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This article proves that the stability region of a two-station, five-class
reentrant queueing network, operating under a nonpreemptive static buffer
priority service policy, depends on the distributions of the interarrival and
service times. In particular, our result shows that conditions on the mean
interarrival and service times are not enough to determine the stability
of a queueing network under a particular policy. We prove that when all
distributions are exponential, the network is unstable in the sense that, with
probability 1, the total number of jobs in the network goes to infinity with
time. We show that the same network with all interarrival and service times
being deterministic is stable. When all distributions are uniform with a given
range, our simulation studies show that the stability of the network depends
on the width of the uniform distribution. Finally, we show that the same
network, with deterministic interarrival and service times, is unstable when it
is operated under the preemptive version of the static buffer priority service
policy. Thus, our examples also demonstrate that the stability region depends
on the preemption mechanism used.

1. Introduction. This article is part of an ongoing effort to understand the
relationship between the stability of a queueing network and the stability of the
corresponding fluid model; see [4–6, 8, 10, 11, 25, 27, 28, 30]. The fluid model is
a continuous, deterministic analog of a discrete stochastic queueing network and
is defined through a set of equations. It is known that the stability of a queueing
network is implied by the stability of its fluid model. The stability analysis of the
latter, though still nontrivial, is often significantly easier than the former; see, for
example, [1, 3, 7, 13, 20, 23]. Bramson [5] gave an example of a queueing network
that is stable, but that has a fluid model that is not stable.

The queueing network studied in this article has two service stations and five
job classes. It belongs to a special class of networks called reentrant lines by
Kumar [22]. The network is assumed to be operating under a nonpreemptive
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static buffer priority (SBP) service policy and to have fixed mean interarrival
and service times. We first consider a model in which all interarrival and
service time distributions are assumed to be deterministic. Theorem 2.1 posits
that the deterministic network is stable. We next analyze the network under the
assumption that all interarrival and service time distributions are exponential. In
Theorem 2.2, we prove that such a queueing network is unstable in the sense that,
with probability 1, the total number of jobs in the system goes to infinity with
time. A consequence of Theorems 2.1 and 2.2 is that the stability region of the
two-station queueing network depends on the distributions, not just the means,
of the interarrival and service times. For queueing networks operating under a
head-of-line (HOL) service policy, practical fluid models are defined through a set
of equations, known as the fluid model equations, which take the mean interarrival
and service times as parameters. Hence, a further consequence of our result is
that no mean-value-based fluid model can determine the stability of the queueing
network we study.

For a queueing network operating under a given service policy, each fluid model
equation in the corresponding fluid model can be added only when it can be
justified by a limiting procedure via fluid limits; see, for example, [8], Section 7.
Some equations, like those that balance the flows among job classes, can be derived
and justified easily. Others, in particular those that are specific to a service policy,
are more difficult to divine and justify. Generating and verifying such fluid model
equations sometimes requires great insight and deep analysis of the queueing
network itself; see, for example, the virtual station fluid model equations (14)–(16)
in [13]. Nevertheless, this ad hoc way to write down fluid model equations has
been quite successful because it is practical and works well for a number for
service policies. For the example in [5], one may wonder if, by adding additional
fluid model equations, a modified fluid model would be stable, thus nullifying the
result in [5]. Such a scenario, while unlikely, was not ruled out in Bramson’s paper.
As noted above, our main result precludes the possibility that adding more fluid
equations could ever result in a complete mean-value fluid model for the network
we consider.

Dai and Vande Vate [13] showed that two-station multitype fluid models are
globally stable (i.e., stable under any nonidling service policy) if and only if the
virtual station and push start conditions are satisfied. (See Section 10 for further
discussion of these conditions.) In conjunction with the stability result in [8], this
implies that the virtual station and push start conditions are sufficient for global
stability of two-station multitype queueing networks with general interarrival and
service distributions. The next natural question which arises is whether these
conditions are also necessary for the stability of such queueing networks. If so,
then the fluid model can be used to completely characterize the global stability of
this class of queueing networks. A pathwise argument (see, e.g., [12] and [19]) can
be used to demonstrate that virtual station conditions are indeed necessary for the
global stability of networks with general interarrival and service distributions. The
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queueing network considered in this article provides a test case for determining
the necessity of push start conditions. For the exponential queueing network, Dai
and Vande Vate’s virtual station condition is satisfied. However, the push start
condition is violated. Theorem 2.2 indicates that the push start condition is indeed
also necessary for global stability of the exponential queueing network. We believe
that it is likely that such a principle holds for all two-station multitype queueing
networks with exponential distributions, that is, in such networks the virtual station
and push start conditions completely characterize the global stability region. We
anticipate that the proof techniques used here will be of use in establishing a more
general result of this type.

