
This is page v
Printer: Opaque this

Contents

7 Stability of general processing networks 193
7.1 Motivating Simulations . 195
7.2 Open processing networks 201

7.2.1 Network description 202
7.2.2 The standard network and dispatch policies 205
7.2.3 Production policies and sensible policies 206
7.2.4 Rate stability . 209

7.3 Network and fluid model equations 210
7.3.1 Network dynamics 210
7.3.2 Fluid models . 214
7.3.3 Connection between processing networks and fluid

models . 216
7.4 The connection between the artificial and standard fluid

models . 219
7.4.1 Batch processing networks and normal policies . . . 219
7.4.2 Stability under sensible production policies 222

7.5 Examples of stable policies 223
7.5.1 Early steps first . 223
7.5.2 Generalized round robin 228

7.6 Extensions . 230
7.7 Appendix . 232

7.7.1 Departures as a function of server effort 232
7.7.2 Proofs of Lemmas 7.12 and 7.18 236

7.8 Notes . 240
7.9 References . 240

vi

This is page 193
Printer: Opaque this

7

Stability of general processing
networks

Jim Dai and Otis B. Jennings

Multiclass queueing networks are effective tools for capturing the dy-
namics of complex manufacturing systems. For instance, one can model
multiple product lines as well as processes with highly reentrant flows. In
addition to their industrial relevance, multiclass queueing networks present
theoretical challenges absent from their single class precursors. Not surpris-
ingly, the research community has devoted considerable effort recently to
the study of such network models, both as an academic exercise as well as
for practical purposes.

Still, there remain some aspects of manufacturing that escape the mod-
elling scope of multiclass queueing networks, which we henceforth refer to
as standard networks. Consider the following three examples. An explicit
assumption of the standard network is that each work area is populated
by a single server, whereas manufacturing environments often have par-
allel machines with similar processing capabilities. Furthermore, in many
systems, servers are able to process multiple jobs simultaneously, i.e., in
batches, without a negative effect on processing speed. In the standard
network, servers process one job at a time. Lastly, consider a machine that
has a job class-specific configuration, such as a baking temperature, die,
mask, toolset, or physical location of personnel. Before the server can switch
its processing efforts from one class to another, the associated configura-
tion must first be set. The resulting loss in potential processing effort is
referred to as a setup (delay). As far as the standard network is concerned,
all setup times are assumed to be zero. As such, there is no disincentive in
the standard network for excessive switching.

In response to such application shortcomings, some of the recent research
efforts in queueing theory focus on extending the standard network model.
In this chapter, we continue this trend by inserting all three features into
a single model. That is, in our family of stochastic processing networks, we
include batch processing operations, setup times and multi-server worksta-

194 Jim Dai and Otis B. Jennings

tions. Each workstation in the model may contain any combination of these
three elements. The formal model is presented in Section 7.2.

Beyond the presentation of our generalized queueing network model, the
primary concern of the chapter is the stability of such networks. Our notion
of stability, formalized in Section 7.2.4, is analogous to stability of standard
networks. In short, a network is stable if the long-run input rate of the
system is equalled by the long-run output rate. As suggested by studies of
the stability of standard networks, stability for our generalized network is
highly affected by the manner in which scheduling throughout the network
is conducted.

Production policies govern the scheduling of servers in stochastic pro-
cessing networks. Dispatch policies perform the analogous task for standard
networks. The difference is that, to be effective, production policies must
take the additional features of our stochastic processing network model into
account. With this in mind, we define a family of “sensible” production poli-
cies that are adaptations of dispatch policies. In the following section, we
justify the restriction to sensible production policies through instructive
simulation examples.

In Section 7.3 we provide a framework for proving the stability of a
stochastic processing network operating under a sensible production pol-
icy. Central to this framework is the artificial fluid model of a stochastic
processing network. The artificial fluid model presented here is an extension
of the identically termed model presented in Dai and Jennings [15], which,
in turn, is a generalization of fluid models of standard networks. Having
achieved widespread acceptance in the literature, fluid models of standard
networks will be referred to as standard fluid models. Unlike their standard
fluid model counterparts, artificial fluid models do not arise directly from a
limiting procedure of some discrete network process; hence the “artificial”
qualifier. Nevertheless, stability of the artificial fluid model implies stability
of the stochastic processing network, a connection paralleling the relation
between standard fluid models and standard networks.

Drawing on the similarities between artificial fluid models and standard
fluid models, one can often exploit methods used to prove the stability of
the latter to perform the same task for the former. In particular, Lyapunov
functions that help demonstrate the stability of standard fluid models may
also work for artificial fluid models. Unfortunately, for our most general
model, this is as strong a statement as we are prepared to make. A more
precise statement can be made for fluid model analogs of networks with
no setup times. Such networks, referred to as batch processing networks,
and their corresponding scheduling rules, referred to as full batch policies,
were studied by Dai and Li [17]. Lyapunov functions and some nuances of
employing them in demonstrating the stability of artificial fluid models is
the focus of the discussion in Section 7.4.

As an exercise in using Lyapunov functions and the artificial fluid model
framework for proving stability of stochastic processing networks, we inves-

7. Stability of general processing networks 195

tigate two production policies in Section 7.5. The policies, adapted from
the early-steps-first and generalized round robin dispatch policies, stabi-
lize a stochastic processing network as long as the traffic intensity at each
station is less than one.

7.1 Motivating Simulations

Our performance measure of concern in this chapter is the throughput
rate, or the long run rate at which jobs leave the system. As demonstrated
through the well-known standard network examples of Lu and Kumar [31]
and Rybko and Stolyar [33], the issue of throughput rates is not a simple
matter. In this section we provide additional examples to argue that matters
are further complicated in the presence of batch operations and setup times.

But first, we revisit the major takeaways from the Lu-Kumar and Rybko-
Stolyar examples. In the networks under consideration therein, the nominal
server utilizations are less than 100%. Yet, because of ill-conceived dispatch
policies, the number of jobs in the systems grows linearly with time. Such
unbounded growth in jobs hints at a discrepancy between the throughput
rate and the arrival rate. Dispatch policies that produce such pathological
behavior, when it is possible for the throughput rate to equal the arrival
rate, are considered inefficient. As the examples imply, inefficient policies
are not necessarily the product of needless idling of servers when jobs are
present and work can be done. Notice we have yet to discuss the effect of
setups and batch operations!

Setups and batch processing operations have the obvious efficiency rami-
fications. Nevertheless, we suggest an extra dose of caution when addressing
the effects of such features. Given a server that is subject to setups, exces-
sive switching of the processing effort between different job classes results
in a significant loss in potential server effort, measured in units of time. Suc-
cessful scheduling of such servers will result in sufficiently long stretches of
time during which the server dedicates its full effort to a single job class.
Exhaustive service is a rather extreme example of such scheduling rules-
of-thumb. Under exhaustive service, the server processes jobs of the same
class until there are no longer jobs of that class present.

Although this method of exhaustive service before switching is highly
effective in single station systems, blind adherence to the policy can be
detrimental in the network setting. Consider the following simulation study,
devised by Jennings [26]. As illustrated in Figure 7.1, there are three single-
server processing stations, labelled 1, 2 and 3. Each job must go through six
steps, labelled 1 through 6, as they pass through the network. Jobs being
processed or waiting to be processed in step k are called class k jobs. Class
k jobs that are awaiting processing are said to reside in buffer k. Steps 1
and 4 are conducted at station 1, steps 2 and 5 at station 2, and steps 3

196 Jim Dai and Otis B. Jennings

- - -

- - - -

m1 m2 m3

m4 m5 m6

α = 1

Station 1 Station 2 Station 3

FIGURE 7.1. A three-station, six-class standard network with setups

and 6 at station 3. In the simulation, jobs arrive according to a Poisson
process with rate α = 1 job per hour. Processing times and setup times
are all exponentially distributed. Processing steps 2, 4 and 6 each require
45 minutes on average. Processing steps 1, 3 and 5 require six minutes of
effort on average. Setup times for a server switching between any pair of
classes are 30 minutes on average. Nominally speaking, each server should
be busy processing jobs a fraction

1 job
60 minutes

×
(

45 + 6 minutes
job

)
= .85

of the total simulation time. Notice, this quantity is independent of setup
times.

The servers employ an exhaustive service policy. Suppose a server has
just processed all of the jobs of one buffer. If there are no jobs in the
other buffer at the station, the server sits idle and waits for an arrival.
Otherwise, the server performs a setup and then exhausts the other buffer
at the station. The scheduling policy just described exhibits the so-called
non-idling property; that is, no server idles when there are jobs at its
corresponding station. The graph in Figure 7.2 depicts the total number of
jobs in the system, or work-in-progress (WIP) as a function of time. One
can see that the WIP exhibits a roughly linear growth trend, again a strong
sign of instability.

To better understand what is going wrong in this system, we track how
potential server effort is being used over the course of the simulation. The
results, summarized in Table 7.1, reveal that no server is busy 85% of the
time, as expected from the pre-simulation calculations. The implication
is that the servers are not working enough to process the arriving jobs.
What is perhaps more disturbing is the reason, or lack thereof, for why the
servers are not working. It is not the case that servers are spending too
much time performing setups. To the contrary, setup time is insignificant
in terms of distribution of server effort. Neither are servers idling when jobs

7. Stability of general processing networks 197

500

1000

1500

10000 20000

time (hours)

FIGURE 7.2. WIP as a function of time.

are present, as dictated by the non-idling condition.
For more evidence of what is wrong with the system, see Figure 7.3, where

we plot the job counts for steps 2, 4 and 6 as functions of time. It is rarely
the case that buffers 2, 4 and 6 are all simultaneously strictly positive. The
implication is that, throughout the majority of the simulation, at most two
of these buffers can be processed simultaneously. This fact would not be
alarming if the steps were processed at two servers. But the steps reside at
three distinct stations.

The behavior just described is an example of a so-called pseudo-station,
also referred to by Bertsimas [2] as a K-virtual station. For more on pseudo-
stations, see Hasenbein [25]. The behavior is related to an example in Dai,
Hasenbein and Vande Vate [14], the origin of the network in Figure 7.1.
The fundamental differences in [14] are that jobs are replaced by units
of fluid and that there are no setups. Not surprisingly, further simulation
studies reveal that the same pathological behavior in our discrete network

Utilization Profile
Server 1 Server 2 Server 3

Idle .181 .189 .202
in-Setup .003 .002 .002
in-Service .816 .809 .796

TABLE 7.1. Summary of server usage.

198 Jim Dai and Otis B. Jennings

100

300

500

Step 2

100

300
Step 4

100

300

500

16000 19000

Step 6

FIGURE 7.3. Job count at steps 2, 4 and 6.

can occur when the setup times are equal to zero.
In this first simulation example, exhaustive service led to instability. In

many other cases, namely those in Lu and Kumar [31], Rybko and Stol-
yar [33], and Dai, Hasenbein and Vande Vate [14], instability may be caused
by so-called static buffer priority (SBP) policies. Under an SBP policy, jobs
of some buffers have strict processing priority over jobs in other buffers.
Byproducts of SBP policies are long production runs during which a single
class of jobs is processed. These long production runs may starve down-
stream buffers which, once they finally receive a very large number of jobs
during a relatively short interval, ultimately starve the buffers responsible
for starving them. This cycle of “starve and be starved” continues as oscil-
lations of WIP grow larger and larger. In terms of the dynamics leading to
instability, exhaustive service effectively mimics SBP policies.

One lesson to be gleaned from this example is that, in the presence of

7. Stability of general processing networks 199

- -

-- -

m1 = 1.8 m2 = 7.2

m3 = 2.7 m4 = 10.8

α = 1

Station 1 Station 2

FIGURE 7.4. A two-station, four-class batch processing network

setups, the duration of dedicated server effort should be long, but not too
long. For single-station systems with setups, or polling stations, this notion
is embodied in the `-limited service scheduling policy; see, for example,
Takagi [34]. For such policies, the number of consecutively processed class
k jobs is forced to equal `k, unless the corresponding buffer is exhausted
first. Policies of this limited variety will resurface when we define our family
of “sensible” policies.

A second lesson is that dispatch policies that prove successful in schedul-
ing standard networks may inform our decision-making process when schedul-
ing the more general processing networks. This is true whether stations are
populated by setup servers, batch servers or combinations thereof. Indeed,
this is the approach employed by both Dai and Jennings [15] for queueing
networks with setups and Dai and Li [17] for batch processing networks.

With servers that process multiple jobs simultaneously, forming large
batches is desirable. Not doing so can also be considered an inefficient
use of potential server effort. Empowered by the second lesson above and
equipped with a dispatch policy proven to work well for a standard net-
work, one might reach erroneous conclusions. Specifically, one might de-
clare that as long as a smart dispatch policy is used to select the class to
be processed next and the subsequently constructed batch is as large as
possible, throughput will be maximized. However, as demonstrated by Dai
and Li [17], this reasoning is flawed. Consider their simulation.

The network has two single-server stations serving four job classes, as
illustrated in Figure 7.4. As with the previous simulation, this network is
an example of a reentrant line, where all jobs follow the same deterministic
route through the network. Each job follows four processing steps, corre-
sponding with the four classes and alternating between stations 1 and 2.
The batches for steps at station 1 contain at most five jobs and the max-
imum batch size at station 2 is 20. Jobs arrive from the outside according
to a Poisson process with rate α = 1 job per minute. The processing times

200 Jim Dai and Otis B. Jennings

for class k batches are independent, exponentially distributed with mean
mk, k = 1, 2, 3, 4. The mean service times are set to be m1 = 1.8, m2 = 7.2,
m3 = 2.7, and m4 = 10.8 minutes, as shown in the figure.

As in the previous simulation, we compute the traffic intensity as the
product of the arrival rate and the mean service time. In the presence of
batches, the mean processing time can be amortized over all of the jobs in
a maximum sized batch. Hence, the traffic intensities are given by

ρ1 = α(m1 + m3)/5 = 0.9 and ρ2 = α(m2 + m4)/20 = 0.9.

A more formal definition of traffic intensities will be given in (7.5) in Sec-
tion 2. Clearly, the usual traffic condition (7.6) is satisfied for the parameter
set. Intuitively, the batch processing network should have enough capacity
to handle all incoming jobs, achieving a throughput of 1 job per minute.

The last-buffer-first-serve (LBFS) dispatch policy maximizes throughput
in a standard reentrant line (i.e., without batch operations); see, for exam-
ple Dai and Weiss [19] or Kumar and Kumar [29]. Under LBFS, steps 3
and 4 have priority over steps 1 and 2, respectively. It is reasonable to
believe that, with a few modifications, LBFS can perform the dispatching
duties for reentrant lines with batch operations. The simulation carries out
this idea. Namely, once the LBFS policy selects a buffer, we process the
largest batch possible. Under this modified LBFS policy, referred to as the
LBFS batch policy, each server always selects jobs from the highest priority
nonempty buffer to form a batch, even though the selected buffer may have
only one job in it. The following table shows the average times in system.

