a limit, which is denoted by t�. Because the empty time is at
least the current virtual waiting time,

ti− ti−1 ≥ W̆j�ti−1	= W̆M�ti−1	�

Taking limit as i→� and using the continuity of W̆M , we have W̆M�t�	= 0. By the same
argument as in (4.27) of Bramson, the entropy is bounded by a factor of the largest virtual
waiting time function: ��t	≤ B10W̆

M�t	. Hence, ��0	≤ B10W̆ �0	 so that the hitting time
t� to zero is bounded by B11W̆ �0	 for some constant B11.
Because the original entropy function in Bramson is monotonic, once the function hits

zero, it remains there. What is left to show is that our almost Kelly system behaves the
same way. Suppose there exists some t > t� such that ��t	 > 0� It must be the case that
W̆ �t	 > 0 as well. Define B to be the minimum of W̆ �t	/2 and �B9/B10	W̆ �t	 and define
sB = sup�s ∈ �t�� t�� W̆ �s	≤ B. That is, within the interval �sB� t� the virtual waiting time
function is strictly larger than B� Note that by our choice of B, the quantity sB must be
strictly less than t. We know that ��sB	≤ B10W̆ �sB	≤ B9W̆ �t	 and that � hits zero within
��sB	/B9 ≤ W̆ �t	 time units after sB. That is, for some r ∈ �sB� sB + W̆ �t	�, ��r	= 0. Note
that this time is strictly less than t + W̆ �t	. By Lemma 5.2, the virtual waiting time W̆
cannot decrease faster than at rate 1. Recall that W̆ is greater than B from sB until t. So W̆
must be positive until time t + W̆ �t	. This is a contradiction. So our premise that there is
some time t such that W̆ �t	 > 0 cannot be true. This concludes the proof. �

Equation (46) and inequalities (47) for the artificial FIFO fluid model are justified through
fluid limits. For that, we need to properly define Wj�t	, the station j virtual waiting time
process for the setup network. The definition should capture the amount of time needed
to process most of the jobs residing at the station. The fact that jobs are not processed
in a strict FIFO order leads to some difficulty in crafting a useful definition. One must
consider that jobs are processed in production runs, where the launching of the run is
determined by the first job in the run. Moreover, if some class k has fewer jobs present
than dictated by the threshold %k, that class may be ignored. The following quantity tracks
the amount of time required to process the number of class k jobs present, in excess of the
threshold %k:

(61) ?k�t	= inf�s ≥ 0� Dk�t+ s	−Dk�t	≥Zk�t	− %k+ 1�
Recall that under a sensible production policy, any class that has fewer than %k jobs is
considered to be “empty.” Thus, we ignore the last %k − 1 jobs because the server may
ignore the jobs until their numbers reach the threshold. That is, we cannot bound their
sojourn. We define the station j virtual waiting time as the maximum of these values for
constituent classes: Wj�t	=maxk∈��j	 ?k�t	.
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Proposition 5.4. Take any sample path on which the strong law-of-large-numbers for
the primitive processes holds; that is, (1) holds. For any sequence �rn⊂�+ with rn→�
as n→�, there exists a subsequence �rnp

, with np →� as p→�, such that

��rnp = � �Arnp � �Drnp � �Srnp � �T rnp � �Urnp � �Y rnp � �Zrnp � �Wrnp 	→ ��
= � �A� �D� �S� �T � �U� �Y � �Z� �W	 as np →��

Moreover, the process �̆= �Ă� D̆� T̆ � Ŭ � Y̆ � Z̆� W̆ 	= � �A� �D� �S+ �T � �U� �Y � �Z� �W	 is an artifi-
cial fluid model solution; that is, �̆ satisfies Equations (30)–(38). The processes �� and �̆
are absolutely continuous.

The convergence is assumed to be uniform on compact intervals in �5K+3J �0��	. We
delay the proof until the appendix. Each limit �� is said to be a fluid limit for the FIFO
setup network. Readers should note the extra virtual waiting time component in both the
scaled queueing processes ��rnp as well as the limiting process �� and the process �̆. For
the remainder of this section, let �� be a fluid limit and �̆ be its corresponding artificial
fluid model solution.
The following lemma justifies the FIFO-specific additional artificial fluid model

Equation (46).

Lemma 5.1. For station j and constituents k ∈��j	,

D̆k�t+ W̆j�t		= Z̆k�0	+ Ăk�t	� t ≥ 0�
Proof. We first show that the setup network process obeys the following inequalities:

(62) Zk�0	+Ak�t	−%k+1≤Dk�t+Wj�t		≤Zk�0	+Ak�t	+ lk−1� k= 1� � � � �K�

which clearly imply the result by taking the fluid limit. The first inequality of (62) follows
from the observation that

Dk�t+Wj�t		−Dk�t	≥Dk�t+ ?k�t		−Dk�t	≥Zk�t	− %k+ 1�
where ?k�·	 is defined in (61). Clearly, for each station j , Wj�t	 ≥ ?k�t	 for all t ≥ 0 and
k ∈��j	. For the second inequality of (62), note that, for any class k production run that
completes by time t + ?k�t	, at least one of these jobs must have been present by time t.
Furthermore, no other class k jobs can be served in the interval �t+?k�t	� t+Wj�t	�, leading
to the second inequality. �

To justify additional inequalities (47) for the FIFO artificial fluid model, we need a few
lemmas. The following lemma states that the artificial fluid virtual waiting time process
has a lower bound on its rate of descent. The process e�t	 is J -dimensional, where each
component process ej�t	= t.

Lemma 5.2. The components of the process e�·	+ W̆ �·	 are nondecreasing.