The discussion so far in this section has assumed that the SBP service policy is
nonpreemptive. In Theorem 2.3, however, we give a result for the deterministic
network operating under the preemptive SBP service policy. In particular, we
show that the network is unstable when operated under the preemptive SBP
policy, while Theorem 2.1 proves that the same network operating under the non-
preemptive SBP policy is stable. Our finding contrasts a common belief that the
preemption mechanism should have little effect on system performance measures
like throughput and cycle time, at least when the system is heavily loaded [17].
Indeed, Williams [32] shows that the heavy traffic behavior under any HOL service
policy is insensitive to the preemption mechanism employed as long as a certain
multiplicative state space collapse condition is satisfied. Our example suggests that
the state space collapse condition itself may depend on the preemption mechanism
used.

To our knowledge, this article is the first to demonstrate that the stability
region of a standard multiclass queueing network operating under a HOL service
policy depends on the distributions of interarrival and service times. The first
work that directly showed the gap between the stability of a multiclass queueing
network and its fluid model was [5]. Other researchers have also investigated the
relationship between the stability of a queueing model and its corresponding fluid
model (or the corresponding family of fluid limits). Foss and Kovalevskii [16]
considered a polling model and showed that the standard definition of stability
of a fluid model (see [8] and [30]) does not suffice to characterize the stability
of their stochastic polling model. They presented a refined definition of fluid
stability which captures the stability behavior of the original system. Stolyar and
Ramakrishnan [31] investigated the stability of another type of polling model
which falls outside the scope of the standard multiclass queueing network. They
also demonstrated that the standard criterion for defining the stability of fluid limits
does not properly characterize the stability of the original model. Again, a more
refined fluid stability criterion is introduced which characterizes the fluid behavior
in a more satisfactory manner. Essentially, both articles proposed a more careful
examination of the fluid limit model rather than the fluid model. The fluid model is
a deterministic, mean-value-based model, whereas the fluid limit model considers
only the (possibly stochastic) weak limits of the rescaled queue-length process.
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Although it is possible that investigating fluid limits directly could result in a tight
characterization of the stability for a general multiclass network, it is unclear if
this approach will be of practical use. The main difficulty is that characterizing the
stability of a fluid limit model could be as intractable as characterizing the stability
of the original model. Heretofore, the primary appeal of the fluid model has been
the relative simplicity of stability analysis.

The rest of this article is organized as follows. In Section 2, we introduce
the two-station queueing network and state our main results. In Section 3, we
introduce the fluid model which corresponds to the queueing network described
in Section 2. In this section we also present a stable fluid solution which drains
and an unstable fluid solution that diverges to infinity, where both solutions have
the same initial state. Section 4 presents the proof of Theorem 2.1, regarding
the deterministic network. Sections 5 and 6, which occupy a large portion of the
article, are devoted to the proof of Theorem 2.2. For the casual reader, these two
sections can be skipped. In Section 7 we present some simulation results which
explore the stability behavior of the uniform network. Section 8 contains the proof
of Theorem 2.3 and Section 9 gives a proof outline of a result that is analogous
to Theorem 2.2 when the exponential network is operated under the preemptive
SBP service policy. Finally, in Section 10, we present a more detailed discussion
of virtual station and push start conditions. We end with an Appendix in which
details of some proofs are presented.

2. The queueing network model and main results. In this section, we first
define the queueing network model to be studied in this article. We then state our
main results.