Number of jobs leaving the system 50 500 5000 50000
Average time in system 54.2 208.4 1057.3 6831.6

Figure 7.5 plots the total number of jobs in the system as time increases.
Clearly, the system is unstable, thus it cannot handle the traffic loads in
long run. On the other hand, the same simulation shows that, after com-
pleting 50000 jobs, server 1 is busy 96% of the time with average batch size
4.19 jobs and server 2 is busy 99.97% of the time with average batch size
16.41 jobs. In contrast with our first simulation, the servers this time are
apparently heavily utilized, yet the system is unstable. Under the LBFS
batch policy, server 2 keeps serving class 4 batches that may consist of
only five jobs, sent recently from class 3 by server 1. Moreover, this takes
place even when class 2 has a large number of jobs waiting. This example
shows that, in the presence of batch operations, a naive adaptation of a
dispatch policy may prove inefficient, although the policy performs well in
a standard network.

This brings us to our third and final lesson. For a batch server, it is not
enough to form the largest batch after the class has already been chosen.
Similarly, for a server subject to setups and operating under an `-limited
policy, it is not enough to attempt to process `k jobs once class k is already

7. Stability of general processing networks 201

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500 4000 4500

W
IP

time

"WIP"

FIGURE 7.5. The total number of jobs in system

chosen. Instead, when the class is being selected, we should restrict atten-
tion to those buffers from which a sufficiently large batch can be formed, or
a sufficiently long production run can be performed, if such a buffer exists.

7.2 Open processing networks

In this section we present the family of networks under study through-
out the chapter. The model is an extension of open multiclass queueing
networks, as presented by Harrison [23]. For the purpose of this chapter,
we will refer to that model as the standard network. Our model, which
adds setup times, batching operations, and multiple-server workstations to
the standard network, will be referred to as the open stochastic processing
network, or processing network for short. Readers should be warned that
Harrison [24] uses that term with a somewhat different meaning. We adopt
the name nonetheless.

In the remainder of the section, we derive the corresponding standard
network of a given processing network. After drawing connections between
scheduling the resources of both types of networks, we conclude with a
formal definition of rate stability.

202 Jim Dai and Otis B. Jennings

7.2.1 Network description

Consider a network of stations, labelled j = 1, . . . , J . The stations are
populated by classes, labelled k, k′ = 1, . . . ,K, where class k is associated
with a unique station σ(k). Whenever k and j appear together, it is implied
that j = σ(k). The collection C(j) of all classes associated with station j is
referred to as the station’s constituents.

The basic processing unit is a batch, which consists of one or more jobs,
the basic unit of flow. Jobs enter the network exogenously, and change
classes as they move through the network. While awaiting processing, class
k jobs are said to reside in buffer k. We use the terms “buffer” and “class”
interchangeably. For the most part, buffer is used to connote physical lo-
cation, as in a storage place for jobs awaiting processing. The class label
has a more metaphysical interpretation. For instance, one removes a job
from a buffer for processing, but the job retains its class designation until
processing is complete.

Just prior to being processed, jobs are removed from the buffer and
grouped to form a batch. Batches consist exclusively of jobs from a sin-
gle class. (In some industrial settings, jobs from multiple classes can be
included in the same batch, provided they share the same “recipe.”) The
number of jobs in a class k batch is at most Bk; the minimum is one. When
a class k batch is formed, it consists of the oldest jobs in the buffer, mea-
sured in terms of their most recent arrival time to the buffer. In this sense,
forming batches from jobs is first-come-first-batched. Immediately after the
formation of a batch, processing commences and no additional jobs may
be added to the batch. The batch grouping remains intact until process-
ing is complete. Post-processing, the batch grouping is dissolved and the
component jobs are individually routed through the network, perhaps to
different buffer locations. (When a batch is dissolved, we assume an order
is assigned to the departing jobs.) All jobs eventually leave the network.

Each station has a pool of servers that share the processing duties at
the station. We denote the number of servers residing at station j by pj ,
a quantity which generally varies from station to station. The servers of
a given station are identical in the sense that each has the capability of
processing any batch formed at the station. Moreover, the length of the
processing time is independent of which server performs the work. A server
may process at most one batch at a time and batches may be processed by
at most one server. That is, servers cannot combine efforts in the processing
of any batch. Once a server starts processing a batch, it cannot be inter-
rupted. In other words, there is no preemption of service. (There may be
occasions where it makes sense to allow preemption of service. We exclude
it for modelling ease.) We will occasionally say that a server is processing
a class or buffer, meaning, processing the batches from that class.

Suppose a server last processed class k and is about to process a batch
from a different class k′ 6= k. Before the actual batch formation can begin,

7. Stability of general processing networks 203

the server must perform a setup. That is, a delay is incurred whenever a
server switches its processing efforts between classes. Setups are denoted
by the pair (k, k′), where k signifies the class just processed and k′ is the
subsequent class. Generally, the duration of a type (k, k′) setup, or setup
time, depends on both k and k′, as well as their order. In this sense, setups
are sequence-dependent. With the inclusion of setups in our model, servers
are always in one of three states: idle, in-service or in-setup. In addition to
not being interrupted while processing batches, servers are never preempted
while performing a setup.

For each class k, we have the cumulative processes Ek = {Ek(t), t ≥ 0},
Vk = {Vk(n) : n = 1, 2, ...}, and Φk = {Φk(n) : n = 1, 2, ...}. For each time
t ≥ 0, Ek(t) counts the number of external arrivals to class k in [0, t]. For
each positive integer n, Vk(n) records the total service time requirement for
the first n class k batches (regardless of batch size or processing server).
For each positive integer n, Φk(n) is a K-dimensional vector with each
component being a nonnegative integer. For each class k′, Φk

k′(n) records
the number of the first n processed class k jobs that are routed to buffer k′

upon completion of service. When Φk(n − 1) = Φk(n), the nth processed
class k job immediately leaves the system. By convention, we assume

Ek(0) = 0, Vk(0) = 0, and Φk(0) = 0.

For each time t ≥ 0, we extend the definitions of Vk(t) and Φk(t) as follows:

Vk(t) = Vk(btc) and Φk(t) = Φk(btc),

where btc denotes the largest integer less than or equal to t.
In addition, we define the cumulative process Fkk′ = {Fkk′(n) : n =

1, 2, . . .}, associated with type (k, k′) setups. When k and k′ appear together
in the same subscript of a setup quantity, it is implied that the classes are
distinct, k 6= k′, and that they reside at the same station, σ(k) = σ(k′). For
each positive integer n, Fkk′(n) records the total time required for the first
n setups from class k to k′. Again we assume Fkk′(0) = 0. Furthermore, for
each t ≥ 0, we extend the definition so that Fkk′(t) = Fkk′(btc).

We call (E, V,Φ, F) the set of primitive processes, where E = {E(t), t ≥
0}, V = {V (t), t ≥ 0}, Φ = {Φ(t), t ≥ 0}, and F = {F (t), t ≥ 0}, with
E(t) = (E1(t), E2(t), ..., EK(t))′, V (t) = (V1(t), V2(t), ..., VK(t))′, Φ(t) =
(Φ1(t),Φ2(t), . . . , ΦK(t)), and F (t) = {Fkk′(t), k, k′ ∈ C(j), j = 1, . . . , J}.
When appearing with a vector quantity, a prime symbol denotes a column
vector.

We assume that the strong law of large numbers holds for the primitive
processes; namely, with probability one,

lim
t→∞

Ek(t)
t

= αk, lim
t→∞

Vk(t)
t

= mk,

lim
t→∞

Φk
k′(t)
t

= Pkk′ , and lim
t→∞

Fkk′(t)
t

= skk′ . (7.1)

204 Jim Dai and Otis B. Jennings

The parameter set (α, m,P, s) with α = (α1, . . . , αK)′, m = (m1, . . . ,mK)′,
P = (Pkk′), and s = {skk′ , k, k′ ∈ C(j), j = 1, . . . , J} has the following
interpretation: For each k, αk is the external job arrival rate to buffer
k and mk is the mean service time for class k batches. (Recall that the
processing time of a batch is independent of its batch size.) For classes k
and k′, Pkk′ is the long-run fraction of class k jobs that immediately become
class k′ jobs after being processed. It is also called the routing probability
from class k to class k′. The K ×K matrix P is called the routing matrix.
We assume that the network is open, i.e., the matrix

Q = I + P ′ + (P ′)2 + ...

is finite, which is equivalent to the fact that (I −P ′) is invertible such that
Q = (I −P ′)−1. A reentrant line is a special type of processing network in
which all jobs follow the same deterministic route of K steps, and jobs may
visit some stations multiple times. The transition matrix of a reentrant line
consists of K−1 ones and the remaining entries are all zeros. For each pair
(k, k′), skk′ is the mean setup time when a server switches from class k to
class k′. Let sk = maxk′∈C(j) sk′k be the maximum possible mean setup
time to class k.

For future purposes, we introduce the counting processes Ψ = {Ψ(t) :
t ≥ 0} associated with the primitive service process V and Υ = {Υ(t) :
t ≥ 0} associated with the primitive setup process F . For each time t ≥ 0,
Ψ(t) = (Ψ1(t), . . . ,ΨK(t))′ with

Ψk(t) = max{n : Vk(n) ≤ t}, k = 1, ...,K

and Υ(t) = {Υkk′(t), k, k′ ∈ C(j), j = 1, . . . , J} with

Υkk′(t) = max{n : Fkk′(n) ≤ t}, k, k′ ∈ C(j), j = 1, . . . , J.

The process Υkk′ is only defined when skk′ > 0. It follows from the strong
law of large numbers (7.1) that

lim
t→∞

Ψk(t)
t

= µk, k = 1, . . . ,K, (7.2)

where µk = 1/mk, and that, for each setup pair (k, k′) such that skk′ > 0,

lim
t→∞

Υkk′(t)
t

= 1/skk′ . (7.3)

Let λ = (λ1, . . . , λK)′ be the vector of nominal total arrival rates. It is
defined by the following system of equations

λk = αk +
K∑

k′=1

λk′Pk′k, for each k = 1, . . . ,K. (7.4)

7. Stability of general processing networks 205

In vector form, λ = α + P ′λ. Since P is transient, the unique solution to
(7.4) is given by λ = Qα. We define the traffic intensity ρj for station j as

ρj = (1/pj)
∑

k∈C(j)

λk(mk/Bk), j = 1, . . . , J, (7.5)

with ρ = (ρ1, ρ2, . . . , ρJ)′ being the corresponding vector. In the absence
of batch operations (Bk = 1), this definition matches previous definitions
of traffic intensity in the presence of multiple, identical servers; see, for
example, Gross and Harris [22]. One can think of ρj as the average of
the nominal utilizations of the pj servers at station j if every batch is of
the maximum size. Because class k batch sizes can be smaller than Bk,
the fraction of actual effort dedicated to processing batches may very well
exceed ρj . When, for each station j = 1, ..., J,

ρj < 1, (7.6)

we say that the usual traffic condition is satisfied for the processing network.

7.2.2 The standard network and dispatch policies

We now define the corresponding standard network of a processing network.
Our notational convention is to use a tilde when referring to a quantity
associated with the standard network. The corresponding standard network
is identical to the processing network except that (a) the maximum batch
size is one, or equivalently, jobs are the basic processing unit; (b) there
is only one server at each station; (c) the setup times are zero such that
the server exists in either the idle state or the in-service state; and (d)
the primitive service process is given by Ṽk = {Ṽk(n) : n = 1, . . .}, where
Ṽk(n) = Vk(n)/(Bkpj). As a result, the counting process Ψ̃ associated with
the primitive service process Ṽ is described by Ψ̃k(t) = max{n : Ṽk(n) ≤
t} = Ψk(Bkpjt), for each k = 1, . . . ,K. Accordingly, the strong law of large
numbers (7.1) yields

lim
n→∞

Ṽk(n)
n

=
mk

Bkpj
≡ m̃k and lim

t→∞

Ψ̃k(t)
t

= Bkpjµk ≡ µ̃k, (7.7)

for each k = 1, . . . ,K. Moreover, the traffic intensity for station j in the
standard network is the same as in the processing network, i.e., ρ̃j = ρj .
It goes without saying that the usual traffic condition for the standard
network holds if and only if the traffic condition for the processing network
(7.6) holds. In short, in the standard network, stations process one job at
a time, there is no loss in potential server effort from switching, and when
class k jobs are in service, the station j = σ(k) processing rate increases
by a factor of Bkpj over a corresponding server’s speed in the processing
network.

206 Jim Dai and Otis B. Jennings

For a stochastic processing network driven by the primitive processes
(E, V,Φ, F) with maximum batch sizes (B1, . . . , BK)′, the corresponding
standard network is driven by the primitive processes (E, Ṽ ,Φ) with max-
imum batch sizes that are equal to one.

Whenever multiple jobs reside at a station, there is discretion in the
processing order of those jobs. For standard networks, the dispatch policy π̃
is the sole mechanism by which servers are assigned to classes. That is, when
a server becomes available for processing, the dispatch policy selects the
class from which the next job will be processed. Given the class assignment,
the oldest job, based on arrival to the associated buffer, is processed. In this
sense, jobs within a single buffer are processed in a first-come-first-served
(FCFS) fashion. A dispatch policy is said to be non-idling if a server is
never in the idle state when jobs are present at the station.

Not surprisingly, scheduling of servers in a standard network is less com-
plex than in a processing network. To stress this point, an alternative term
is used to distinguish between the two scheduling tasks. A production policy
is to the processing network what a dispatch policy is to a standard net-
work. One of the main themes of this chapter is that dispatch policies that
work well for standard networks are useful in crafting effective production
policies for processing networks.

7.2.3 Production policies and sensible policies

The decision process governing the formation and processing of batches
in a processing network is embodied in the production policy. Because of
the complex nature of each station, we envision most “useful” production
policies having the following three-tiered approach. When a server requires
an assignment to a class for processing, one first filters the set of constituent
classes into a subset of eligible classes. Secondly, the server is dispatched to
one of the eligible classes. The final decision involves setting the termination
time of the assignment as well as determining how batches are formed in
the interim.

Throughout this chapter, we assume production policies have the form
π = (θ, π̃, `). (Exceptions are discussed in Section 7.6.) The K-dimensional
vectors θ = (θ1, θ2, . . . , θK) and ` = (`1, `2, . . . , `K) of positive integers
enforce the filtering function. When a server at station j requires an as-
signment, the constants determine which constituent classes are eligible.
Class k is eligible if the number of class k jobs is equal to or greater than

θk + `kBk × the # of servers already assigned to class k.

(Exceptions that relax the eligibility requirement can be found in Sec-
tion 7.6.) It is possible that the collection of eligible classes at station j is
empty. In cases where no class passes the first eligibility test, the criterion
is relaxed. Under the relaxed test, any class with a nonempty buffer is eli-
gible. From the standpoint of the first eligibility test, if the number of class

7. Stability of general processing networks 207

k jobs is less than θk and no server is assigned to it, that class is effectively
empty. In this sense, the components of θ can be thought of as thresholds.