Proof. We consider the components individually; that is, we will show that t+ W̆j�t	 is
a nondecreasing function. Fix j . From the definition of ?k, note that, for any k and s� t ≥ 0,

Dk�t+ s+ ?k�t+ s		≥Zk�0	+Ak�t+ s	≥Zk�0	+Ak�t	

and, hence, s+ ?k�t+ s	≥ ?k�t	. For some k′ ∈��j	, ?k′�t	=Wj�t	. It follows that s+ t+
Wj�t+ s	≥ s+ t+?k′�t+ s	≥ t+?k′�t	= t+Wj�t	. This shows that the function t+Wj�t	

is nondecreasing in t. Thus, the fluid limit t + �Wj�t	 and the artificial process t + W̆j�t	
are also nondecreasing. �
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A consequence of the previous result is that there is strictly positive virtual waiting time
throughout any nontrivial interval �t� t+ W̆j�t		� The following result states that a positive
amount of virtual waiting time coupled with a positive rate of flow at regular time t makes
the previous interval a closed one.

Lemma 5.3. For any station j and regular point t > 0, if
∑

k∈��j	
˙̆
Ak�t	 > 0 and

W̆j�t	 > 0, then W̆j�t+ W̆j�t		 > 0.

Proof. Fix t > 0 and assume it is a regular point. From Lemma 5.2, ˙̆Wj�s	 ≥−1 for
all regular s ∈ �t� t + W̆j�t		. For some k ∈ ��j	, ˙̆Ak�t	 > 0. There exists a : > 0 such
that for all 0 < h < :, Ăk�t + h	− Ăk�t	 >

˙̆
Ak�t	h/2� Choose any h <min�:�Wj�t		. By

Lemma 5.1,

D̆k�t+h+ W̆j�t+h		= Z̆k�0	+ Ăk�t+h	 > Z̆k�0	+ Ăk�t	+ ˙̆
Ak�t	h/2

and
D̆k�t+h+ W̆j�t+h		− D̆k�t+ W̆j�t		 >

˙̆
Ak�t	h/2> 0�

By the monotonicity of D̆k, W̆j�t + h	 > W̆j�t	 − h, thus t < t + h < t + W̆j�t	 < t +
h + W̆j�t + h	. Because W̆j�t + h	 > 0 for sufficiently small h, and W̆j�s	 > 0 for s ∈
�t+h� t+h+ W̆j�t+h		, we have W̆j�t+ W̆j�t		 > 0. �

The nonidling condition of the artificial fluid model (35) provides a lower bound on
service allocation when there is positive fluid at a given station. The following lemma
provides the analogous consequence when there is positive virtual waiting time at a given
station.

Lemma 5.4. For any station j ,

W̆j�t	 > 0 implies ˙̆Yj�t	= 0�
Proof. Let �rn be a sequence of positive real numbers associated with the fluid limit ��

and the corresponding artificial fluid model solution �̆, where rn→� as n→�� Suppose
�Wj�t	 = W̆j�t	 > 0. By the continuity of W̆j , there exists a : > 0 and an N ≥ 0 such
that

Wj�rns	≥ rnW̆j�t	/2 ∀ s ∈ �t− :� t+ :� and n≥N�

Fix an n ≥ N . For each s ∈ �rn�t − :	� rn�t + :	�, Wj�s	 > 0. By the definition of the
virtual waiting time process Wj , for each s ∈ �rn�t − :	� rn�t + :	�, there exists a k ∈
��j	 such that Zk�s	≥ %k. That is to say, there is always an eligible class throughout the
interval. Thus, throughout the interval �rn�t−:	� rn�t+:	�, the server never idles. Namely,
Yj�rn�t+:		−Yj�rn�t−:		= 0. Taking limits, we have �Yj�t+:	− �Yj�t−:	= Y̆j �t+:	−
Y̆j �t− :	= 0. �

We are now equipped to justify the bounds for the artificial virtual waiting time process
as presented in (47).

Lemma 5.5. For each station j and t ≥ 0,∑
k∈��j	

mkZ̆k�t	≤ W̆j�t	≤
∑

k∈��j	

m̆kZ̆k�t	�

Proof. Fix t ≥ 0. As for the first inequality, by Lemma 5.1 and (36),∑
k∈��j	

mkZ̆k�t	 =
∑

k∈��j	

mk�Z̆k�0	+ Ăk�t	− D̆k�t		

= ∑
k∈��j	

mk�D̆k�t+ W̆j�t		− D̆k�t		
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≤ ∑
k∈��j	

T̆k�t+ W̆j�t		− T̆k�t	

≤ W̆j�t	�

To prove the second inequality of the result, we first note that it holds trivially when
W̆j�t	 = 0. Assume that W̆j�t	 > 0. It follows from Lemmas 5.2 and 5.4 that∑

k∈��j	 m̆k
˙̆Dk�s	≥ 1 for almost every s ∈ �t� t+ W̆j�t		. Thus, we have∑

k∈��j	

m̆kZ̆k�t	 =
∑

k∈��j	

m̆k�D̆k�t+ W̆j�t		− D̆k�t		

=
∫ t+W̆j �t	

t

∑
k∈��j	

m̆k
˙̆Dk�s	ds ≥ W̆j�t	� �

Finally, we provide a result directly required in the proof of Theorem 5.2.