2.1. The queueing network model. In this article we are concerned only with
the queueing network pictured in Figure 1. The network has two service stations,
each having a single server. Each job follows the deterministic route indicated in
the figure, making a total of five visits along the route. Each station may serve
only one job at any given time. Jobs that are in service or waiting for the kth step
of service are called class k jobs. We envision them waiting in buffer k in front of
the station. With a slight abuse of notation, we consider that a class k job that is
in service also belongs to buffer k. We assume that the service times for class k

jobs are i.i.d. random variables with mean mk , k = 1, . . . ,5. The interarrival times
for jobs arriving from the outside are also assumed to be i.i.d. random variables
with mean 1/α1. Thus, α1 is the exogenous arrival rate. We further assume that the
sequence of interarrival times and the five sequences of service times are mutually
independent. Throughout this article, unless explicitly specified otherwise, we fix
the arrival rate and mean service times to be

α1 = 1, m1 = 0.4, m2 = 0.1,

m3 = 0.4, m4 = 0.1 and m5 = 0.4.
(1)
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FIG. 1. A push started Lu–Kumar network.

We consider several variations of the general network described above. In all
cases, the interarrival time distribution and five service time distributions are all
assumed to be of the same type, either deterministic, exponential or uniform. We
refer to the associated network as either the deterministic network, the exponential
network or the uniform network, respectively. Since we have fixed the mean
interarrival and service times, in the deterministic case, the means completely
define the respective distributions. In the exponential network, all interarrival and
service time distributions are assumed to be exponential with mean values as
specified above. For a uniform network, to specify the distributions we need to
specify the supports of these uniform distributions. Each uniform distribution is
centered at the mean values above, with a width of ε. For ease of exposition, we
assume that the widths for the interarrival and the five service time distributions
are all the same. Thus, for the uniform networks we discuss, we can fully specify
the distributions with the parameter ε, since the mean values are fixed.

Now we discuss the service policy to be employed in the network under study.
When either station A or B completes the service of a job, it must determine
which job to pick next for service. A service (or dispatch) policy specifies how
each station makes this decision for every possible state of the network. Our
network is assumed to be operating under the nonidling SBP service policy
π = {(1,3,4), (5,2)}. Under this policy, at station A jobs of class 1 have highest
priority, class 3 jobs have second highest priority and class 4 jobs are given
lowest priority. At station B, class 5 jobs have high priority and class 2 jobs have
low priority. We can consider both nonpreemptive and preemptive versions of the
policy π . Under a nonpreemptive service policy, once a job is in service, this job
must be completed before its server can serve any other jobs. Under a preemptive
service policy, a job in service can be preempted by an arriving higher priority job.
The preempted job is then served from where it left off when the server completes
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all higher priority jobs. We primarily consider the nonpreemptive service policy.
However, in Sections 8 and 9 we give some results on the network operating under
the preemptive policy.

We use Zk(t) to denote the number of jobs in buffer k at time t and Z(t) =
(Z1(t), . . . ,Z5(t)) to denote the corresponding vector. We use |Z(t)| to denote
the total number of jobs in the network at time t . For the exponential network
the vector Z(t) completely determines the state of the system in the preemptive
case. Namely, if one knows Z(t) at time t , the future evolution of the network
can be determined from time t on. For the deterministic or uniform networks, the
state Z(t) is not sufficient to determine the future evolution of the network. One
also needs to know the remaining interarrival and service times at t to completely
specify the state of the system. Furthermore, in the nonpreemptive case, one
must also specify which job is currently in service, no matter what distributional
assumption is in effect. In later sections, we sometimes augment the buffer level
state Z(t) with additional information needed to fully specify the network state.

2.2. Main results. Here we present the main theoretical results and also
summarize some of our simulation results. The first result shows that under the
nonpreemptive SBP service policy the deterministic network is stable (from all
initial states). The second result shows that the number of jobs in the exponential
network diverges to infinity from any initial state. Finally, we show that the
deterministic network operating under the preemptive SBP policy is unstable from
at least one class of states. The first two results show that changing the distribution
for the interarrival and service times has a profound effect on network dynamics.
The first and third results demonstrate that changing the preemption mechanism
also has a dramatic effect. Finally, our simulation results indicate that simply
changing the range of the distributions in a uniform network also affects the
stability of the network. We now state the main results more precisely.