The second component of the production policy π is the dispatch policy
π̃. This terminology is borrowed from literature on standard networks. The
idea here is the same. Given the current state of the system, dispatch poli-
cies perform the actual assignment of servers to classes. With the standard
network, the assignment lasts at most through the processing of a single
job. For processing networks, however, the assignment lasts (potentially)
for the processing of several batches. We assume that the largest possible
batches are formed and processed until a new assignment is sought.

The stretch of time during which the dispatched assignment holds is
referred to as the production run. The length of the production run or,
equivalently, the number of batches processed before seeking a new assign-
ment, is the third and final decision to be made. The vector ` determines
the length of the production run. If the assignment is for a class k that
passed the first eligibility test, then we process `k batches before seeking
a new assignment (if possible). If the class only passed the relaxed eligi-
bility test, we form and process the largest possible batch and terminate
the production run immediately, allowing the opportunity to make another
production run decision based on updated system information.

The non-idling property for processing networks is not as straightforward
as for the standard network. Part of the complication stems from having
multiple servers in one of three states. As the name suggests, non-idling now
refers to both the in-service and in-setup states. A server in the processing
network is said to be busy if it is in-service or in-setup. A production
policy is said to be non-idling if each server is allowed to idle only when
there are either no jobs at the corresponding station or all of the jobs
present are currently being processed in batches. (This is not to say that
non-idling policies are ideal. Indeed, in some instances it may beneficial to
delay processing the available jobs until a larger batch can be formed.) A
consequence of the non-idling condition is that the number of busy station
j servers at time t is at least

min

pj ,
∑

k∈C(j)

dZk(t)/Bke

 , (7.8)

where dxe is the smallest integer greater than or equal to x and Zk(t)
denotes the number of class k jobs at time t. More concisely, a server can
idle only when the constituent buffers are empty. A precise mathematical
description would require knowledge of the number of jobs in each buffer
k (excluding those in service), whereas we only track the aggregate class k
job count process Zk; for more, see Section 7.3.1.

The non-idling condition does not rule out small batches or short pro-
duction runs, whose occurrences are limited by the eligibility requirements.
A natural quantity of interest is the maximum number of servers at a given

208 Jim Dai and Otis B. Jennings

station that can simultaneously be assigned to eligible classes, a reflection
of how efficiently the resident servers must work. Consider the following
index:

Ij(t) = min

pj ,
∑

k∈C(j)

(
1{Zk(t)≥θk} + b(Zk(t)− θk)+/(`kBk)c

) , (7.9)

for each j = 1, . . . , J, where 1{·} is the indicator function, (x)+ = max(0, x)
and bxc, as stated earlier, is the integer part of x. Suppose a server from
station j is free at time t and requires dispatching. If Ij(t) = pj then this
server will be assigned to a class that passes the more stringent eligibility
test. To see this, first notice that if the class k jobcount exceeds its threshold
(Zk(t) ≥ θk) then at least one server can be assigned to this class. To
each class k, for which Zk(t) ≥ θk holds and to which no server has been
dispatched, there is the potential for assigning a server. Furthermore, for
each additional `kBk class k jobs, an additional server can be assigned.
Therefore, Ij(t) bounds from below the number of servers that can be
assigned to eligible classes at time t. We offer a tighter bound for the
number of servers processing eligible classes in Section 7.3.1.

Assuming that a server is assigned to a class k that passed the first round
eligibility test, we are assured that at least min(θk, `kBk) class k jobs are
available at the beginning of the production run to be processed in one of
at least min(dθk/Bke, `k) batches. If we assume the thresholds are set such
that they exceed the maximum number of jobs processed in a production
run, i.e.,

θk ≥ `kBk, (7.10)

then the above quantities min(θk, `kBk) and min(dθk/Bke, `k) reduce to
`kBk and `k, respectively. One can amortize the setup time incurred from
switching to class k over all of the batches processed during the subsequent
production run. The result is a setup-adjusted mean processing time and
rate, which, when (7.10) holds, are respectively equal to

m̆k = mk + sk/`k and µ̆k = 1/m̆k, k = 1, . . . ,K. (7.11)

With the adjusted mean processing times, one can compute a setup-adjusted
traffic intensity

ρ̆j = (1/pj)
∑
k∈Cj

λk(m̆k/Bk), j = 1, . . . , J. (7.12)

Throughout this chapter, the convention x̆ signifies an inflation of the quan-
tity x or simply an adjustment to the quantity x related to the influence
of setups. The inflation can be due to the amortization of setup time, the
presence of multiple servers, or the performance of batching operations.

7. Stability of general processing networks 209

We conclude with a further restriction of the type of production policies
under consideration. A production policy is said to be sensible if it is non-
idling, equation (7.10) holds, and ρ̆ obeys the usual traffic condition; i.e.,

ρ̆j < 1, for each j = 1, . . . , J. (7.13)

The reasoning behind the restriction to sensible policies is straightforward.
By ensuring that the servers avoid spending an inordinate amount of time
performing setups, sensible policies eliminate setups (and non-maximal
batches) as sources of instability. Furthermore, implicit in the sensible pol-
icy condition is the ability to make tradeoffs of production run lengths. For
instance, it is simple to compensate for setting a relatively short production
run length for one class with a long production run for another class at the
same station. One might use such tradeoffs as a mechanism for account-
ing for high priority “hot lots,” for which production run length (and batch
size) considerations are secondary at best. The last reason for restricting to
sensible policies is more subtle. Having the non-idling condition and (7.13)
ensures that no job can be ignored indefinitely. Moreover, there exists a
finite constant such that the number of jobs at a station falls below the
constant infinitely often. This last feature helps to demonstrate positive
Harris recurrence, a stronger notion of stability investigated by Dai [12] for
standard networks and Jennings [27] for queueing networks with setups.
The latter also employed a similar notion of sensible policies. Lastly, we
point out that, unlike the analogous condition for standard networks, the
traffic condition part of the sensible policy definition (7.13) is not necessary
for stability; for more details, see Section 7.6.

7.2.4 Rate stability

We now define rate stability for open stochastic processing networks. Let
Dk(t) denote the number of jobs in the processing network that have de-
parted class k during the interval [0, t]. In the following definition, the term
state is used. The precise definition of a state depends on the particular
production policy used. The system state typically includes, but is not lim-
ited to, the number of jobs in each class, the status and assignment of each
server, the remaining processing times and the sizes of the batches being
processed, the remaining interarrival times for jobs arriving from outside,
the lengths so far of the current production runs, and the remaining setup
time for each server. We do not attempt a precise definition of state here.
Roughly speaking, a state is a snapshot of the network at any given time. It
should contain enough information such that once the current state of the
network is given, the future evolution of the network is completely deter-
mined in distribution. Readers are referred to Dai [12] and Bramson [5] for
examples and additional discussions of states in standard networks under
various dispatch policies.

210 Jim Dai and Otis B. Jennings

Definition 7.1 A processing network is rate stable if, for each fixed initial
state, with probability one,

lim
t→∞

Dk(t)
t

= λk, for each k = 1, ...,K. (7.14)

The processing network is rate stable if the throughput rate or departure
rate from each class is equal to the nominal total arrival rate to that class.
Rate stability has been advanced by Stidham and his co-authors (see El-
Taha and Stidham [21] and references therein). This notion of stability
was first introduced for the standard network setting in Chen [7]. As in a
standard network, the usual traffic condition is necessary for rate stability
of a processing network; see Dai [13]. As stated earlier, even though we
specify that the setup-adjusted traffic intensities for sensible policies must
obey the usual traffic condition, this is not necessary for stability of the
processing network. There are other definitions of stability, such as positive
Harris recurrence; see Dai [12]. The results in this chapter can be extended
to those settings as well.

As mentioned earlier, the main message of this chapter is that, in some
cases, a dispatch policy of a standard network can be transformed into
an efficient production policy. A precise statement to this effect cannot
be articulated in general. However, Dai and Li [17] successfully provide a
precise result for a subclass of dispatch policies adapted for networks with
zero setup times, that is, for so-called batch processing networks. Their
result, demonstrated for networks of single-server stations, also holds for
networks of multi-server stations. We will resume this discussion on batch
processing networks in Section 7.4.1.

7.3 Network and fluid model equations

In this section, we define fluid models of both processing networks and
standard networks. Fluid models are continuous, deterministic analogs of
discrete networks and are defined through a set of equations. To describe
the fluid models, we start with equations governing the dynamics of the
discrete networks. Unless explicitly stated otherwise, we assume that the
processing network is operated under a sensible production policy π and
the standard network is operated under a non-idling dispatch policy π̃.

7.3.1 Network dynamics

The dynamics of the processing network can be captured by the process X =
(A,D, S, T, U, Y, Z). The components A = {A(t), t ≥ 0}, D = {D(t), t ≥
0}, T = {T (t), t ≥ 0}, S = {S(t), t ≥ 0}, and Z = {Z(t), t ≥ 0} are K-
dimensional. For each class k, Ak(t) denotes the number of jobs that have

7. Stability of general processing networks 211

arrived to class k (from external and internal sources) in [0, t], Dk(t) denotes
the number of jobs that have departed from class k in [0, t], Sk(t) denotes
the amount of time that servers at station j = σ(k) have collectively spent
setting up for class k during the interval [0, t], Tk(t) denotes the amount of
time that the servers at station j = σ(k) have collectively spent processing
class k batches during interval [0, t], and Zk(t) denotes the total number of
class k jobs that are buffered or being served at station j at time t. (One
should keep in mind that the servers at a given station work as a team. Even
though servers individually dedicate portions of their potential effort to the
processing of batches and the performance of setups, the quantities S and T
reflects the total effort among all of the servers.) The processes A, D, S, T ,
and Z are called the arrival, departure, setup allocation, service allocation,
and jobcount processes, respectively. The components U = {U(t), t ≥ 0}
and Y = {Y (t), t ≥ 0} are J-dimensional. For each station j, Uj(t) denotes
the total number of jobs at station j that are buffered or being served at
time t, and Yj(t) denotes the collective total amount of time that servers
at station j have been idle in the time interval [0, t]. (Again, idle time is
summed over all of the resident servers at station j.) The process Y is called
the cumulative idle time process. The process X = (A,D, S, T, U, Y, Z)
satisfies the following set of equations:

A(t) = E(t) +
∑

k

Φk(Dk(t)), t ≥ 0, (7.15)

Z(t) = Z(0) + A(t)−D(t), t ≥ 0, (7.16)
Z(t) ≥ 0, t ≥ 0, (7.17)
U(t) = CZ(t), t ≥ 0, (7.18)
C(S(t) + T (t)) + Y (t) = pt, t ≥ 0, (7.19)

Yj(t) can increase only if
∑

k∈C(j)

dZk(t)/Bke < pj , (7.20)

additional equations associated with the particular (7.21)
production policy π.

Here C is the constituency matrix defined as

Cjk =
{

1 if k ∈ C(j),
0 otherwise,

and p = (p1, p2, . . . , pJ)′ denotes the J-dimensional vector indicating the
number of servers at each station.

We provide a brief interpretation of equations (7.15)–(7.21); where con-
venient, the interpretation is component-wise. Equation (7.15) implies the
cumulative arrivals to buffer ` consists of those jobs arriving to ` from
the outside (E`(t)), and those jobs routed to class ` after being processed
in some other class. As for (7.16), the class ` jobcount process at time t,

212 Jim Dai and Otis B. Jennings

Z`(t), is equal to the number of class ` jobs present initially, plus all jobs
that have arrived to buffer ` thus far, net those class ` jobs that have been
processed. Expression (7.17), referred to as the nonnegativity constraint, is
self-explanatory. For each j, the station-wide jobcount quantities are com-
puted in (7.18). Equation (7.19) tracks, for each station j, how the total
server time has been distributed, up until time t, i.e., between performing
setups, processing batches, and idling. Note that the non-idling condition
(7.20) contains the expression from (7.8). For additional interpretation, a
version of (7.20) appeared in Chen and Shanthikumar [9]. Finally, the pro-
duction policy π, used to govern the scheduling of servers, will have a major
effect on system dynamics, hence the provision in (7.21).

Condition (7.20) gives an adequate, if not completely accurate, account of
what we actually mean by non-idling. However, it may be more interesting
to consider the number of servers assigned to eligible classes at time t. A first
pass at this quantity was presented in (7.9), where, for each j = 1, . . . , J,

Ij(t) = min

pj ,
∑

k∈C(j)

(
1{Zk(t)≥θk} + b(Zk(t)− θk)+/(`kBk)c

) .

We can tighten the definition of non-idling through the introduction of the
K-dimensional process Z∗, referred to as the “uncommitted” jobcount pro-
cess. When a server is dispatched to buffer k it reserves `kBk jobs. Thus
the uncommitted number of class k jobs Z∗

k decreases by `kBk upon re-
ceiving a dispatched server. The uncommitted jobcount processes increases
with arrivals, just as Zk increases. Some extra care must be taken when a
server is dispatched to a class with an insufficient number of uncommitted
jobs. Assuming this special case is handled properly, the new non-idling
condition reads

Yj(t) does not increase if Z∗
k(t) ≥ θk for some k ∈ C(j).

As mentioned earlier, the selection of jobs in the formation of batches
follows a first-come-first-batched order. That is, jobs that have been in
buffer k the longest have priority when batches are formed. When there are
multiple servers at a station, batches from the same class may be processed
in parallel. If the processing time of batches from the same class differs,
it is possible for the departures of jobs from a class to violate the first-in-
first-out protocol that the formation of batches obeys. To account for this
feature, we have the following additional equations. For 0 ≤ t1 < t2 and
k = 1, . . . ,K,

Ψk(Tk(t2))− Ψ̆k(Tk(t1)) ≤
1

Bk
(Dk(t2)−Dk(t1)) + pj − 1 (7.22)

when Ij(s) = pj for s ∈ [t1, t2], where j = σ(k), and

Ψ̆k(Tk(t2))−Ψk(Tk(t1)) ≥
1

Bk
(Dk(t2)−Dk(t1))− pj + 1. (7.23)

7. Stability of general processing networks 213

The function Ψ̆k(t), defined fully in the appendix, is an inflated version of
Ψk(t). The inflated process Ψ̆k(t) reflects the fact that the completion se-
quence of processed class k batches may diverge from the batch-formation
sequence. However, as expressed formally in Lemma 7.19 of the appendix,
under fluid scaling, the difference between Ψ̆k and Ψk is negligible. Equa-
tions (7.22) and (7.23) follow from (7.75) and (7.76), both found in the
appendix. For the lower bound on departures provided by (7.22), the con-
dition Ij(s) = pj for each s ∈ [t1, t2] ensures that servers at station j are
making the largest batches possible. The upper bound on departures em-
bodied in (7.23) captures the fact that class k batch sizes are no greater
than Bk.