Lemma 5.6. Fix station j and regular point t > 0. If W̆j�t	 > 0, then

(63)
1

∨j �m̆	
≤ ∑

k∈��j	

˙̆Dk�t	≤
1
∧ j

�m	�

Moreover, if
∑

k∈��j	
˙̆
Ak�t	 > 0, then

(64)
1

∨j �m̆	
≤ ∑

k∈��j	

˙̆Dk�t+ W̆j�t		≤
1

∧j �m	
�

Proof. Fix j and the regular point t > 0. The upper bounds of both (63) and (64) hold by
(36) and the fact that Ŭj is nondecreasing. By Lemma 5.5, Ŭj�t	 > 0 and, hence, the lower
bound in (63) follows from (37). By Lemmas 5.3 and 5.5 and (37), if

∑
k∈��j	

˙̆
Ak�t	 > 0,

then Ŭj�t+ W̆j�t		 > 0 and the lower bound in (64) holds. �

For a standard fluid network, computing the derivative of the workload function is a
simple matter; see (45). For our setup network, the derivative of the virtual waiting time is
generally unknown. However, when the rate of arrivals to a station is zero and the virtual
waiting time is positive, the virtual waiting time decreases as fast as possible, that is at rate
one. The following lemma is used in Theorem 5.2.

Lemma 5.7. Assume that W̆j�t	 > 0 for some station j . If
∑

k∈��j	
˙̆
Ak�t	 = 0, then

˙̆Wj�t	=−1.

Proof. Suppose that, on the contrary,
∑

k∈��j	
˙̆
Ak�t	= 0 and ˙̆Wj�t	=−1+ 2B for some

B > 0. There exists a : > 0 such that for each h < :,

(65) W̆j�t+h	− W̆j�t	 >−�1− B	h�

By (65) and Lemma 5.2, W̆j�s	 > 0 for each s ∈ �t� t+ W̆j�t	+ Bh	� By Lemma 5.6,

(66)
∑

k∈��j	

˙̆Dk�s	≥∧j ��̆	� s ∈ �t� t+ W̆j�t	+ Bh	�

Hence, the left-hand side of (50) is greater than 2B�∧j ��̆		, but the right-hand side is equal
to zero, a contradiction. �
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5.2. Early steps first. Consider a family of standard networks where each job follows
some deterministic route, or sequence of buffers, through the network. Suppose that for each
buffer there is only one manner in which jobs arrive, exogenously or from one (upstream)
buffer. Buffers that receive jobs exogenously are referred to as sources. Let � denote the
set of all source buffers and ��� denote the number of elements of �. Without loss of
generality, �k > 0 for each k ∈�. Jobs that enter the system through a common buffer k are
said to belong to the same job type and follow the same route of buffers through the network.
We refer to such networks as multitype queueing networks, or standard multitype networks.
(Bertsimas et al. 2002 provide performance analysis of standard multitype networks.) When
there is one source of jobs (��� = 1), the network is said to be a reentrant line.
For a multitype network, the corresponding transition matrix P and arrival rate vector �

exhibit special structure. If some element of � is nonzero, then the corresponding column
of P has all zeros. Otherwise, �k = 0 and exactly one element of the corresponding column
of P is one and the other elements are all zero.
To facilitate the description of the early-steps-first (ESF) dispatch policy we alter the

notation slightly. In the new notation, classes are denoted by their (type, step) pair. The
types are indexed q = 1� � � � ���� and the steps are indexed k = 1� � � � �Kq� where Kq

denotes the length of the type q route. All of the class-specific quantities now have this
alternative notation. For example, m�q�k	 denotes the class �q� k	 mean processing time and
Z�q�k	�t	 records the number of class �q� k	 jobs at time t. In a slight abuse of notation, we
replace the arrival rate of type q jobs ��q�1	 with the quantity �q .
We are now equipped to describe the ESF dispatch policy. Suppose the server at station j

requires dispatching at time t. Among all of the nonempty buffers at the station, the server
will be dispatched to a buffer �q� k	, where k is the first nonempty step at the station. Any
other constituent buffer �q′� k′	 ∈ ��j	 with k′ < k, must therefore be empty. Note that it
is possible that station j houses multiple classes that are the kth step for their respective
routes. The policy does not explicitly say how to choose among such classes; that is, ties
are broken arbitrarily.

Theorem 5.5. Under the usual traffic condition (6), a standard multitype network,
operating under the ESF dispatch policy, is rate stable.

A proof of Theorem 5.5 might use the following linear Lyapunov function:

(67) L�t	= ∑
�q� k	

E+�q� k	
�Z�q�k	�t	�

where E+�q� k	 is defined recursively in the following way:

(68) E�q�k	 =

m�q�k	

(
1+ =j�k

1−"j

)
� k= 1� � � � �Kq�

0� k=Kq + 1�

(69) =j�k =
∑

�q� k	∈��j� k	

�qE
+
�q� k+1	�

and

(70) E+�q� k	 =
Kq∑

k′=k

E�q�k′	�

The set ��j� k	= ��q� k′	 ∈��j	� k′ = k, used in (69), contains the constituent classes of
station j that are composed of the kth step of some route. The proof of Theorem 5.5 is
implied by the proof of Theorem 5.6 below.
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Multitype setup networks have the same routing and arrival characteristics as their stan-
dard multitype network counterparts. We can adapt the ESF dispatch policy to form a
sensible ESF production policy $ = �%�ESF� l	. The policy evolves as follows: When a
server at station j is free for dispatching, we create a list of eligible constituent buffers.
The server will be dispatched to a buffer �q� k	, where k is the earliest step with an eligible
buffer at the station. Any other constituent buffer �q′� k′	 ∈��j	 with k′ < k, must be ineli-
gible. Assume that buffer �q� k	 passed the more stringent eligibility test, so that, if �q′� k′	
is ineligible, it must be the case that Z�q′� k′	�t	 < %�q′� k′	� If the server is dispatched to buffer
�q� k	, a setup is performed (if necessary) for class �q� k	 and then l�q� k	 jobs are processed
in a row before the server is freed for subsequent dispatching. As in the standard multitype
network setting, there may be more than one eligible buffer from step k at station j . Any
arbitrarily chosen tie-breaking scheme will yield the same stability results.