The first theorem concerns the deterministic network operating under the non-
preemptive SBP service policy. In the deterministic network, a fully specified
system state should indicate the number of jobs in each class, which classes
of jobs are in service, the remaining time until the next job arrives and the
remaining service times for all jobs in service. For notational convenience, we use
some subset of this information to define a “special state” (z1, z2, z3, z4, z5;a),
where zk is the number of jobs in buffer k and a is the remaining interarrival
time until the next job arrives to the network. These special states, observed at
service completion times, indeed indicate the complete system state due to the
deterministic evolution of the network. With a slight abuse of terminology, such
special states are simply called states.

In Lemma 4.1 we verify that for any 0 < a ≤ 0.1 when the deterministic network
starts in state

(0,0,0,1,0;a),
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the network comes back to this same state exactly 1 min later. Thus, the trajectory
starting from state (0,0,0,1,0;a) forms an orbit. For a given 0 < a ≤ 0.1, the
corresponding orbit is called an a orbit. With this definition in hand, we now state
our first result.

THEOREM 2.1. For the deterministic network operating under the nonpre-
emptive SBP service policy and starting from any state, there exists a finite time at
which the network enters an a orbit, with 0 < a ≤ 0.1.

As we demonstrate later, while in an a orbit, the network has at most two
jobs. Hence, a consequence of Theorem 2.1 is that the total number of jobs in
the deterministic network is at most 2 after some finite time (which depends on the
initial state).

The next theorem shows that the number of jobs in the exponential network
diverges to infinity.

THEOREM 2.2. For the exponential network operating under the nonpreemp-
tive SBP service policy and starting from any initial state,

|Z(t)| → ∞
as t → ∞ with probability 1.

One can adopt a number of definitions of stability for a network. We do not
adopt any specific definition here in, but do present some different notions of
stability to put our results in perspective.

DEFINITION 2.1. The two-station queueing network is said to be bounded in
probability if starting from any initial state x,

lim
M→∞ lim inf

t→∞ Px{|Z(t)| ≤ M} = 1.

For the exponential network, being stable in the sense of bounded in probability
is equivalent to the state process for the network being positive recurrent. See,
for example, the proof of Proposition 18.3.1 of Meyn and Tweedie [26] in the
discrete time case. (The proof in the continuous time case is analogous.) For
the deterministic network, bounded in probability is equivalent to the recurrence
property of the trajectory. Hence, if we adopt bounded in probability as the
definition for stability, then Theorems 2.1 and 2.2 show that the exponential
network operating under the nonpreemptive SBP policy is unstable while the
deterministic network operating under the same policy is stable.
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DEFINITION 2.2. The two-station queueing network is said to be rate stable
if, starting from any initial state x,

Px

{
lim

t→∞D5(t)/t = α1

}
= 1,

where D5(t) is the number of jobs which have departed the network in [0, t].

Although it is not proved in this article, we suspect that Theorem 2.2 can be
strengthened to show that, with probability 1, the number of jobs in the network
grows linearly with time. Such a result would imply that the exponential network
is not rate stable, whereas Theorem 2.1 implies that the deterministic network is
rate stable. The interested reader should refer to [6] or [15] for more discussion on
rate stability. (El-Taha and Stidham [15] used the term pathwise stability instead
of rate stability.)

Since the deterministic network is an extreme case where there is no random-
ness at all in the system, one may wonder if the fact that the stability of the net-
work depends on the interarrival and service distributions is a robust phenomenon
or simply a pathological result which relies on the special deterministic case. In
Section 7, we provide some simulation studies which indicate that the uniform
network is stable for ε = 0.001 and unstable for ε = 0.1.

Our final theorem implies that by allowing preemption in our SBP service
policy, the deterministic network becomes unstable.

THEOREM 2.3. For the deterministic network operating under the preemptive
SBP service policy, the number of jobs in the system grows linearly to infinity with
time for any initial state Z(0) = (0,0,0, n,0) for n sufficiently large.

This theorem implies that the deterministic network operating under the
preemptive policy is unstable in both the stochastic boundedness and rate stable
sense. So this result, along with Theorem 2.1, shows that the stability of
the network depends on the preemption mechanism employed. Note that the
exponential network is unstable independently of the preemption mechanism
employed (see Theorem 9.1, along with Theorem 2.2 from above).