When enough jobs are present at the station, a sensible production policy
restricts the frequency of class k setups to one for every `k batches. To
facilitate capturing the restriction mathematically, we expand the definition
of Sk(t) to Sk′k(t), the cumulative server time spent performing setups from
k′ to k. Clearly Sk(t) =

∑
k′ Sk′k(t). Suppose (7.10) holds. Then for every

t1 < t2 such that Zk(s) ≥ θk + (pj − 1)`kBk for every s ∈ [t1, t2] we have

Dk(t2)−Dk(t1) (7.24)

≥ `kBk

(∑
k′∈C(j) [Υk′k(Sk′k(t2))−Υk′k(Sk′k(t1))]− 2pj

)
,

for each k ∈ C(j) and j = 1, . . . , J. The left hand side of (7.24) is the
number of processed jobs within the interval. Because class k is eligible
throughout the interval, each occurrence where both a setup for class k
and the subsequent production run lie entirely within the interval, the
production run consists of exactly `k batches, each with the maximum Bk

number of jobs. Hence the `kBk term on the right hand side. The 2pj

term accounts for the fact that, for each server in the pool, a setup could
be in process for class k both at time t1 and at time t2. The setups at
the beginning of the time horizon could have been initiated when no class
passed the first (stricter) eligibility test. Hence, the setup is not necessarily
followed by the processing of `k batches. The setups at the end of the time
interval may not have a chance to be followed by the `k batches because of
running out of time. We call equations (7.15)-(7.24) the processing network
equations. Note that S, T and Y are continuous, and that A, D, and Z
are right continuous with left limits. All variables are nonnegative in each
component, with A, D, S, T , and Y being non-decreasing. By assumption,

A(0) = D(0) = S(0) = T (0) = Y (0) = 0.

For each processing network driven by (E, V,Φ, F), the corresponding
standard network driven by (E, Ṽ ,Φ) has similar processes. In contrast
with the processing network process X = (A,D, S, T, U, Y, Z), the stan-
dard network process is denoted X̃ = (Ã, D̃, T̃ , Ũ , Ỹ , Z̃). (Again, the tilde
is specific to standard networks.) Note that S̃ is missing from X̃ because

214 Jim Dai and Otis B. Jennings

there are no setups in the standard network. The equations governing the
standard network process are almost the same as the ones for processing
network. The exceptions are that equation (7.19) lacks the S(t) term and
the vector p is replaced by the J-dimensional vector e = (1, . . . , 1)′; equa-
tion (7.20) is replaced by

Yj(t) can only increase if Uj(t) = 0; (7.25)

equations (7.22) and (7.23) are reduced to

Ψ̃k(T̃k(t)) = D̃k(t), for all t ≥ 0, k = 1, . . . ,K,

which is well-known for standard networks operating under a head-of-line
dispatch policy; equation (7.24) is removed; and equation (7.21) is replaced
by

additional equations associated with the particular dispatch policy π̃.
(7.26)

7.3.2 Fluid models

Let X̂ = (Â, D̂, T̂ , Û , Ŷ , Ẑ) be the formal deterministic analog of the stan-
dard network process X̃ = (Ã, D̃, T̃ , Ũ , Ỹ , Z̃). Consider the following col-
lection of equations:

Â(t) = αt + P ′D̂(t), t ≥ 0, (7.27)
Ẑ(t) = Ẑ(0) + Â(t)− D̂(t), t ≥ 0, (7.28)
Ẑ(t) ≥ 0, t ≥ 0, (7.29)
Û(t) = CẐ(t), t ≥ 0, (7.30)
CT̂ (t) + Ŷ (t) = et, t ≥ 0, (7.31)
Ŷj(t) can increase only if Ûj(t) = 0, j = 1, ..., J, (7.32)

D̂k(t) = µ̃kT̂k(t), k = 1, . . . ,K, (7.33)
additional equations associated with the particular, (7.34)

dispatch policy π̃,

where µ̃k is the class k service rate for the corresponding standard network,
defined in (7.7), and, as before, e is the J-dimensional column vector of 1’s.
Equations (7.27)-(7.34), which define the standard fluid model, are referred
to as the standard fluid model equations. As with the equations describing
the processing network and the corresponding standard network, we assume
that the the components of the processes T̂ and Ŷ are zero at time zero and
are nondecreasing thereafter. Any process X̂ = (Â, D̂, T̂ , Û , Ŷ , Ẑ) satisfy-
ing (7.27)-(7.34) is called a standard fluid model solution. The component
processes Â, D̂, T̂ , and Ẑ are called the fluid arrival, departure, service

7. Stability of general processing networks 215

allocation, and buffer level processes, respectively. The quantity Ûj(t) de-
notes the total amount of fluid at station j at time t. The process Ŷj is
referred to as the server idle time for station j. Standard fluid models and
their solutions are fairly well-known; see, for instance, Dai [13]. Such mod-
els arise from taking fluid limits of standard networks, a topic we explore
in the following section.

One can make qualitative comparisons between the standard fluid model
and the equations governing the standard network. The major difference is
that jobs are (discrete) units of flow in the standard network whereas flow
in the fluid model is continuous; hence, the term “fluid.” Along these same
lines, the non-idling condition in the fluid model states that the station j
cumulative idling process Ŷj cannot increase in the presence of any positive
amount of fluid at the station, as opposed to any jobs in the corresponding
standard network equation.

Next, we present a generalization of the standard fluid model. Consider
the process X̆ = (Ă, D̆, T̆ , Ŭ , Y̆ , Z̆) and the following set of equations:

Ă(t) = αt + P ′D̆(t), t ≥ 0, (7.35)
Z̆(t) = Z̆(0) + Ă(t)− D̆(t), t ≥ 0, (7.36)
Z̆(t) ≥ 0, t ≥ 0, (7.37)
Ŭ(t) = CZ̆(t), t ≥ 0, (7.38)
CT̆ (t) + Y̆ (t) = pt, t ≥ 0, (7.39)
Y̆j(t) can increase only if Ŭj(t) = 0, j = 1, ..., J, (7.40)

D̆k(t2)− D̆k(t1) ≤ Bkµk(T̆k(t2)− T̆k(t1)), t1 < t2,∀k, (7.41)
D̆k(t2)− D̆k(t1) ≥ Bkµ̆k(T̆k(t2)− T̆k(t1)) (7.42)

if Ŭj(s) > 0 ∀s ∈ [t1, t2], 0 ≤ t1 < t2,

additional equations associated with the particular (7.43)
production policy π,

where µ̆k is the setup-adjusted quantity, defined in (7.11), and, as before,
p = (p1, . . . , pJ)′. Equations (7.35)-(7.43) are called artificial fluid model
equations, and they define the artificial fluid model of the stochastic pro-
cessing network. Any process X̆ = (Ă, D̆, T̆ , Ŭ , Y̆ , Z̆) satisfying (7.35)-(7.43)
is called an artificial fluid model solution. As with the standard fluid model,
the components of T̆ and Y̆ are initially zero at time zero and are nonde-
creasing for all t > 0.

Although the connection between the standard fluid model and the stan-
dard (discrete) network is straightforward, we cannot claim a direct deriva-
tion of the artificial fluid model from a limiting procedure on the processing
network. The dubious origin of this particular fluid model partially explains
the moniker “artificial.” In fact there are additional peculiarities yet to be
resolved. In particular, notice the setup allocation process S of the process-
ing network is conspicuously missing from the artificial fluid model coun-

216 Jim Dai and Otis B. Jennings

terpart. Yet another questionable feature of the model is the component
process T̆ , which, in some way, is analogous to the service allocation process
T as well as the setup allocation process S. With intentional ambiguity, we
refer to T̆ as the artificial server allocation process. Justification of the
artificial fluid model is delayed until the following section. The remaining
processes, Ă, D̆, Z̆, Ŭ , and Y̆ , retain their interpretations and terms from
the standard fluid model.

Even without a formal justification of the model, it is nevertheless pos-
sible and, more importantly, instructive to interpret the equations of the
artificial fluid model. Especially interesting are those equations in the ar-
tificial fluid model that differ from their analogous standard fluid model
counterparts. For instance, compare equations (7.31) and (7.39). The dif-
ference is that by time t each station in the standard fluid network has t
units of potential server effort, whereas station j in the artificial fluid net-
work has pjt potential units of artificial server effort. Secondly, equation
(7.33) in the standard fluid model is replaced by (7.41) and (7.42) in the
artificial fluid model. In the standard fluid model, departures are directly
proportional to server effort. However, in the artificial fluid model, the re-
turns on artificial server effort are not as straightforward. Equation (7.41)
gives the maximum rate at which effort is converted to departing units of
fluid. There is an analogous interpretation from the (discrete) processing
network. To see this, consider the average rate at which jobs depart a class
when maximum-sized batches are being processed and no setup delays are
incurred. Equation (7.42) provides a lower bound on the departure rate
of fluid as a function of the rate of artificial server allocation when there
is positive fluid at the station. This particular interpretation is related
to the enforcement of the sensible policy rules. For one, maximum-sized
batches are being formed. Secondly, at least `k batches are being processed
per class k setup. Hence, µk is replaced by its setup-adjusted quantity
µ̆k = 1/m̆k ≤ µk, as defined in (7.11). Finally, additional standard fluid
model equations associated with the dispatch policy π̃, (7.34), may differ
from artificial fluid model equations associated with the production policy
π, (7.43).

Definition 7.2 An artificial fluid model is said to be weakly stable if for
each artificial fluid model solution X̆ with Z̆(0) = 0, Z̆(t) = 0 for t ≥ 0.

Weak stability of a standard fluid model can be defined similarly; see, for
example, Chen [7].

7.3.3 Connection between processing networks and fluid
models

The criterion for including an equation in the standard fluid model is that
the equation is satisfied by a fluid limit. As suggested in the previous sec-

7. Stability of general processing networks 217

tion, the inclusion of an equation in the artificial fluid model has an addi-
tional step. In this section we provide the details of both the fluid limits
and the additional steps.

A fluid limit of a standard network is obtained through a law-of-large-
numbers limiting procedure on the standard network process. Identically,
a fluid limit of a processing network is obtained through a law-of-large-
numbers limiting procedure on the processing network process. Note that
the processing network process X (resp. standard network process X̃) is
random, depending on the sample path ω in an underlying probability
space. To denote such dependence explicitly, we sometimes use X(ω) to
denote the network process with sample path ω. For an integer d, Dd[0,∞)
denotes the set of functions x : [0,∞) → Rd that are right continuous on
[0,∞) and have left limits on (0,∞). An element x in Dd[0,∞) is sometimes
denoted by x(·) to emphasize that x is a function of time. For each ω, X(ω)
is an element in D5K+2J [0,∞).

For each r > 0, define

X̄r(t, ω) = r−1X(rt, ω) t ≥ 0. (7.44)

Again, note that for each r > 0, X̄r(·, ω) is an element in D5K+2J [0,∞).
The scaling in (7.44) is called the fluid or law-of-large-numbers scaling.

Definition 7.3 A function X̄ ∈ D5K+2J [0,∞) is said to be a fluid limit
of the processing network if there exists a sequence rn → ∞ and a sample
path ω satisfying (7.1) such that

lim
n→∞

X̄rn(·, ω) → X̄(·),

where, throughout this chapter, the convergence is interpreted as the uni-
form convergence on compact sets (u.o.c.).

Uniform convergence on compact sets, as it pertains to fluid limits of net-
works, is discussed, for instance, in Chen and Mandelbaum [8].

The existence of fluid limits is well-known. A standard argument like the
one in Dai [12] shows that for any r →∞ and any sample path ω, there is a
subsequence rn such that S̄rn(·, ω) and T̄ rn(·, ω) converge as n →∞. Fix an
ω that satisfies (7.1). The convergence of T̄ rn , together with equation (7.23),
condition (7.1) and Lemma 7.19, implies that D̄rn converges. This latter
convergence, together with equation (7.15) and condition (7.1), implies that
Ārn converges. The convergence of other components of X̄rn then readily
follows. Thus, X̄rn converges to a fluid limit as n →∞.

We now convert the fluid limit X̄ into an artificial “fluid limit” X̆. We
use the term “limit” facetiously. In fact, the process X̆ is not a limit at
all. Our true intentions are embodied in the following proposition. By the
expression T̆ = S̄ + T̄ we mean T̆ (t) = S̄(t) + T̄ (t) for each t ≥ 0.

218 Jim Dai and Otis B. Jennings

Proposition 7.4 Given a fluid limit X̄ = (Ā, D̄, S̄, T̄ , Ū , Ȳ , Z̄) of a pro-
cessing network operating under a sensible production policy π, the process
X̆ = (Ă, D̆, T̆ , Ŭ , Y̆ , Z̆) = (Ā, D̄, T̄ + S̄, Ū , Ȳ , Z̄) is an artificial fluid model
solution.

Proof. Fix the fluid limit X̄ and construct X̆ by collapsing the allocation
processes S̄ and T̄ to T̆ , i.e., T̆ = S̄ + T̄ . Equation (7.41) follows from
(7.23), Lemma 7.19 and the fact that T̆k(t2) − T̆k(t1) ≥ T̄k(t2) − T̄k(t1)
for every 0 ≤ t1 ≤ t2. As for equation (7.42), from the strong law of large
numbers (7.3), for each k = 1, . . . ,K and 0 ≤ t1 < t2,

lim
rn→∞

∑
k′∈C(j)

(
Ῡrn

k′k(S̄rn

k′k(t2))− Ῡrn

k′k(S̄rn

k′k(t1))
)
≥ 1

sk

(
S̄k(t2)− S̄k(t1)

)
,

(7.45)
and, from (7.22), (7.23) and Lemma 7.19,

D̄k(t2)− D̄k(t1) = Bkµk

(
T̄k(t2)− T̄k(t1)

)
, for each k ∈ C(j), (7.46)

whenever Ūj(s) > 0 for each s ∈ [t1, t2]. By (7.24), (7.45) and (7.46) we
have,

S̄k(t2)− S̄k(t1) ≤
sk

`kmk

(
T̄k(t2)− T̄k(t1)

)
,

and, hence, by (7.11)

T̆k(t2)− T̆k(t1) = T̄k(t2) + S̄k(t2)−
(
T̄k(t1) + S̄k(t1)

)
(7.47)

≤ m̆k

mk

(
T̄k(t2)− T̄k(t1)

)
,

whenever Ūj(s) = Ŭj(s) > 0 for each s ∈ [t1, t2]. Equation (7.42) follows
from (7.46) and (7.47). Other fluid model equations can be verified as in
Dai [12]. 2

By now it should be abundantly clear that artificial fluid models are the
combination of a law-of-large-numbers limiting procedure, the limitations
on setup allocation via sensible policy constraints, and the collapsing of
setup and service allocation processes into a single artificial server alloca-
tion process.