Theorem 5.6. A multitype setup network operating under a sensible ESF production
policy $ = �%�ESF� l	 is rate stable.

Before we start the proof, we first state the artificial fluid model Equation (38) that
corresponds to the ESF production policy. The justification of the equation is stated in the
following lemma, whose proof is delayed until the appendix.

Lemma 5.8. Under the sensible ESF production policy $ = �%�ESF� l	, the artificial
fluid model Equation (38) takes the form

(71)
k′∑

k=1

∑
�q� k	∈��j	

Z̆�q� k	�t	 > 0 implies
k′∑

k=1

∑
�q� k	∈��j	

˙̆T�q�k	�t	= 1

for every step k′ ≥ 1 and each station j = 1� � � � � J .
Proof of Theorem 5.6. Let �̆ be a solution to the artificial fluid model operating

under a sensible ESF production policy. We adapt the linear Lyapunov function devised for
the ESF dispatch policy to obtain

(72) L�t	= ∑
�q� k	

E+�q� k	Z̆�q� k	�t	�

where E+�q� k	 is defined recursively in the following way:

(73) Eq�k =

 m̆�q�k	

(
1+ =j�k

1− "̆j

)
� k= 1� � � � �Kq�

0� k=Kq + 1�

(74) =j�k =
∑

�q� k	∈��j� k	

�qE
+
�q� k+1	�

and

(75) E+�q� k	 =
Kq∑

k′=k

E�q�k′	�

Note that with the exception of the m̆�q�k	 term replacing m�q�k	 in (73), Equations (72)–(75)
are identical to (67)–(70).
Assume that Z̆�t	 �= 0 and �̆ is differentiable at time t. Let k be the first systemwide,

nonempty step. That is, there is some class �q� k	 such that Z̆�q� k	�t	 > 0 and Z̆�q� k′	�t	= 0
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for all classes �q� k′	 such that k′ < k. Fix step k and time t for the remainder of the proof.
We investigate the derivative of the Lyapunov function in (72):

L̇�t	 = ∑
�q′� k′	

E+�q′� k′	
˙̆Z�q′� k′	�t	=

���∑
q′=1

Kq′∑
k′=1

E+�q′� k′	
˙̆Z�q′� k′	�t	

=
���∑

q′=1

Kq′∑
k′=1

E+�q′� k′	�
˙̆D�q′� k′−1	�t	− ˙̆D�q′� k′	�t		

=
���∑

q′=1

[
�q′E

+
�q′�1	−

Kq′∑
k′=1

�E+�q′� k′	−E+�q′� k′+1		
˙̆D�q′� k′	�t	

]

=
���∑

q′=1

[
�q′E

+
�q′�1	−

Kq′∑
k′=1

E�q′� k′	
˙̆D�q′� k′	�t	�

]
�

where D̆�q′�0	�t	 ≡ �q′ t. By the nonnegativity of Z̆, Z̆�q′� k′	�t	 = 0 implies ˙̆Z�q′� k′	�t	 = 0.
Because k is the first nonempty step, ˙̆D�q′� k′	�t	= �q′ for all classes �q′� k′	 such that k′ < k
and the derivative of the L�t	 equals

L̇�t	 =
���∑

q′=1

[
�q′E

+
�q′� k	−

Kq′∑
k′=k

E�q′� k′	
˙̆D�q′� k′	�t	

]
(76)

≤ ∑
j� ��j� k	�= 

[ ∑
�q� k	∈��j� k	

�qE
+
�q� k	−

∑
�q� k	∈��j� k	

E�q�k	
˙̆D�q�k	�t	

]
�

where, again, ��j� k	= ��q� k′	 ∈��j	� k′ = k denotes the constituent classes of station j
that are composed of the kth step of some route. The transition embodied in (76) has two
subtleties. For one, for each class �q′� k′	 with step k′ ≥ k, the quantity ˙̆D�q′� k′	�t	 appears
on the left-hand side of the inequality, whereas the quantity appears on the right-hand side
for only those classes with step k. Second, each nonzero �q′E

+
q′� k′ term on the left-hand side

of the inequality appears on the right-hand side as well. The terms that are equal to zero
correspond to job types with strictly fewer than k steps. The nonzero values correspond to
routes that have at least k steps. Moreover, the kth step must occur at one of the stations.
Hence, on the right-hand side we can exclude those stations without a resident class that is
the kth step of some route. By (37), Lemma 5.8, and the fact that ˙̆D�q�k′	�t	= �q if k

′ < K,
we have

(77)
∑

�q� k	∈��j� k	

˙̆T�q�k	�t	= 1−
k−1∑
k′=1

∑
�q� k′	∈��j� k′	

˙̆T�q�k′	�t	≥ 1−
k−1∑
k′=1

∑
�q� k′	∈��j� k′	

�qm̆�q�k′	�

Hence, by (37), (75), and (76),

L̇�t	≤ ∑
j� ��j�k	�= 

[ ∑
�q� k	∈��j� k	

�qE�q�k	+
∑

�q� k	∈��j� k	

�qE
+
�q� k+1	−

∑
�q� k	∈��j� k	

E�q�k	�̆�q� k	
�̇T �q�k	�t	

]
�

It follows from (10), (73), (74), and (77) that

L̇�t	 ≤ ∑
j� ��j� k	�= 

[ ∑
�q� k	∈��j� k	

�qm̆�q�k	

(
1+ =j�k

1− "̆j

)
+=j�k

−
(
1+ =j�k

1− "̆j

)(
1−

k−1∑
k′=1

∑
�q� k′	∈��j� k′	

�qm̆�q�k′	

)]
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= ∑
j� ��j� k	 �= 

[
=j�k−

(
1+ =j�k

1− "̆j

)(
1−

k∑
k′=1

∑
�q� k′	∈��j� k′	

�qm̆�q�k′	

)]