3. Fluid model solutions. In this section we introduce the fluid model of our
queueing network. The fluid model is especially important for our results since
fluid model solutions give insight into the behavior of the networks we study. In
addition to defining the fluid model below, we present both a stable and an unstable
fluid solution to the model. It turns out that the stable fluid solution and the stable
trajectories of the deterministic network have the same qualitative behavior. Also,
the proof of Theorem 2.2, given in Sections 5 and 6, is related to the unstable fluid
solution. Essentially, the main idea of the proof is to show that the exponential
queueing network dynamics closely follow this unstable fluid model solution.
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The fluid model is a deterministic, continuous analog of the queueing network.
It is defined through the set of equations

Z1(t) = Z1(0) + α1t − µ1T1(t), t ≥ 0,(2)

Zk(t) = Zk(0) + µk−1Tk−1(t) − µkTk(t), t ≥ 0, k = 2, . . . ,5,(3)

Zk(t) ≥ 0, t ≥ 0, k = 1, . . . ,5,(4)

Tk(t) is nondecreasing in t , k = 1, . . . ,5,(5)

t − T +
k (t) is nondecreasing in t, k = 1, . . . ,5,(6)

Ṫ +
k (t) = 1 for any time t with Z+

k (t) > 0 for k = 1, . . . ,5,(7)

where µk = 1/mk , and Z+
k (t) is the sum of Z�(t) over all classes � that have

priority at least k and are served at the same station as class k. For example, for
our network, operating under the priority policy defined in Section 2, we have

Z+
4 (t) = Z1(t) + Z3(t) + Z4(t) and Z+

1 (t) = Z1(t).

The quantity T +
k (t) is defined in a similar manner. For a function f (·) : [0,

∞) → R
d for some integer d , ḟ (t) denotes the derivative of f at time t .

Each function (T ,Z) satisfying (2)–(7) with T (t) = (T1(t), . . . , T5(t)) and
Z(t) = (Z1(t), . . . ,Z5(t)) is called a fluid solution to the fluid model. The
quantities Z(t) and T (t) have the following interpretation. For each class k,
Zk(t) is the fluid level in buffer k at time t and Tk(t) is the amount of time that
the class k server has spent serving class k fluid in [0, t]. Thus, µkTk(t) is the
cumulative amount of fluid that has departed from buffer k in [0, t]. Equations
(2) and (3) simply balance the flows in the network. Equation (5) ensures that the
amount of time spent on a class is nondecreasing and (6) says that the cumulative
remaining time for a server, excluding the time spent on classes with priorities of at
least k, is nondecreasing. Condition (7) follows from the SBP policies employed,
that is, when a high priority buffer has a positive amount of fluid, that server should
not devote any effort to a lower priority buffer. In the cases k = 4 and k = 2,
(7) simply insures that the fluid network operates under a nonidling policy.

It can be shown that each fluid solution (T ,Z) is Lipschitz continuous with
respect to t ; see, for example, [9]. Therefore, each solution is also absolutely
continuous and thus has derivatives for almost every t . Whenever a derivative like
the one in (7) is employed, it is automatically assumed that (T ,Z) is differentiable
at time t .

We construct two different fluid solutions—one which drains and one which
diverges to infinity—from the same initial state. These two drastically different
fluid solutions may give some insight as to why two queueing networks with the
same fluid model may also have drastically different behavior.

In the exposition that follows, it should be kept in mind that at many time points
(not just at time zero), fluid solutions may bifurcate. Hence, there are infinitely
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many stable and unstable solutions from some initial states. We describe only
one feasible stable solution which is consistent with the fluid model equations
from a particular initial state. The same point holds for the unstable fluid solution
described later in this section, that is, we describe only one feasible unstable
solution from this initial state.

A stable fluid solution. We first construct a fluid solution that drains from the
initial state Z(0) = (0,0,0,1,0), that is, for this solution we have that Z(t) = 0
for all t > T with T < ∞. In fact, this initial state is not special nor is the specific
set of network parameters we are using. It can be shown that as long as the usual
traffic conditions

ρA := α1(m1 + m3 + m4) < 1 and ρB := α1(m2 + m5) < 1(8)

hold, then we can similarly construct a stable fluid solution from any initial state.
If one of the usual traffic conditions is violated, then no stable fluid solution exists
from any initial fluid state.