Theorem 7.5 Let a sensible production policy π be fixed. If the artificial
fluid model is weakly stable, then the corresponding processing network is
rate stable.

Proof. The theorem was first explicitly stated in Chen [7] for standard
networks. The only difference here is recognizing that a fluid limit of the
processing network is a solution to the artificial fluid model once the allo-
cation processes are collapsed. The remainder of the proof is identical to
one for the standard network. See, for example, Dai [13]. 2

7. Stability of general processing networks 219

7.4 The connection between the artificial and
standard fluid models

Our goal is to craft a sensible production policy π such that the processing
network operating under the policy π is rate stable, if at all possible. As
stated earlier, this pursuit is possible only if the usual traffic condition (7.6)
holds. It turns out that when (7.6) holds, coming up with a stabilizing π is
always possible.

The standard fluid model has become the conventional tool for demon-
strating stability of the standard network operating under a given dispatch
policy. The connection between stability of the standard network and its
associated fluid model was made concrete through the standard network
analog to Theorem 7.5, provided by Chen [7]. A sizeable body of literature is
devoted to investigating standard fluid models, primarily in demonstrating
some form of stability. One particularly useful technique for demonstrating
stability is via Lyapunov functions. Not surprisingly, a large portion of the
literature focuses on finding the right Lyapunov function to demonstrate
stability, given the dispatch policy in question.

Given the similarities between the standard fluid model and the artificial
fluid model, we would like to piggyback on these efforts. In particular, it
would be ideal if the Lyapunov function that demonstrates the stability of
a standard fluid model also works for the artificial fluid model analog. In
this section we explore the connections between the fluid models. We start
with the special case of batch processing networks, where setups times are
all zero, and conclude with the general case.

7.4.1 Batch processing networks and normal policies

A batch processing network is the special case of a processing network for
which the setup times are all zero. This definition is slightly more general
than the one in Dai and Li [17]. In their paper, each station is populated
by a single server. Let π = (θ, π̃, `) be a sensible production policy used
to schedule a batch processing network. Since setup times are zero, we
assume that `k = 1 for each class k. Borrowing from Dai and Li [17], the
resulting sensible production policy is referred to as a full batch policy. A
dispatch policy π̃ is said to induce a full batch policy π if π = (θ, π̃, 1). We
now consider when dispatch policies that are known to stabilize standard
networks induce full batch policies that stabilize batch processing networks.

Let X̄ = (Ā, D̄, S̄, T̄ , Ū , Ȳ , Z̄) be a fluid limit of a batch processing net-
work. We include the component S̄, even though it is always zero, to em-
phasize that this is still the fluid limit of a processing network. We can
trivially construct a process X̆ = (Ă, D̆, T̆ , Ŭ , Y̆ , Z̆) by simply copying all
of the nontrivial components of X̄; that is (Ă, D̆, T̆ , Ŭ , Y̆ , Z̆) = (Ā, D̄, T̄ ,

Ū , Ȳ , Z̄). We refer to processes X̆ constructed in this manner as batch fluid

220 Jim Dai and Otis B. Jennings

limits. The batch fluid model then is defined by (7.35)-(7.41), along with

D̆k(t2)− D̆k(t1) = Bkµk

(
T̆k(t2)− T̆k(t1)

)
if Ŭj(s) > 0 ∀s ∈ [t1, t2], 0 ≤ t1 < t2 (7.48)

and

additional equations associated with the particular (7.49)
full batch policy π,

which replace (7.42) and (7.43), respectively.
In a sense, the batch fluid model bridges the gap between artificial and

standard fluid models. For example, as in the artificial fluid model, there
are two equations governing the conversion of allocated server effort to
departing jobs. In fact, to further match (7.42), equation (7.48) could be
expressed as an inequality. Equality holds because the upper bounds and
lower bounds agree on intervals during which there is positive fluid at the
associated station. Since there are no setup times, the class k inflated mean
service times m̆k (see equation (7.11)) equals the regular class k mean ser-
vice time mk. Modulo the server pool constant pj implicit in the compu-
tation of the class k service time in the corresponding standard network
m̃k (see equation (7.7)), equation (7.48) matches its standard fluid model
analog (7.33) on intervals during which Ŭj(·) is positive.

Let X̆ = (Ă, D̆, T̆ , Ŭ , Y̆ , Z̆) be a batch fluid model solution, i.e., a solu-
tion to (7.35)-(7.41), (7.48) and (7.49). We would like to convert it into
a standard fluid model solution X̂ = (Â, D̂, T̂ , Û , Ŷ , Ẑ). We define X̂ as
follows: for each t ≥ 0,

Â(t) = Ă(t), (7.50)
D̂(t) = D̆(t), (7.51)
T̂k(t) = m̃kD̂k(t), k = 1, ...,K, (7.52)

Ŷj(t) = t−
∑

k∈C(j)

T̂k(t), j = 1, . . . , J, (7.53)

Û(t) = Ŭ(t), (7.54)
Ẑ(t) = Z̆(t). (7.55)

One can verify that the constructed process X̂ satisfies (7.27)-(7.33) such
that it is almost a standard fluid model solution. As forwarded by Dai and
Li [17], we define a subclass of dispatch policies π̃ such that the constructed
process is indeed a standard fluid model solution.

Definition 7.6 A dispatch policy π̃ is called normal if for any batch fluid
model solution X̆ under a full batch policy π = (θ, π̃, 1) induced by π̃, X̂
constructed by (7.50)-(7.55) also satisfies (7.34).

7. Stability of general processing networks 221

For the single-server stations case, Dai and Li [17] show that static buffer
priority (SBP) policies, the first-in–first-out (FIFO) policy, and the gener-
alized round robin (GRR) policy are normal. Because we modify dispatch
policies in a different manner than in Dai and Li [17], generalized round
robin is not normal for our circumstances. It should not be surprising that
normal policies for single-server networks are often normal for the multi-
server systems.

Proposition 7.7 If a dispatch policy π̃ operating in a standard network is
normal, then the batch fluid model under the induced full batch policy π is
weakly stable if the standard fluid model under policy π̃ is weakly stable.

Proof. Consider the fluid model of the batch processing network operating
under the full batch policy π induced by the normal policy π̃. Through a
slight modification of the proof by Dai and Li [17], it can be shown that
any solution to the batch fluid model X̆ can be converted to X̂ through
equations (7.50)-(7.55), where X̂ is a solution to the standard fluid model
associated with the dispatch policy π̃. 2

With this preparation, we now provide an extension of the main result
of Dai and Li [17] to networks with multiple servers. Application of the
following theorem can be used in conjunction with Corollary 7.15 of Sec-
tion 7.5.1.

Theorem 7.8 For a given batch processing network, assume that a dis-
patch policy π̃ is normal for the corresponding standard network. The batch
processing network operating under the induced batch policy π is rate stable
if the standard fluid model operating under π̃ is weakly stable.

Proof. Assume that π̃ is a normal dispatch policy in the corresponding
standard network. Assume further that the corresponding standard fluid
model is weakly stable. By Proposition 7.7, the batch fluid model operating
under the induced batch policy π is weakly stable. The proof follows from
Theorem 7.5. 2

We conclude with an extension of a result by Dai and Li [17] for so-called
static buffer priority (SBP) policies. Under an SBP policy, each station has
a strict priority ranking of the constituent buffers. When a dispatching
decision is made, the associated server is dispatched to the highest priority,
eligible buffer. When the network under consideration is a standard one,
eligible is synonymous with nonempty. The aforementioned extension can
easily be shown:

Lemma 7.9 Any SBP policy is normal.

This lemma is critical to Corollary 7.15 at the conclusion of Section 7.5.1.

222 Jim Dai and Otis B. Jennings

7.4.2 Stability under sensible production policies

The presence of setups in the processing network renders the arguments
of the previous section difficult to apply. That is, extending the definition
of normal policies would not be fruitful under our definition of produc-
tion policy (see the extensions section for discussion of when the extension
might be useful). The problem is that, for the artificial fluid model, con-
version of allocated server effort to the departure process (embodied in
equations (7.41) and (7.42)) is not constant, as it is for a batch fluid model
when the associated station has positive fluid (embodied in equation (7.48).
Accordingly, we require a more hands-on approach.

Typically, Lyapunov functions are used to demonstrate stability of stan-
dard fluid models. The following is one method of using a Lyapunov func-
tion. For more examples of its usage, see Dai [13]. Given a standard fluid
model solution X̂ ∈ D4K+2J [0,∞):

• Find a functional L which maps X̂ to a nonnegative function f , where
f(t) = L(X̂)(t) is absolutely continuous in t, and

• f(t) > 0 if and only if Ẑ(t) 6= 0, such that

• there exists an ε > 0 where Ẑ(t) 6= 0 implies d
dtf(t) ≤ −ε.

Given such a functional L with the absolute continuity of f , one has Ẑ(t) =
0 for all t ≥ f(0)/ε.

This approach is somewhat overkill. The approach allows one to show
that, given some positive fluid at time zero, the fluid model solution drains
in a finite time proportional to the Lyapunov function value at time zero.
But since our fluid model starts with zero fluid, the Lyaponuv function has
an initial value of zero, and the fluid model solution remains as such for all
time. There is no overkill if the ε in the description is equal to zero.

Clearly, Lyapunov functions can also be used for showing weak stability
of artificial fluid models. In fact, in some instances:

The Lyapunov function that shows a given dispatch policy π̃ stabilizes a
standard network may also show that a corresponding sensible production
policy π stabilizes a processing network.

This admittedly nebulous statement is the closest we can come to replicat-
ing, for general processing networks, the normal policy paradigm for batch
fluid models. However, in the following section, we carry out the details in
two examples.

The idea just articulated was previously forwarded in Dai and Jen-
nings [15] for systems with no batch processing operations and single-server
stations, also referred to as queueing networks with setups. In [15] they ex-
amine so-called Kelly networks with setups. A Kelly network, as described

7. Stability of general processing networks 223

by Bramson [3], is a special class of a standard network, where, for each sta-
tion, the mean processing times of all constituent classes are identical; that
is, mk = mk′ for all k, k′ ∈ C(j), j = 1, . . . , J . A Kelly network with setups,
introduced in [15], has the same mean processing time restrictions of Kelly
networks, but the mean setup times have the general sequence-dependent
structure of processing networks. Adapting the entropy Lyapunov func-
tion used by Bramson [3] to prove stability of Kelly networks, two results
emerge: the stability of almost-Kelly networks under the FIFO dispatch
policy and the stability of Kelly networks with setups operating under a
subclass of sensible FIFO production policies π = (θ, FIFO, `).

Paralleling the result in [15] is the analogous result by Dai and Li [17]
for so-called batch Kelly networks, whose predictable definition we omit.
It turns out that the FIFO dispatch policy for Kelly networks is a normal
policy. Hence, by Theorem 7.8, the batch Kelly network, operating under an
induce full batch FIFO policy π = (θ, FIFO, 1), is rate stable. It would not
be surprising if the results in [15] and [17] could be combined for would-be
Kelly processing networks.

7.5 Examples of stable policies

We now demonstrate the power of our framework by proving the stability of
two sensible production policies. In the first case we consider a special class
of multi-type networks operated under a sensible early-steps-first (ESF)
policy. In the second case, the processing network with the most general
form discussed in the chapter is operated under a sensible generalized round
robin (GRR) production policy.

7.5.1 Early steps first

Consider a family of standard networks where each job follows some deter-
ministic route, or sequence of buffers, through the network. Suppose that
for each buffer there is only one manner in which jobs arrive, exogenously
or from one (upstream) buffer. Buffers that receive jobs exogenously are
referred to as sources. Let E denote the set of all source buffers. Without
loss of generality, αk > 0 for each k ∈ E . Jobs that enter the system through
buffer k are said to belong to the same job type and follow the same route of
buffers through the network. We refer to such networks as multi-type queue-
ing networks, or multi-type networks for short. Jobs of different types do
not mix; that is, there are no common buffers in the routes of two distinct
job types. In a sense, multi-type networks are the superposition of multiple
reentrant lines on a single collection of stations.

For a multi-type network, the corresponding transition matrix P and
arrival rate vector α exhibit special structure. If some element k of α is

224 Jim Dai and Otis B. Jennings

nonzero, then the corresponding column of P has all zeros. Otherwise,
αk = 0 and exactly one element of the corresponding column of P is one
and the other elements are all zero.

To facilitate the description of the ESF dispatch policy we alter the
notation slightly. In the new notation, classes are denoted by their (type,
step) pair. The types are indexed q = 1, . . . , |E| and the steps are indexed
k = 1, . . . ,Kq, where Kq reports the length of the type q route. All of the
class-specific quantities now have this alternative notation. For instance,
m(q,k) denotes the class (q, k) mean processing time and Z(q,k)(t) records
the number of class (q, k) jobs at time t. In a slight abuse of notation, we
replace the arrival rate of type q jobs α(q,1) with the quantity αq.

We are now equipped to describe the ESF dispatch policy. Suppose the
server at station j needs to be dispatched at time t. Among all of the
nonempty buffers at the station, the server will be dispatched to a buffer
(q, k), where k is the first nonempty step at the station. Any other con-
stituent buffer (q′, k′) ∈ C(j) with k′ < k, must therefore be empty. Note,
it is possible that station j houses multiple classes that are the kth step for
their respective routes. The policy does not explicitly say how to choose
among such classes; that is, ties are broken arbitrarily.

Theorem 7.10 Under the usual traffic condition (7.6), a multi-type net-
work, operating under the earlier-step-first dispatch policy, is rate stable.

A proof of Theorem 7.10 might use the following linear Lyapunov function:

L(t) =
∑
(q,k)

β+
(q,k)Ẑ(q,k)(t), (7.56)

where

β(q,k) =

{
m(q,k)

(
1 + γj,k

1−ρj

)
k = 1, . . . ,Kq,

0 k = Kq + 1,
(7.57)

γj,k =
∑

(q,k)∈C(j,k)

αqβ
+
(q,k+1), (7.58)

and

β+
(q,k) =

Kq∑
k′=k

β(q,k′). (7.59)

The set C(j, k) = {(q, k′) ∈ C(j) : k′ = k}, used in (7.58), contains the
constituent classes of station j that are composed of the kth step of some
route. The proof of Theorem 7.10 is implied by the proof of Theorem 7.11.

Multi-type processing networks have the same routing and arrival char-
acteristics as their multi-type network analogs. We can adapt the ESF
dispatch policy to form a sensible early-steps-first production policy π =
(θ, π̃, `). The policy evolves as follows: When a server at station j is free

7. Stability of general processing networks 225

for dispatching, we create a list of eligible constituent buffers. The server
will be dispatched to a buffer (q, k), where k is the earliest step with an
eligible buffer at the station. Any other constituent buffer (q′, k′) ∈ C(j)
with k′ < k, must be ineligible. Moreover, if (q′, k′) is ineligible, it must be
the case that

Z(q′,k′)(t) < θ(q′,k′) + (pj − 1)`(q′,k′)B(q′,k′).