≤ ∑
j� ��j� k	 �= 

−�1− "̆j 	�

The derivative of the Lyapunov function is negative as long as there is positive fluid. Hence,
the artificial fluid model is weakly stable. �

5.3. Generalized round robin. The generalized round robin (GRR) dispatch policy is
often discussed in the context of single server systems subject to setups, or polling systems;
see, for example, Takagi (1986, 1990). For standard networks, GRR is parameterized by a
set of strictly positive reals E= �Ek� k= 1� � � � �K	. When the constants are integers, the
policy works as follows: At station j , the server “visits” the constituent buffers in ��j	 in
a fixed cyclic order; hence, the name round robin. In polling system literature, the order
in which classes are visited is referred to as the polling table, a term we adopt as well.
When the server visits buffer k, Ek jobs are processed, if possible. Otherwise, the buffer is
exhausted and the server moves on to the next buffer. In this sense, the Eks can be thought
of as nominal allocations. The span of time, from the beginning of the visit to the first
buffer in the polling table to the completion of the visit to the last buffer in the table, is
referred to as a cycle.
When the Eks are not integers, the spirit of the dispatch policy is the same. However,

some requisite bookkeeping is in order. Consider the nth cycle of the server at station j .
Let ak�n	 denote the integer-valued nominal allocation for each class k ∈��j	 and bk�n	
denote the nominal residual allocation. The quantities are defined recursively:

ak�n+ 1	= �bk�n	+Ek��(78)

bk�n+ 1	= bk�n	+Ek− ak�n+ 1	(79)

for n= 0�1� � � � , where bk�0	= 0 and, as before, �x� denotes the integer part of x. When
the server visits buffer k for the nth time, it processes ak�n	 jobs, if possible, before moving
on to the next buffer.
For any vector of positive constants E, the additional standard fluid model Equation (29)

takes the form

(80) �̇Dk�t	≥
Ek∑

k′∈��j	 Ek′mk′
� k= 1� � � � �K�

for each t such that �Dk�t	 is differentiable and �Zk�t	 > 0, where, as is our convention,
j = ��k	. The following theorem is proved in Dai (1999) when elements of the vector E
are integers. The more general case (where the elements are reals) is a consequence of
Theorem 5.8.

Theorem 5.7. Under the usual traffic conditions (6), a standard network operating
under a generalized round robin policy parameterized by E is stable if, for each k =
1� � � � �K�

(81)
Ek∑

k′∈��j	 Ek′mk′
≥ !k�

We now describe how the GRR dispatch policy for standard networks is adapted to
form the sensible GRR production policy for setup networks, denoted $ = �%�GRR�E	� l	.
Consider station j . As with the standard network, the server at station j visits the classes in
��j	 in a round robin fashion. In fact, we use the same nominal values computed in (78)
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and (79). However, the interpretations of ak�n	 and bk�n	 are slightly different. Suppose
the server is conducting its nth cycle and buffer k is being considered for dispatching. If
ak�n	≥ 1 and class k is eligible according to the criterion in §2.3, then a setup for class k is
performed. Otherwise the server moves on to the next buffer. The only time a server does not
move is when there is an absence of jobs available for processing at the station. Assuming
the server has performed a setup for buffer k, ak�n	 determines how many production runs
of length lk the server will perform.

Theorem 5.8. A setup network operating under a sensible generalized round robin
production policy $ = �%�GRR�E	� l	 is rate stable if, for each k= 1� � � � �K� j = ��k	,

(82)
Eklk∑

k′∈��j	 Ek′ lk′m̆k′
≥ !k�

Proof. Let �̆ be an artificial fluid model solution. By Lemma 5.9 that immediately
follows, if (82) holds, we have ˙̆Dk�t	 ≥ !k for any t such that Z̆k�t	 > 0 and �̆ is differ-
entiable at t. It follows from a slight modification of Theorem 4 of Bramson (1998) that
Z̆�t	 = 0 for t ≥ 0. Thus, the artificial fluid model is weakly stable. Rate stability of the
setup network follows from Theorem 3.3. �

The following is key in the proof of Theorem 5.8.

Lemma 5.9. Consider a setup network operating under a sensible generalized round
robin production policy $ = �%�GRR�E	� l	. Artificial fluid solutions obey the following:

(83) ˙̆Dk�t	≥
Eklk∑

k′∈��j	 Ek′ lk′m̆k′
� k= 1� � � � �K�

When the Eks are strictly positive integers, the intuition behind (83) is straightfor-
ward. The typical cycle length on average would be at most

∑
k′∈��j	�sk′ + Ek′ lk′mk′	 ≤∑

k′∈��j	 Ek′ lk′m̆k′ . When there are enough class k jobs present, the average time a server
spends processing those jobs in a given cycle is Eklkmk. Equation (83) is simply the ratio
of the two quantities. The formal proof is delayed until the appendix in §7.
A convenience of GRR is that one can always construct vectors E and l such that (82)

is true when the usual traffic condition (6) holds:

Theorem 5.9. Whenever the usual traffic condition (6) holds, there exists a K-dimen-
sional vector l of strictly positive integers and a K-dimensional vector E of strictly positive
reals such that (82) holds.

Proof. The proof does not use the full flexibility from having two vectors, E and l, to
manipulate. Instead we simply set all elements of E to 1. For each k, set r = 1/mink�!ks

<
j 	,

l̄k = �r + 1	!ks
<
j /�1−"j	, and lk = �l̄k�, where s<

j =
∑

k∈��j	 sk. We have

∑
k∈��j	

l̄km̆k =
�r + 1	s<

j "j

1−"j

+ s<
j =

�1+ r"j	s
<
j

1−"j

so that

Eklk∑
k′∈��j	 Ek′ lk′m̆k′

>
l̄k− 1∑

k′∈��j	 l̄k′m̆k′

= s<
j �r + 1	!k− �1−"j	

s<
j �1+ r"j	

= !k+
�!ks

<
j r − 1	�1−"j	

s<
j �1+ r"j	

≥ !k� �
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So far we have adhered strictly to the sensible policy paradigm; in particular, we assumed
(7) holds. However, the structure of generalized round robin allows us to deviate slightly.
The primary justification of the thresholds % is that they ensure no class is neglected by
the server indefinitely. Examining the proof of Lemma 5.9, which provides the key step
in proving Theorem 5.8, the lemma continues to holds when % = 0. Thus, we have the
following corollary.

Corollary 5.10. A setup network operating under a generalized round robin produc-
tion policy $ = �0�GRR�E	� l	 is rate stable if (82) holds for each k= 1� � � � �K.

6. Concluding remarks. Our sensible production policy requires that conditions (7)
and (10) are satisfied. As pointed out in Corollary 5.10, the threshold condition (7) can be
relaxed for some production policies. Condition (10) can be relaxed as well. Recall that
sk = maxk′∈��j	 sk′k. It is used to define amortized average processing time in (8), which
in turn is used to define condition (10). The quantity sk is an upper bound on the mean
setup times. For a particular family of production policies, it is possible that the actual
relevant mean setup times are much smaller. For example, for the GRR production policy
with zero thresholds, servers, for the most part, visit and perform setups for classes in the
same fixed sequence each cycle. A natural definition is then sk = sp�k	k, where p�k	 denotes
the predecessor of class k in the cycle. The only exception to the setup sequence occurs
when the server encounters an empty buffer and, hence, does not perform a setup. This
is not a concern if for each station j , sk1k3 ≤ sk1k2 + sk2k3 for classes k1� k2� k3 ∈��j	. The
condition, which can be thought of as a triangle inequality for sequence-dependent setups,
is reasonable in most cases.
Even with sk reduced, there is still further room in the refinement of the amortized mean

processing time m̆ defined in (8). Again consider the family of GRR policies in §5.3.
Suppose Ek > 1 for some class k. Then, for that class k and some cycle n, ak�n	 ≥ 2.
The result is that at least two production runs of length lk may be conducted in sequence,
without a setup in between. We should redefine the setup-adjusted mean service time to
reflect this change in the frequency of class k setups: m̆k =mk+ sk/�lkmax�Ek�1		 for each
k. The form of (82) is the same, but the cycle length, expressed in the denominator of the
left-hand side, is smaller. Hence, the condition is relaxed.
The main concern of this paper is the stability of queueing networks with setups. Hav-

ing established stability of some networks under some sensible policies, one may want to
now turn the attention to matters of system performance. Indeed, this is the motivation
of Warren’s dissertation (1997), where a heuristic approach is employed, and the work
of Bertsimas and Nino-Mora (1999), where bounds on optimal holding costs are obtained
using the achievable region approach.

7. Appendix.

7.1. The existence of artificial fluid virtual waiting time.
Proof of Proposition 5.4. From Proposition 3.1, there exists a subsequence �rnp

 ⊂
�+, with np →� as p→�, such that

� �Arnp � �Drnp � �Srnp � �T rnp � �Urnp � �Y rnp � �Zrnp 	→ � �A� �D� �S� �T � �U� �Y � �Z	 as p→��

To complete the proof, it suffices to show that �Wrnp is asymptotically Lipschitz continuous,
i.e., there exists an L > 0 such that for any s� t ≥ 0 and j = 1� � � � � J ,

(84) lim sup
np→�

∣∣ �Wrnp
j �t+ s	− �Wrnp

j �t	
∣∣≤ Ls�



Dai and Jennings: Stabilizing Queueing Networks with Setups
918 Mathematics of Operations Research 29(4), pp. 891–922, © 2004 INFORMS

Condition (84) implies that �Wnp converges along a further subsequence �n′p. Thus, ��n′p →
��= � �A� �D� �T � �U� �Y � �Z� �W	, which is said to be a fluid limit.
Because, by Lemma 5.2, e�·	 + W�·	 is nondecreasing (in each component) for any

t� s ≥ 0, we have
Wj�t+ s	−Wj�t	≥−s�

which implies that

(85) lim inf
np→�

( �Wrnp
j �t+ s	− �Wrnp

j �t	
)≥−s�

We now provide an upper bound on the change in the virtual waiting time. Let Gk =
�Gk�n	� n≥ 1 denote the sequence of processing times of class k jobs, i.e., it takes Gk�n	
units of time for the server to process the nth class k job. From the definition of Wj , we
have

Wj�t	≥
∑

k∈��j	

Zk�0	+Ak�t	−%k+1∑
i=Dk�t	+1

Gk�i	+
∑

k∈��j	

Sk�t+Wj�t		− Sk�t	

and

Wj�t+ s	≤ ∑
k∈��j	

Zk�0	+Ak�t+s	+lk−1∑
i=Dk�t+s	+1

Gk�i	+
∑

k∈��j	

Sk�t+ s+Wj�t+ s		− Sk�t+ s	�

Because Sk is nondecreasing,

Wj�t+ s	−Wj�t	 ≤
∑

k∈��j	

Zk�0	+Ak�t+s	+lk−1∑
i=Zk�0	+Ak�t	−%k+2

Gk�i	(86)

+ ∑
k∈��j	

Sk�t+ s+Wj�t+ s		− Sk�t+Wj�t		�

To derive an estimate of Sk�t + s + Wj�t + s		 − Sk�t + Wj�t		, let Nk′k�t	 denote the
cumulative number of setups from class k′ to class k by time t and Hk′k = �Hk′k�n	� n≥ 1
denote the sequence of �k′� k	 setup times. Then,