Assuming (q, k) passed the more stringent eligibility test, a setup is per-
formed (if necessary) for class (q, k) and then `(q,k) full batches are pro-
cessed in a row (if possible) before the server is freed for subsequent dis-
patching. As in the standard network setting, there may be more than one
eligible buffer from step k at station j. Any arbitrarily chosen tie-breaking
scheme will yield the same stability results.

Theorem 7.11 A multi-type processing network operating under a sensible
early-steps-first production policy π = (θ,ESF, `) is rate stable.

We delay the proof of the following lemma until the appendix.

Lemma 7.12 Under the sensible early-steps-first production policy π =
(θ,ESF, `), the artificial fluid model equation (7.43) takes the form

k′∑
k=1

∑
(q,k)∈C(j)

Z̆(q,k)(t) > 0 implies
k′∑

k=1

∑
(q,k)∈C(j)

˙̆
T (q,k)(t) = pj (7.60)

for every step k′ ≥ 1 and each station j = 1, . . . , J .

Proof of Theorem 7.11. Let X̆ be a solution to the artificial fluid model
operating under a sensible ESF production policy. We adapt the linear
Lyapunov function devised for the ESF dispatch policy to obtain:

L(t) =
∑
(q,k)

β+
(q,k)Z̆(q,k)(t), (7.61)

where

βq,k =

{
m̆(q,k)

B(q,k)

(
1 + γj,k

pj(1−ρ̆j)

)
k = 1, . . . ,Kq,

0 k = Kq + 1,
(7.62)

γj,k =
∑

(q,k)∈C(j,k)

αqβ
+
(q,k+1), (7.63)

and

β+
(q,k) =

Kq∑
k′=k

β(q,k′). (7.64)

Notice that equations (7.63) and (7.64) are identical to (7.58) and (7.59),
respectively.

226 Jim Dai and Otis B. Jennings

Assume that Z̆(t) 6= 0 and X̆ is differentiable at time t. Let k be the
first system-wide, nonempty step. That is, there is some class (q, k) such
that Z̆(q,k)(t) > 0 and Z̆(q,k′)(t) = 0 for all classes (q, k′) such that k′ < k.
Fix step k and time t for the remainder of the proof. We investigate the
derivative of the Lyapunov function in (7.61):

L̇(t) =
∑

(q′,k′)

β+
(q′,k′)

˙̆
Z(q′,k′)(t) =

|E|∑
q′=1

Kq′∑
k′=1

β+
(q′,k′)

˙̆
Z(q′,k′)(t)

=
|E|∑

q′=1

Kq′∑
k′=1

β+
(q′,k′)

(˙̆
D(q′,k′−1)(t)−

˙̆
D(q′,k′)(t)

)

=
|E|∑

q′=1

αq′β+
(q′,1) −

Kq′∑
k′=1

(
β+

(q′,k′) − β+
(q′,k′+1)

) ˙̆
D(q′,k′)(t)

=

|E|∑
q′=1

αq′β+
(q′,1) −

Kq′∑
k′=1

β(q′,k′)
˙̆
D(q′,k′)(t),

where D̆(q′,0)(t) ≡ αq′t. By the nonnegativity of Z̆, Z̆(q′,k′)(t) = 0 implies
˙̆
Z(q′,k′)(t) = 0. Since k is the first nonempty step, ˙̆

D(q′,k′)(t) = αq′ for all
classes (q′, k′) such that k′ < k and the derivative of the L(t) equals

L̇(t) =
|E|∑

q′=1

αq′β+
(q′,k) −

Kq′∑
k′=k

β(q′,k′)
˙̆
D(q′,k′)(t)

 (7.65)

≤
∑

j:C(j,k) 6=∅

 ∑
(q,k)∈C(j,k)

αqβ
+
(q,k) −

∑
(q,k)∈C(j,k)

β(q,k)
˙̆
D(q,k)(t)

 ,

where, again, C(j, k) = {(q, k′) ∈ C(j) : k′ = k} denotes the constituent
classes of station j that are composed of the kth step of some route. The
transition embodied in (7.65) has two subtleties. For one, each class (q′, k′)

with step k′ ≥ k the quantity ˙̆
D(q′,k′)(t) appears on the left hand side of

the inequality whereas the quantity appears on the right hand side for only
those classes with step k. Secondly, each nonzero αq′β+

q′,k′ term on the left
hand side of the inequality appears on the right hand side as well. The
terms that are equal to zero correspond to job types with strictly fewer
than k steps. The nonzero values correspond to routes that have at least k
steps. Moreover, the kth step must occur at one of the stations. Hence, on
the right hand side we can exclude those stations without a resident class
that is the kth step of some route. By (7.42), Lemma 7.12 and the fact that

7. Stability of general processing networks 227

˙̆
D(q,k′)(t) = αq if k′ < K, we have

∑
(q,k)∈C(j,k)

˙̆
T (q,k)(t) = pj −

k−1∑
k′=1

∑
(q,k′)∈C(j,k′)

˙̆
T (q,k′)(t) (7.66)

≥ pj −
k−1∑
k′=1

∑
(q,k′)∈C(j,k′)

αqm̆(q,k′)

B(q,k′)
.

Hence, by (7.42), (7.64) and (7.65),

L̇(t) ≤
∑

j:C(j,k) 6=∅

 ∑
(q,k)∈C(j,k)

αqβ(q,k) +
∑

(q,k)∈C(j,k)

αqβ
+
(q,k+1)

−
∑

(q,k)∈C(j,k)

β(q,k)B(q,k)µ̆(q,k)
˙̄T (q,k)(t)

 .

It follows from (7.13), (7.62), (7.63) and (7.66) that

L̇(t) ≤
∑

j:C(j,k) 6=∅

 ∑
(q,k)∈C(j,k)

αqm̆(q,k)

B(q,k)

(
1 +

γj,k

pj(1− ρ̆j)

)
+ γj,k

−
(

1 +
γj,k

pj(1− ρ̆j)

)pj −
k−1∑
k′=1

∑
(q,k′)∈C(j,k′)

αqm̆(q,k′)

B(q,k′)

=

∑
j:C(j,k) 6=∅

 γj,k −
(

1 +
γj,k

pj(1− ρ̆j)

)

·

pj −
k∑

k′=1

∑
(q,k′)∈C(j,k′)

αqm̆(q,k′)

B(q,k′)

≤

∑
j:C(j,k) 6=∅

−pj(1− ρ̆j).

The derivative of the Lyapunov function is negative as long as there is
positive fluid. Hence, the artificial fluid model is stable. 2

In addition to implying Theorem 7.10 for standard networks, the proof
of Theorem 7.11 for general processing networks implies the intermediate
result for processing networks with zero setup times:

Theorem 7.13 A multi-type batch processing network operating under an
induced early-steps-first full batch policy π = (θ,ESF, 1) is rate stable.

Alternatively, suppose we only knew the following result:

228 Jim Dai and Otis B. Jennings

Theorem 7.14 The fluid model associated with the ESF dispatch policy is
weakly stable.

Given only Theorem 7.14, it is not immediately obvious that Theorem 7.11
holds. However, we could still assert Theorem 7.10 by virtue of the standard
network equivalent to Theorem 7.5; see Chen [7]. Moreover, we can also
prove Theorem 7.13 through the following argument. First notice that the
ESF dispatch policy is an example of a static buffer priority policy, as
described in the conclusion of Section 7.4.1. Hence, Lemma 7.9 leads to the
following:

Corollary 7.15 ESF is a normal policy.

Theorem 7.13 follows immediate from Corollary 7.15, Theorem 7.14 and
Proposition 7.7.

7.5.2 Generalized round robin

For standard networks, the generalized round robin (GRR) dispatch policy
is parameterized by a set of strictly positive reals β = (βk, k = 1, . . . ,K).
When the constants are integers, the policy works as follows: At station j,
the server “visits” the constituent buffers in C(j) in a fixed cyclic order;
hence, the name round robin. In polling station literature, the order in
which classes are visited is referred to as the polling table, a term we adopt
as well. When the server visits buffer k, βk jobs are processed, if possible.
Otherwise, the buffer is exhausted and the server moves on to the next
buffer. In this sense, the βk’s can be thought of as nominal allocations.
The span of time, from the beginning of the visit to the first buffer in the
polling table to the completion of the visit to the last buffer in the table,
is referred to as a cycle.

When the βk’s are not integers, the spirit of the dispatch policy is the
same. However, some requisite bookkeeping is in order. Consider the nth
cycle of the server at station j. Let ak(n) denote the integer-valued nominal
allocation for each class k ∈ C(j) and bk(n) denote the nominal residual
allocation. The quantities are defined recursively:

ak(n + 1) = bbk(n) + βkc (7.67)

bk(n + 1) = bk(n) + βk − ak(n + 1), (7.68)

for n = 0, 1, . . ., where bk(0) = 0 and, as before, bxc denotes the integer
part of x. When the server visits buffer k for the nth time, it processes
ak(n) jobs, if possible, before moving on to the next buffer.

For any vector of positive constants β, the additional standard fluid
model equation (7.34) takes the form

˙̂
T k(t) ≥ βkm̃k∑

k′∈C(j) βk′m̃k′
, k = 1, . . . ,K, (7.69)

7. Stability of general processing networks 229

for each t such that T̂k(t) is differentiable and Ẑk(t) > 0, where, as is
our convention, j = σ(k). The following theorem is well-known; see, for
example, Dai [13].

Theorem 7.16 Under the usual traffic conditions (7.6), a standard net-
work operating under a generalized round robin policy parameterized by β
is stable if, for each k = 1, . . . ,K,

βkm̃k∑
k′∈C(j) βk′m̃k′

≥ λkm̃k. (7.70)

We now describe how the GRR dispatch policy for standard networks is
adapted to form the sensible generalized round robin policy for processing
networks, denoted by π = (θ, GRR(β), `). Consider the pj servers at station
j. As in the single server case, the servers visit the classes in C(j) in a round
robin fashion. In fact, we use the same nominal values computed in (7.67)
and (7.68). However, the interpretations of ak(n) and bk(n) are slightly
different. The nth visit to buffer k can be made by any (and at most) one
of the servers, provided the buffer is eligible. (This is not to say that two
servers cannot simultaneously process batches from the same class. It does
imply that the servers are performing visits of different cycles.) Suppose
one of the servers is performing the nth visit to buffer k. If ak(n) ≥ 1 and
class k is eligible according to the criterion in Section 7.2.3 then a setup
for class k is performed. Otherwise the server moves on to the next buffer.
The only time a server does not move is when there is an absence of jobs
available for processing at the station. Assuming the server has performed
a setup for buffer k, ak(n) determines how many production runs of length
`k the server will perform. During each production run, each batch contains
as many jobs as possible. Suppose the last server was assigned to visit class
k in cycle n. The next server to complete its assignment will visit the next
class according to the polling table. In this sense, each station’s servers
march through the cycles in unison. (An alternative description is to have
each server perform its own cycle, independent of all other servers.)

Theorem 7.17 A processing network operating under a sensible gener-
alized round robin policy π = (θ,GRR(β), `) is rate stable if, for each
k = 1, . . . ,K, j = σ(k),

pjβk`kBk∑
k′∈C(j) βk′`k′m̆k′

≥ λk. (7.71)

It turns out that when βk > 1 for each class k, the condition (7.71) can be
relaxed. See Section 7.6 for further discussions. The proof of the theorem
depends on the additional artificial fluid model constraint (7.43), described
in the following lemma.

230 Jim Dai and Otis B. Jennings

Lemma 7.18 Consider a processing network operating under a sensible
generalized round robin policy π = (θ,GRR(β), `). Artificial fluid solutions
obey the following:

˙̆
Dk(t) ≥ pjβk`kBk∑

k′∈C(j) βk′`k′m̆k′
, k = 1, . . . ,K. (7.72)

When the βk’s are strictly positive integers, the intuition behind (7.72) is
straightforward. If station j had only one server, the typical cycle length on
average would be at most

∑
k′∈C(j)(sk′ + βk′`k′mk′) ≤

∑
k′∈C(j) βk′`k′m̆k′ .

When there are enough class k jobs present, the average time a server
spends processing those batches in a given cycle is βk`kmk. Since pj servers
act in unison, the average fraction of time spent processing class k jobs is
at least the ratio

pjβk`kmk

 ∑
k′∈C(j)

βk′`k′m̆k′

−1

,

leading to the right hand side of (7.72). The formal proof is delayed until
the appendix.
Proof of Theorem 7.17. Let X̆ be an artificial fluid model solution.
By Lemma 7.18, if (7.71) holds, we have ˙̆

Dk(t) ≥ λk for any t such that
Z̆k(t) > 0 and X̆ is differentiable at t. It follows from a slight modification of
Theorem 4 of Bramson [5] that Z̆(t) = 0 for t ≥ 0. Thus, the artificial fluid
model is weakly stable. Rate stability of the processing network follows
from Theorem 7.5. 2

7.6 Extensions

The naming convention for production policies, as described in Section
7.2.3, has the form π = (θ, π̃, `), where θ performs the filtering function,
π̃ is the dispatch policy, and ` determines the length of the production
run. We further defined a family of “sensible” policies, where (7.10) and
(7.13) hold, to which we have heretofore restricted ourselves. Under certain
circumstances, either of these restrictions can be eliminated, or at least
relaxed, while still achieving stability.

Consider the generalized round robin policies introduced in Section 7.5.2.
A benefit of round robin policies is that they ensure every class is visited
on a regular (i.e. cyclic) basis. This removes the need for the threshold test
provided by θ. The result is that some production runs may be shorter
than required by `, even when this can be avoided. Still, the major results
of Section 7.5.2, namely Theorem 7.17 and Lemma 7.18, hold. The reason
this works is that round robin dispatching is static and provides every

7. Stability of general processing networks 231

class the benefit of receiving its designated allocation during each cycle.
If a class cannot take advantage of its allotment because of too few jobs,
other classes can only benefit. The thresholds are intended to prevent more
dynamic policies from favoring classes with too few jobs present.

The pitfalls of exhaustive service were the focus of the first simulation
example in the introduction. The idea of exhaustive service, that setups
should be avoided as much as possible, is not completely misguided. In-
deed excessive setups require too much server effort and can lead to in-
stability. Hence, limited policies were presented as a tradeoff. Rather than
effectively eliminating setups as with exhaustive service, limit service re-
duces the effects of setups to acceptable levels. However, this is not to say
that exhaustive service cannot be an effective production run policy. From
initial simulation studies, there seems to be a connection between when
exhaustive service (with or without setups) leads to instability and when
static buffer priority policies cause instability. Under certain conditions all
static buffer priority policies are stable. The same should be true for ex-
haustive service. In fact, we propose the following for investigation: If a
system (with or without setups) is unstable under exhaustive service, it
is unstable under some static buffer priority policy when setup times are
zero. The contrapositive provides a guideline for when exhaustive service
should be effective: If there are no static buffer priority policies for which
the system without setups is unstable, then the system with setups is stable
under exhaustive service.