Sk�t+ s+Wj�t+ s		− Sk�t+Wj�t		≤
∑

k′∈��j	

Nk′ � k�t+s+Wj�t+s		∑
i=Nk′k�t+Wj�t		

Hk′k�i	�

Service completions initiate setup times. From the definition of the virtual waiting time,
class k jobs through job number Zk�0	 + Ak�t	 − %k + 1 cannot have an effect on the
cumulative setup time Sk beyond time t+Wj�t	. Moreover, at most Zk�0	+Ak�t+s	+lk−1
class k jobs can have an effect on Sk up to time t+ s+Wj�t+ s	. Not surprisingly, during
the interval �t+Wj�t	� t+ s+Wj�t+ s	�, the maximum number of class k jobs that trigger
setups is precisely the maximum number of jobs processed, Ak�t+ s	−Ak�t	+%k+ lk−2�
Thus,

(87) Sk�t+ s+Wj�t+ s		− Sk�t+Wj�t		≤
∑

k′∈��j	

Nk′ � k�t+Wj�t		+Ak�t+s	−Ak�t	+%k+lk−2∑
i=Nk′k�t+Wj�t		

Hk′k�i	�

Because

1
rnp

Nk′ � k�rnp t+Wj�rnp t		+Ak�rnp t+rnp s	−Ak�rnp t	+%k+lk−2∑
i=Nk′k�rnp t+Wj�rnp t		

Hk′k�i	→ sk′k� �Ak�t+ s	− �Ak�t		�

by (86) and (87), we have

(88) lim sup
np→�

( �Wrnp
j �t+ s	− �Wrnp

j �t	
)≤ ∑

k∈��j	

(
mk+

∑
k′∈��j	

sk′k� �Ak�t+ s	− �Ak�t		

)
�

Because �A is Lipschitz continuous, (84) follows from (85) and (88). �
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7.2. Proofs of Lemmas 5.8 and 5.9.
Proof of Lemma 5.8. Let �� be a fluid limit of a setup network operating under the

sensible ESF production policy $ = �%�ESF� l	. Let �̆ be the associated artificial fluid limit,
as constructed in Proposition 3.2. Let 1 ∈I be a sample path on which (1) holds and �rn
be a sequence of positive reals such that rn →� and ��rn �·�1	→ ���·	 u.o.c. as n→�.
Fix station j and a time t > 0 such that ���t	 and �̆�t	 are differentiable. Suppose that, for
some fixed step k0, we have

k0∑
k=1

∑
�q� k	∈��j	

Z̆�q� k	�t	 > 0�

Then, for some class �q1� k1	 ∈��j	 with k1 ≤ k0, we have Z̆�q1� k1	
�t	= �Z�q1� k1	

�t	 > 0. By
the continuity of �Z, and the uniform convergence �Zrn → �Z as n→�, there exists a : > 0
and an integer N such that, for each n≥N ,

Z�q1� k1	
�s	≥ %�q1� k1	

∀ s ∈ �rnt� rn�t+ :	��

This condition ensures that, throughout the interval �rnt� rn�t+ :	�, the servers at station j
are never dispatched to a class �q� k	 ∈��j	 such that k > k1. Equivalently, for each class
�q� k	 with k > k1,

(89) T�q�k	�rn�t+ :		− T�q�k	�rnt	≤ V�q�k	�M
n
�q�k	+ l�q� k		−V�q�k	�M

n
�q�k		

and

S�q�k	�rn�t+ :		− S�q�k	�rnt	(90)

≤ ∑
�q′� k′	∈��j	

F�q′� k′	�q� k	�R
n
�q′� k′	�q�k	+ 1	− F�q′� k′	�q� k	�R

n
�q′� k′	�q� k		�

where Mn
�q�k	 is the number of class �q� k	 jobs processed by time rnt and Rn

�q′� k′	�q� k	 is the
number of setups from class �q′� k′	 to class �q� k	 performed by time rnt. By Lemma 7.1
to follow, the law-of-large-numbers (1), and (89) and (90),∑

k′>k1

∑
�q′� k′	∈��j	

[
T̆�q′� k′	�t+ :	− T̆�q′� k′	�t	

]
(91)

= lim
n→��1/rn	

∑
k′>k1

∑
�q′� k′	∈��j	

[
S�q′� k′	�rn�t+ :		− S�q′� k′	�rnt	

+T�q′� k′	�rn�t+ :		− T�q′� k′	�rnt	
]= 0�

By (34), (35), and (91),

k1∑
k′=1

∑
�q′� k′	∈��j	

[
T̆�q′� k′	�t+ :	− T̆�q′� k′	�t	

]= :�

We obtain the result by dividing by : and letting : ↓ 0. �

Proof of Lemma 5.9. Let �� be a fluid limit of a setup network operating under the sen-
sible generalized round robin production policy $ = �%�GRR�E	� l	. Let �̆ be the associated
artificial fluid limit, as constructed in Proposition 3.2. Let 1 ∈I be a sample path on which
(1) holds and �rn be a sequence of positive reals such that rn →� and ��rn �·�1	→ ���·	
as n→�. At time t, suppose that for some class k at station j we have Z̆k�t	= �Zk�t	 > 0.
We would like to show that

(92) ˙̆Dk�t	= �̇Dk�t	≥
Eklk∑

k′∈��j	 Ek′ lk′m̆k′
�
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By the continuity of �Z we know there exists an B > 0 and a : > 0 such that �Zk�s	 > B for
each s ∈ �t� t+:�. For large enough n, Zk�s	≥ %k for each s ∈ �rnt� rn�t+:	�. Hence, if the
ith cycle takes place entirely within the interval �rnt� rn�t+:	�, the server processes exactly
ak�i	lk class k jobs during this cycle. It should be clear by (78) and (79) that, for any class k
and positive integers p and q,