Full batches, as demanded by our sensible production policy rules, may
be an unnecessary extreme. Suppose that station j has a significant amount
of excess capacity, i.e., ρ̆j defined in (7.12) is well below 1. In this case, we
can relax full batch size Bk to B̆k, where B̆k is a target batch size favored
by management. We can redefine the inflated traffic intensity (larger than
the value from (7.12)) and traffic condition for each station j:

ρ̆j =
1
pj

∑
k∈C(j)

λk(m̆k/B̆k) < 1.

One can also relax the restriction on the threshold (7.10) as well as the
eligibility and non-idling conditions. One advantage of this relaxed require-
ment on batch sizes is that buffers with smaller numbers of jobs do not
have to wait so long for the dispatching of servers.

Consider again the generalized round robin policy. In some cases, the
choice of the βk constants can be used to relax the inflated traffic intensity
condition. For instance, suppose βk is equal to 2. Then in each cycle where
there is a sufficient number of jobs on hand, the production run for buffer
k will have a length of 2`k. In this sense, the `k’s that satisfy (7.11) may be
unnecessarily large. Just as with the less-than-full batches discussed above,
we can define a new inflated traffic intensity (7.12), thus relaxing the traffic
condition (7.13). In this case, the new values are based on the new inflated

232 Jim Dai and Otis B. Jennings

mean processing time,

m̆k = mk +
sk

`k max(βk, 1)
.

Finally, consider the maximum setup time means sk = maxk′ sk′k. These
constants, used to define inflated service times and, ultimately, sensible
policies, are sometimes overly conservative. For instance, there could be a
pair of classes (k′, k) whose mean setup time sk′k is relatively large (com-
pared to other setup times at that station). If this particular transition
from k′ to k can be avoided most of the time, there is no reason to include
it in the calculation of sk. To see how this works, consider the generalize
round robin policy and its fixed polling table, or order in which classes are
visited. This fixed order suggests a natural way to define sk. That is, sk is
equal to the mean setup time from the class just before k in the order. Of
course, if the class before k in the order is ineligible, the transition to class
k will have occurred from some other buffer k′. It could be the case that for
this alternative predecessor class k′ the mean setup time sk′k is relatively
large and not accommodated in the calculation of sk. There is no alarm
because this class k′ does not directly precede k relatively often.

7.7 Appendix

7.7.1 Departures as a function of server effort

When there is a single server at some station j, the number of class k ∈ C(j)
batches processed by time t is captured fully by the quantity Ψk(Tk(t)).
However, when there are multiple servers and random processing times, the
quantity can either slightly overshoot or dramatically undershoot the total
number of processed batches. Batches begin their processing in FIFO order.
However, in the presence of multiple servers, the completion of batches is
not necessarily FIFO. The reasoning is that the parallel nature of processing
afforded by multiple servers allows for batches with short processing times
to emerge before those with long processing time, even when the short
batches start later. The quantity Ψi

k(t) will provide an upper bound on
the number of class k batches processed, given t units of work performed
collectively by i servers. This section of the appendix is devoted to providing
bounds and fluid limits for Ψ̆k(t) ≡ Ψpj

k (t), for each class k; the results are
used in Sections 7.3.1 and 7.5.

Before providing the equations governing Ψi, the generalization of Ψ,
we first provide a motivating example. Consider three systems, each with a
single station network: Systems A, B and C have one, two and three servers,
respectively. In each of the systems, 120 minutes of work are performed
collectively by the servers. Suppose, for each system, the first 12 batch

7. Stability of general processing networks 233

processing times (in minutes) are {10, 25, 10, 80, 10, 10, 90, 5, 5, 5, 5, 40}. If
there is no idling, how many batches are processed in each system?

For each of the systems, the following chart matches each server with the
batches it processes. In this particular example, the total number of batches
processed increases as the number of servers increases. This is not always
the case. It is possible that the number of processed batches decreases as
the number of servers increases.

System Server 1 Server 2 Server 3 Partial Completed
A b1,b2,b3 b4 3
B b1, b3 b2,b5,b6 b4,b7 5
C b1 b2 b3,b5,b6,b8,b9 b4,b7 7

Case A. At time 45 the single server completes the processing of the
third batch and starts to process batch number 4. This batch requires 80
minutes of processing and will be completed at time 125. However, the
clock stops at time 120. Thus, the number of processed batches at time 120
in the single server system is three.

Case B. With two servers, after t time units there will be 2t units of
combined server effort. Therefore, the simulation clock stops at real time
60, when 120 combined minutes of server effort has taken place.

At time 20, having processed batches 1 and 3, server 1 is ready to start
processing batch number 4, which has 80 minutes of processing require-
ments. Hence, the completion of this batch will occur at time 20+80 = 100,
well past the clock stopping time of 60. Meanwhile, after 25 minutes, server
2 is ready to start processing batch 5, having completed batch 2. Batch 5
has a processing requirement of 10 minutes. This batch will complete its
processing at time 25+10 = 35. Therefore, server 2 still has time to process
batch 6 which has a processing requirement of 10. Batch 6 is completed by
time 25 + 10 + 10 = 45 and server 2 starts on batch number 7. With its
processing requirement of 90 minutes, batch 7 will not be completed until
time 135, well past the stopping time of 60 minutes.

Case C. The simulation clock stops at time 120/3 = 40 minutes. Server
1 completes batch 1 after 10 minutes and starts batch 4, which finishes at
time 90. Server 3 finishes batch 3 at time 10 then moves on to batches 5
which it finishes at time 20. Then server 3 starts to process batch 6 which
it will finish at time 30. Meanwhile server 2 completes batch 2 after 25
minutes and then starts batch 7, which will finish at time 115. After batch
6, server 3 picks up batches 8 and then 9, finishing the last of these at time
40.

Consider the first two cases. Under both scenarios, a server gets “stuck”
on the batch with the 80 minute processing time. In the second case, server
2 moves past batch 4, before it too gets stuck on a long batch. Typically,
as the number of servers increases, more and more batches with atypically

234 Jim Dai and Otis B. Jennings

long processing times can be bypassed. Indeed, in the third case, the 80
and 90-minute long processing times still do not completely impede the
processing of additional batches. The question remains: How can we obtain
a bound on the number of processed batches given the collective server
effort and the sequence of processing times?

Let Ψi(t) denote, for a system with i servers, the largest integer value
n such that the sum of the processing times of the first n batches is less
that t. As stated earlier, when there is one server, the quantity Ψ(120) =
Ψ1(120) = 3 captures the number of batches processed, given 120 minutes
of effort. With two servers, server 1 gets stuck on batch 4, which happens to
be the longest batch experienced thus far, and server 2 gets to look further
along in the list of processing times. In the most extreme case, server 1 has
just started working on batch 4. In this case, the maximum distance that
server 2 can “look into the future” is 80 minutes. (Actually the value is 60,
since each server works exactly 60 minutes. But typically, the station-level
time is not evenly split.) Hence, we have an upper bound when there are
two servers Ψ2(120) = Ψ1(200) − 1 = 5. We subtract 1 from the quantity
to avoid needlessly counting the 80-minute batch.

Next we increase the number of servers to three. In this case, the two
largest processing times happen to occupy two of the servers at the horizon’s
end. Once again, in the worst case, those occupied servers just started
processing those long batches. Hence, we need to look 170 minutes into the
future to see how many jobs were processed to get Ψ3(120) = Ψ1(290)−2 =
9. (Again, this is overkill.) We see here that we have overestimated the
number of processed batches. Our objective is for an upper bound, not
necessarily a tight one. One should note that we discovered the 90-minute
batch, that is skipped over in the 3-server system, only after analyzing the
2-server system. In general, one needs to examine the n-server system in
order to provide bounds for the (n + 1)-server system.

We now provide an iterative method for computing an upper bound on
the number of processed batches. Let Γn

k (t) denote the number of processed
class k batches by time t, given there are n servers at station σ(k). Recall the
formal definition of Ψk = (Ψk(t), t ≥ 0), Ψk(t) = max{n ≥ 0 : Vk(n) ≤ t}
and that Ψ1

k(Tk(t)) = Ψk(Tk(t)) = Γ1
k(t). In order to define Ψ̆ we need to

examine the interjump times of Vk. The quantity ηk(n) = Vk(n)−Vk(n−1)
tracks the amount of server effort required to process the nth class k batch.
It follows that

∑n
i=1 ηk(i) = Vk(n). Recall that Ψn

k (t) is an upper bound
on the number of processed batches, given t units of collective work. With
Ψ1

k(t) = Ψk(t) we iteratively define the following quantities:

ηi,t
k = max{ηk(n) : 1 ≤ n ≤ Ψi

k(t) + 1} (7.73)

and
Ψi+1

k (t) = max{n : Vk(n) ≤ t + iηi,t
k } − i, (7.74)

for each i = 1, . . . , pj −1. Set Ψ̆k(t) = Ψpj

k (t). Notice that η1,t
k is the largest

7. Stability of general processing networks 235

possible batch processing time that could have been interrupted, given t
units of work and 1 server. Now consider adding one server. Since the long
batch associated with η1,t

k may not have been processed, we do not want
its processing time to be deducted from the total server effort t expended
by the two servers. Hence, we add η1,t

k to t to reflect the virtual server
effort for two servers. Once we compute a bound for the number of batches
with two servers, we find η2,t

k , the largest possible batch processing time
when there are two servers. To increase to three servers, the virtual server
effort would be η1,t

k +η2,t
k + t. However, we simplify matters with the larger

quantity 2η2,t
k + t. We iterate until we find Ψ̆k(t) = Ψpj

k (t). Since for each
i, Γi

k(t) ≤ Ψi
k(Tk(t)), it follows that

Γpj

k (t) ≤ Ψ̆k(Tk(t)), t ≥ 0. (7.75)

So far we have focused exclusively on the fact that extra jobs may get
served as a result of the splitting of processing tasks among several servers.
It turns out that the splitting of processing effort can lead to fewer jobs
being processed. The lower bound on the number of batches processed is
quite straightforward. For each additional server, at most one fewer jobs
may have been processed by time t. That is, given there are pj servers
performing the work on class k batches:

Γpj

k (t) ≥ Ψk(Tk(t))− pj + 1. (7.76)

We are interested in taking fluid limits of the Ψ̆k processes and comparing
them to fluid limits of the Ψk processes. We have the following lemma,
which is used in the proof of Proposition 7.4.

Lemma 7.19 For any finite integer i ≥ 1,

lim
t→∞

Ψi
k(t)
t

= µk, k = 1, . . . ,K; (7.77)

in particular, Ψ̆k(t)/t → µk.

Proof. By the law of large numbers (7.2) we have Ψk(t)/t → µk. It follows
that η1,t

k /t → 0. Suppose ηi,t
k /t → 0 as t → ∞ for some arbitrarily chosen

integer i. Then

Ψi+1
k (t)

t
≤

Ψk(t + iηi,t
k)

t
=

(
Ψk(t + iηi,t

k)

t + iηi,t
k

)(
t + iηi,t

k

t

)
→ µk.

It follows that

ηi+1,t
k

t
≤

η
1,t+iηi,t

k

k

t + iηi,t
k

(t + iηi,t
k

t

)
→ 0.

The proof follows from induction. 2

236 Jim Dai and Otis B. Jennings

7.7.2 Proofs of Lemmas 7.12 and 7.18

Proof of Lemma 7.12. Let X̄ be a fluid limit of a processing network oper-
ating under the sensible early-steps-first production policy π = (θ, ESF, `).
Let X̆ be the associated artificial fluid limit, as constructed in Proposi-
tion 7.4. Let ω ∈ Ω be a sample path on which (7.1) holds and {rn} be a
sequence of positive reals such that rn → ∞ and X̄rn(·, ω) → X̄(·) u.o.c.
as n → ∞. Fix station j and a time t > 0 such that X̄(t) and X̆(t) are
differentiable. Suppose that, for some fixed step k0 we have

k0∑
k=1

∑
(q,k)∈C(j)

Z̆(q,k)(t) > 0.

Then for some class (q1, k1) ∈ C(j) with k1 ≤ k0 we have Z̆(q1,k1)(t) =
Z̄(q1,k1)(t) > 0. By the continuity of Z̄, and the uniform convergence
Z̄rn(·) → Z̄(·) as n → ∞, there exists a δ > 0 and an integer N such
that, for each n ≥ N

Z(q1,k1)(s) ≥ θ(q1,k1) + (pj − 1)`(q1,k1)B(q1,k1) ∀s ∈ [rnt, rn(t + δ)].

This condition ensures that, throughout the interval [rnt, rn(t + δ)], the
servers at station j are never dispatched to a class (q, k) ∈ C(j) such that
k > k1. This does not mean that these classes composed of later steps
receive no server effort whatsoever. Any of the pj servers may have been
dispatched to one such class just prior to rnt. So for the combined server
pool at station j, the total allocation, during [rnt, rn(t + δ)], to a class
(q, k) ∈ C(j) with k > k1 does not exceed pj class (q, k) setups and pj`(q,k)

class (q, k) batches. Equivalently, for each class (q, k) with k > k1,

T(q,k)(rn(t + δ))− T(q,k)(rnt) ≤ V(q,k)(Mn
(q,k) + pj`(q,k))− V(q,k)(Mn

(q,k))
(7.78)

and

S(q,k)(rn(t + δ))− S(q,k)(rnt) (7.79)

≤
∑

(q′,k′)∈C(j)

F(q′,k′)(q,k)(Rn
(q′,k′)(q,k) + pj)− F(q′,k′)(q,k)(Rn

(q′,k′)(q,k)),

where Mn
(q,k) is the number of class (q, k) batches processed by time rnt

and Rn
(q′,k′)(q,k) is the number of setups from class (q′, k′) to class (q, k)

performed by time rnt. By Lemma 7.20, the law of large numbers (7.1),
and (7.78) and (7.79)∑

k′>k1

∑
(q′,k′)∈C(j)

[
T̆(q′,k′)(t + δ)− T̆(q′,k′)(t)

]
= lim

n→∞
(1/rn)

∑
k′>k1

∑
(q′,k′)∈C(j)

[
S(q′,k′)(rn(t + δ))− S(q′,k′)(rnt))

+ T(q′,k′)(rn(t + δ))− T(q′,k′)(rnt)
]

= 0. (7.80)

7. Stability of general processing networks 237

By (7.39), (7.40) and (7.80),

k1∑
k′=1

∑
(q′,k′)∈C(j)

[
T̆(q′,k′)(t + δ)− T̆(q′,k′)(t)

]
= pjδ.

We obtain the result by dividing by δ and letting δ ↓ 0. 2

Proof of Lemma 7.18. Let X̄ be a fluid limit of a processing network
operating under the sensible generalized round robin production policy π =
(θ, GRR(β), `). Let X̆ be the associated artificial fluid limit, as constructed
in Proposition 7.4. Let ω ∈ Ω be a sample path on which (7.1) holds and
{rn} be a sequence of positive reals such that rn →∞ and X̄rn(·, ω) → X̄(·)
as n → ∞. At time t, suppose that for some class k at station j we have
Z̆k(t) = Z̄k(t) > 0. We would like to show that

˙̆
Dk(t) = ˙̄Dk(t) ≥ pjβk`kBk∑

k′∈C(j) βk′`k′m̆k′
. (7.81)

By the continuity of Z̄ we know there exists an ε > 0 and a δ > 0 such that
Z̄k(s) > ε for each s ∈ [t, t+δ]. For large enough n, Zk(s) ≥ θk+dβkepj`kBk

for each s ∈ [rnt, rn(t+δ)]. Hence, if the ith cycle takes place entirely within
the interval [rnt, rn(t + δ)], the server that visits class k during that cycle
processes exactly ak(i)`k batches. It should be clear by (7.67) and (7.68)
that, for any class k and positive integers p and q,

qβk − 1 <

p+q∑
i=p+1

ak(i) < qβk + 1. (7.82)

For each n, we refer to cycles that start after rnt and end before rn(t+δ)
as complete. Let Nn denote the number of complete cycles. The result (7.81)
will follow if we can show that, on almost every sample path,

lim
n→∞

Dk(rn(t + δ))−Dk(rnt)
Nn

→ βk`kBk (7.83)

and that

lim sup
n→∞

rnδ

Nn
≤ 1

pj

∑
k′∈C(j)

βk′`k′m̆k′ . (7.84)

Notice that, in addition to the Nn complete cycles, there may be 2pj in-
complete cycles. That is, all pj servers may have been in the middle of a
cycle at time rnt and again at time rn(t + δ). By (7.82), we can bound the
number of jobs processed in [rnt, rn(t + δ)],

(Nnβk − 1)`kBk < Dk(rn(t + δ))−Dk(rnt) < ((Nn + 2pj)βk + 1)`kBk.
(7.85)

238 Jim Dai and Otis B. Jennings

By Lemma 7.21, Nn →∞. Dividing both sides of (7.85) by Nn and letting
n →∞ yields (7.83).

Now we demonstrate that (7.84) holds. Clearly none of the pj servers
idle during [rnt, rn(t + δ)] so that

pjrnδ =
∑

k′∈C(j)

[(Tk′(rn(t + δ))− Tk′(rnt)) + (Sk′(rn(t + δ))− Sk′(rnt))] .

We investigate how the server effort throughout the interval [rnt, rn(t +
δ)] is allocated. Let Mn

k′ denote the number of class k′ batches that have
completed service at time rnt. In line with the arguments of Appendix 7.7.1,
the Mn

k′ batches that have completed processing may not be the first Mn
k′

that started processing in [0, rnt). In fact the Mn
k′th batch that completed

processing by time rnt could be as high as the (Mn
k′ + pj − 1)th batch

to have started processing before rnt. Because of the parallel processing
capabilities of the station j servers, pj − 1 of the class k′ batches between
batch number 1 and batch number Mn

k′ + pj − 1 could be still in-process at
time rnt. We can bound the total time dedicated to class k′.

Tk′(rn(t + δ))− Tk′(rnt)
≤ Vk′(Mn

k′ + d(Nn + 2pj)βk′ + 1e `k′)− Vk′(Mn
k′) (7.86)

+(pj − 1) max
i≤Mn

k′+pj

ηk′(i),

where, as before, ηk′(i) = Vk′(i)− Vk′(i− 1). Similarly,

Sk′′k′(rn(t + δ))− Sk′′k′(rnt)
≤ Fk′′k′(Rn

k′′k′ + 2pj + λn
k′′k′)− Fk′′k′(Rn

k′′k′) (7.87)
+(pj − 1) max

i≤Rn
k′′k′

(Fk′′k′(i)− Fk′′k′(i− 1)) ,

where λn
k′′k′ is the number of type (k′′, k′) setups among the Nn complete

cycles and Rn
k′′k′ is the number of completed type (k′′, k′) setups before

time rnt. The reasoning behind (7.86) is as follows. As argued earlier, there
are at most Nn + 2pj cycles, where Nn of them are complete. We can
assume the most extreme case, that for each class k′ and in each cycle i,
exactly ak′(i)`k′ batches are processed. Using equation (7.82) we bound
the total number of processed batches with ((Nn + 2pj)βk′ + 1)`k′ . For
the last term in (7.86), recall that Mn

k′ + pj − 1 batches may have started
processing before time rnt. So far in our discussion of (7.86) we have only
accounted for those batches after batch number Mn

k′ . But the (up to) pj−1
batches interrupted at time rnt may be any batch between batch numbers
1 through Mn

k′ + pj − 1. Hence, the last term. As for (7.87), the arguments
are similar. It should be clear that

∑
k′′∈C(j) λk′′k′ ≤ Nn(max(βk′ , 1)) + 1.

Dividing both sides of equations (7.86) and (7.87) by Nn yields

lim sup
n→∞

(1/Nn) [Tk′(rn(t + δ))− Tk′(rnt)] ≤ βk′`k′mk′

7. Stability of general processing networks 239

and
lim sup

n→∞
(1/Nn) [Sk′(rn(t + δ))− Sk′(rnt)] ≤ βk′sk′ .

Finally, by (7.11),

βk′`k′mk′ + βk′sk′ = βk′`k′m̆k′

and, hence, (7.84) follows. 2

Lemma 7.20 Consider any processing network. Let {rn} be a sequence of
positive reals such that rn →∞ as n →∞. Let Mn

k be the number of class
k batches processed by time rnt and Rn

k′k be the number of type (k′k) setups
performed by time rnt. We have, on almost every sample path,

lim sup
n→∞

Mn
k /rn < ∞

and
lim sup

n→∞
Rn

k′k/rn < ∞

for each k, k′ = 1, . . . ,K.

Proof. We prove the first result for class k batches. The result for setups
is similar. Suppose lim supn→∞ Mn

k /rn = ∞. Without loss of generality,
Mn

k /rn →∞. By definition,

Vk(Mn
k) ≤ rnt.

Dividing both sides by Mn
k and taking the limit yields mk ≤ 0, a contra-

diction. 2

Lemma 7.21 Suppose the processing network is operating under a sensible
generalized round robin policy. Let {rn} be a sequence of positive reals such
that rn → ∞ as n → ∞. Fix time t, station j and the constant δ > 0.
Suppose that, for large enough n, servers at station j never idle during the
interval [rnt, rn(t + δ)]. Let Nn denote the number of cycles that transpire
completely during [rnt, rn(t + δ)]. We have

lim inf
n→∞

Nn/rn > 0 (7.88)

Proof. The pj servers at station j provide pjrnδ units of potential effort
during the interval [rnt, rn(t + δ)]. All of this effort goes to processing
batches or performing setups. Since there are K classes there are, at most,
K2−K types of setups. This yields a maximum of K2 activities over which
the pjrnδ units of server effort is distributed over the interval. There is a
subsequence rnq

with nq → ∞ as q → ∞ such that one of the activities
receives at least rnq

pjδ/K2 units of server effort during the interval for
each q. Assume class k receives this amount of effort and, without loss of

240 Jim Dai and Otis B. Jennings

generality, that this occurs for each number in the original sequence {rn}.
That is

Vk(Mn
k + d(Nn + 2pj)βk + 1e `k) − Vk(Mn

k) (7.89)
+ (pj − 1) max

i≤Mn
k +pj

ηk(i) ≥ rnpjδ/K2,

where Mn
k denotes the number of class k batches completed by time rnt.

(The case that a setup activity receives this amount of effort can be argued
similarly.) The terms in (7.89) are identical to those in (7.86) of the previous
proof. If Nn/rn → 0 then, by Lemma 7.20, dividing both sides of (7.89) by
Nn yields δ ≤ 0. Hence, (7.88) must hold. 2

7.8 Notes

There are recent works in the literature that also extend the standard
multiclass queueing network model. For instance, Maglaras and Kumar [32],
Kumar and Zhang [30], and Dai and Li [17] all treat the batch processing
operations issue. An analogous service was performed by Jennings [27] and
Andridotter, Ayhan and Down [1] for queueing networks with setups. In [1]
the model allows for more flexible servers than in this chapter.

There has been a flurry of research efforts in pinpointing efficient dispatch
policies, meaning policies that maximize throughput, given an achievable
arrival rate. Examples of policies that work for any network can be found
in Bramson [4, 6] and Dai and Li [16]. For policies that stabilize networks
with special structure, see Kumar [28], Dai and Weiss [19], Kumar and
Kumar [29], Bramson [3] and Chen and Yao [10]. The last of these examples
is related to the multi-type network presented in Section 7.5.1.

The method of using Lyapunov functions for demonstrating stability of
a fluid model is wide-spread and multifaceted. For example, Bramson [3, 4]
uses entropy type Lyapunov functions, Down and Meyn [20] and Dai and
Vande Vate [18] advocate piecewise linear Lyapunov functions, and Chen
and Zhang [11] forward linear Lyapunov functions.

Acknowledgments

Jim Dai’s research is supported in part by NSF grants DMI-9457336 and
DMI-9813345 and by TLI-AP, a partnership between National University
of Singapore and Georgia Institute of Technology.

7.9 References

[1] Andradóttir, S., Ayhan, H., and Down, D. G., Dynamic server
allocation for queueing networks with flexible servers, Operations Re-

7. Stability of general processing networks 241

search, (2001), Submitted for Publication.

[2] Bertsimas, D., Lecture notes on stability of multiclass queueing net-
works, 1996.

[3] Bramson, M., Convergence to equilibria for fluid models of FIFO
queueing networks, Queueing Systems: Theory and Applications, 22,
(1996), 5-45.

[4] Bramson, M., Convergence to equilibria for fluid models of head-of-
the-line proportional processor sharing queueing networks, Queueing
Systems: Theory and Applications, 23, (1997), 1-26.

[5] Bramson, M., Stability of two families of queueing networks and a
discussion of fluid limits, Queueing Systems: Theory and Applications,
28, (1998), 7-31.

[6] Bramson, M., Stability of earliest-due-date, first-served queueing
networks, Queueing Systems: Theory and Applications, (2001), To Ap-
pear.

[7] Chen, H., Fluid approximations and stability of multiclass queueing
networks I: Work-conserving disciplines, Annals of Applied Probability,
5, (1995), 637-665.

[8] Chen, H. and Mandelbaum, A., Discrete flow networks: Bottle-
necks analysis and fluid approximations, Mathematics of Operations
Research, 16, (1991), 408-446.

[9] Chen, H. and Shanthikumar, J. G., Fluid limits and diffusion
approximations for networks of multi-server queues in heavy traffic,
Discrete Event Dynamic Systems, 4, (1994), 269-291.

[10] Chen, H. and Yao, D. D., Stable priority disciplines for multiclass
networks, Lecture Notes in Statistics, eds by P. Glasserman, K. Sigman
and D.D. Yao, Springer-Verlag, (1996), 27-40.

[11] Chen, H. and Zhang, H., Stability of multiclass queueing networks
under priority service disciplines, Operations Research, 48, (2000), 26-
37.

[12] Dai, J. G., On positive Harris recurrence of multiclass queueing net-
works: A unified approach via fluid limit models, Annals of Applied
Probability, 5, (1995), 49-77.

[13] Dai, J. G., Stability of fluid and stochastic processing networks,
MaPhySto Miscellanea Publication, No. 9, Centre for Mathematical
Physics and Stochastics, 1999.

242 Jim Dai and Otis B. Jennings

[14] Dai, J. G., Hasenbein, J., and Vande Vate, J. H., Stability of
a three-station fluid network, Queueing Systems: Theory and Applica-
tions, 33, (1999), 293-325.

[15] Dai, J. G. and Jennings, O. B., Stabilizing queueing networks with
setups, 2001, Preprint.

[16] Dai, J. G. and Li, C., Discrete proportional processor sharing policy
for multiclass queueing networks, 20001, Preprint.

[17] Dai, J. G. and Li, C., Stabilizing batch processing networks, Oper-
ations Research, (2001), To Appear.

[18] Dai, J. G. and VandeVate, J., The stability of two-station multi-
type fluid networks, Operations Research, 48, (2000), 721-744.

[19] Dai, J. G. and Weiss, G., Stability and instability of fluid models
for re-entrant lines, Mathematics of Operations Research, 21, (1996),
115-134.

[20] Down, D. and Meyn, S. P., Piecewise linear test functions for sta-
bility and instability of queueing networks, Queueing Systems: Theory
and Applications, 27, (1997), 205-226.

[21] El-Taha, M. and Stidham Jr., S., Sample-Path Analysis of Queue-
ing Systems, Kluwer, 1999.

[22] Gross, D. and Harris, C. M., Fundamentals of Queueing Theory,
Wiley, New York, 1985.

[23] Harrison, J. M., Brownian models of queueing networks with het-
erogeneous customer populations, Proceedings of the IMA Workshop
on Stochastic Differential Systems, Springer, 1988.

[24] Harrison, J. M., Brownian models of open processing networks:
canonical representation of workload, Annals of Applied Probability,
10, (2000), 75-103.

[25] Hasenbein, J. J., Necessary conditions for global stability of mul-
ticlass queueing networks, Operations Research Letters, 21, (1997),
87-94.

[26] Jennings, O. B., Multiclass Queueing Networks with Setup Delays:
Stability Analysis and Heavy Traffic Approximation, Ph.D. disserta-
tion, School of ISyE, Georgia Institute of Technology, 2000.

[27] Jennings, O. B., On the stability of multiclass queueing networks
with setups, 2000, Preprint.

7. Stability of general processing networks 243

[28] Kumar, P. R., Re-entrant lines, Queueing Systems, Theory and Ap-
plications, 13, 1993, 87-110.

[29] Kumar, S. and Kumar, P. R., Fluctuation smoothing policies are
stable for stochastic reentrant lines, Discrete Event Dynamical Sys-
tems, 6, (1996), 361-370.

[30] Kumar, S. and Zhang, H., Stability of reentrant lines with batch
servers, 2000, Preprint.

[31] Lu, S. H. and Kumar, P. R., Distributed scheduling based on due
dates and buffer priorities, IEEE Transactions on Automatic Control,
36, (1991), 1406-1416.

[32] Maglaras, C. and Kumar, S., Capacity realization in stochas-
tic batch-processing networks using discrete review policies, 1999,
Preprint.

[33] Rybko, A. N. and Stolyar, A. L., Ergodicity of stochastic pro-
cesses describing the operation of open queueing networks, Problems
of Information Transmission, 28, (1992), 199-220.

[34] Takagi, H., Analysis of Polling Systems, MIT Press, Cambridge, MA,
1986.