(93) qEk− 1<
p+q∑

i=p+1
ak�i	 < qEk+ 1�

For each n, we refer to cycles that start after rnt and end before rn�t+ :	 as complete.
Let Nn denote the number of complete cycles. The result (92) will follow if we can show
that, on almost every sample path,

(94) lim
n→�

Dk�rn�t+ :		−Dk�rnt	

N n
→ Eklk

and that

(95) lim sup
n→�

rn:

N n
≤ 1

pj

∑
k′∈��j	

Ek′ lk′m̆k′ �

Note that, in addition to the Nn complete cycles, there may be two incomplete cycles. The
station j servers may have been in the middle of a cycle at time rnt and again at time
rn�t+ :	. By (93), we can bound the number of jobs processed in �rnt� rn�t+ :	�,

(96) �N nEk− 1	lk < Dk�rn�t+ :		−Dk�rnt	 < ��N n+ 2	Ek+ 1	lk�
By Lemma 7.2 to follow, Nn →�. Dividing both sides of (96) by Nn and letting n→�
yields (94).
Now we demonstrate that (95) holds. Clearly, the server does not idle during

�rnt� rn�t+ :	� so that

rn:=
∑

k′∈��j	

��Tk′�rn�t+ :		− Tk′�rnt		+ �Sk′�rn�t+ :		− Sk′�rnt		��

We investigate how the server effort throughout the interval �rnt� rn�t+:	� is allocated. Let
Mn

k′ denote the number of class k′ jobs that have completed service at time rnt. We can
bound the total time dedicated to class k′.

Tk′�rn�t+ :		− Tk′�rnt	≤ Vk′�M
n
k′ + #�N n+ 2	Ek′ + 1$lk′	−Vk′�M

n
k′	�(97)

where, as before, Gk′�i	= Vk′�i	−Vk′�i− 1	. Similarly,
Sk′′k′�rn�t+ :		− Sk′′k′�rnt	≤ Fk′′k′�R

n
k′′k′ + 2+!n

k′′k′	− Fk′′k′�R
n
k′′k′	�(98)

where !n
k′′k′ is the number of type �k′′� k′	 setups among the Nn complete cycles and Rn

k′′k′
is the number of completed type �k′′� k′	 setups before time rnt. The reasoning behind
(97) is as follows. As argued earlier, there are at most Nn + 2 cycles, where Nn of them
are complete. We can assume the most extreme case, that for each class k′ and in each
cycle i, exactly ak′�i	lk′ jobs are processed. Using Equation (93) we bound the total num-
ber of processed jobs with ��N n + 2	Ek′ + 1	lk′ . It should be clear that

∑
k′′∈��j	 !k′′k′ ≤

Nn�max�Ek′ �1		+ 1. Dividing both sides of Equations (97) and (98) by Nn yields

lim sup
n→�

�1/N n	�Tk′�rn�t+ :		− Tk′�rnt	�≤ Ek′ lk′mk′

and
lim sup

n→�
�1/N n	�Sk′�rn�t+ :		− Sk′�rnt	�≤ Ek′sk′ �
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Finally, by (8),
Ek′ lk′mk′ +Ek′sk′ = Ek′ lk′m̆k′

and, hence, (95) follows. �

The following lemma is used to prove Lemma 5.8 and Lemma 7.2 to follow.

Lemma 7.1. Consider any setup network. Let �rn be a sequence of positive reals such
that rn →� as n→�. Let Mn

k be the number of class k jobs processed by time rnt and
Rn

k′k be the number of type �k′� k	 setups performed by time rnt. We have, on almost every
sample path,

lim sup
n→�

Mn
k /rn <�

and
lim sup

n→�
Rn

k′k/rn <�

for each k�k′ = 1� � � � �K.

Proof. We prove the first result for class k jobs. The result for setups is similar. Suppose
lim supn→�Mn

k /rn =�. Without loss of generality, Mn
k /rn→�. By definition,

Vk�M
n
k 	≤ rnt�

Dividing both sides by Mn
k and taking the limit yields mk ≤ 0, a contradiction. �

The following is used to prove Lemma 5.9.

Lemma 7.2. Suppose the setup network is operating under a sensible generalized round
robin policy. Let �rn be a sequence of positive reals such that rn→� as n→�. Fix time t,
station j , and the constant : > 0. Suppose that, for large enough n, servers at station j
never idle during the interval �rnt� rn�t + :	�. Let Nn denote the number of cycles that
transpire completely during �rnt� rn�t+ :	�. We have

(99) lim inf
n→� Nn/rn > 0�

Proof. The server at station j provides rn: units of potential effort during the interval
�rnt� rn�t + :	�. All of this effort goes to processing jobs or performing setups. Because
there are K classes, there are at most K2 −K types of setups. This yields a maximum of
K2 activities over which the rn: units of server effort is distributed over the interval. There
is a subsequence rnq

with nq →� as q →� such that one of the activities receives at
least rnq

pj:/K
2 units of server effort during the interval for each q. Assume the activity of

processing class k jobs receives this amount of effort and, without loss of generality, that
this occurs for each number in the original sequence �rn. That is,

(100) Vk�M
n
k +#�N n+ 2	Ek+ 1$lk	−Vk�M

n
k 	≥ rn:/K

2�

where Mn
k denotes the number of class k jobs completed by time rnt. (The case that a

setup activity receives this amount of effort can be argued similarly.) The terms in (100) are
identical to those in (97) of the previous proof. If Nn/rn→ 0 then, by Lemma 7.1, dividing
both sides of (100) by Nn yields :≤ 0. Hence, (99) must hold. �
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