To construct the stable fluid solution, we start the system with initial fluid level
Z(0) = (0,0,0,1,0). The solution is qualitatively divided into two periods. During
the first period, the network drains fluid from buffer 4 and does not accumulate
fluid in any other buffers. Once the fluid is drained from buffer 4 at time t1, the
network can maintain all buffers empty from t1 on, which is the second part of the
fluid solution.

We use dk(t) to denote the departure rate µkṪk(t) from class k at time t . Note
that if we fully specify the departure rates dk(t) for k = 1, . . . ,5 and for all t ,
a resulting fluid solution (T ,Z) is uniquely defined. One needs to check that the
solution satisfies the fluid model equations (2)–(7). In the case of our solution, this
is relatively easy to verify.

So, we first consider the time interval [0,1). For t ∈ (0,1) we set

d1(t) = d2(t) = d3(t) = 1 and d4(t) = d5(t) = 2.

Since, under this set of departure rates, it is clear that only Z4(t) is positive
on [0,1), we need only to check (7) for k = 4. One can check that for k = 4,
(7) is equivalent to

m1d1(t) + m3d3(t) + m4d4(t) = 1,(9)

which clearly holds for the departure rates we have specified. The validity of (6)
follows from (9) and the fact that

m2d2(t) + m5d5(t) ≤ 1

holds for all t ∈ [0,1) for the specified departure rates. The remainder of the fluid
model equations are easily verified.

Under the departure rates given, it is clear that buffer 4 will empty at time t1 = 1,
with all other buffers remaining empty. So, at t1, we have Z(t1) = (0,0,0,0,0).
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Next, on the interval (t1,∞) we set dk(t) = 1 for k = 1, . . . ,5, which yields

Z(t) = (0,0,0,0,0) for t ∈ [t1,∞).

Again, it is easy to check that (2)–(7) are satisfied for these departure rates and
fluid buffer levels. Hence, we have demonstrated that there exists a stable fluid
solution starting from Z(0) = (0,0,0,1,0).

An unstable fluid solution. Now we construct a fluid solution that diverges
to infinity. Most of the proof of Theorem 2.2 is devoted to showing that, for the
original exponential network, the network dynamics approximately follow this
divergent fluid solution. As will be seen shortly, such a fluid solution exists because
of the particular choices of the SBP policy and the mean service times employed
in our network. It turns out that the divergent fluid solution always exists when the
SBP policy is employed and the mean service times satisfy

ρpush := α1m5 + α1
m3

1 − α1m1
> 1.(10)

When ρpush ≤ 1 and the usual traffic conditions hold, then no divergent fluid solu-
tion exists. Condition (10) violates the push start condition, first identified in [13].
The push start condition is a magnification of a virtual station phenomenon first
observed by Harrison and Nguyen [18] and Dumas [14], and later systematically
treated in [12] and [13]. See Section 10 for more discussion on virtual station and
push start conditions.

Now, to construct the divergent fluid solution, we start the system with initial
fluid level Z(0) = (0,0,0,1,0). We present a fluid solution in one period that
ends when the system state reaches a state (0,0,0,+,0) with the fluid level in
buffer 4 exceeding one unit. (The plus sign indicates the buffer level is positive.)
Clearly, such a construction can be extended from period to period to construct a
solution which diverges to infinity with time. Within a period, the system evolves
in two cycles: the bottom cycle and the top cycle. During the bottom cycle, the
initial fluid in buffer 4 drains into buffer 5 and then exits the network. During
this draining period, fluid accumulates in buffer 2. The bottom cycle ends when
all fluid has drained from buffers 4 and 5, and buffer 2 is the only buffer with a
positive amount of fluid. At this point, the top cycle begins. During this cycle, fluid
in buffer 2 drains into buffer 3 and accumulates in buffer 4. The cycle ends when
all fluid has been drained from buffers 2 and 3 and all fluid in the network resides
in buffer 4.

The remainder of this section gives a detailed construction of these two cycles.
Again, we describe the fluid solution (T ,Z) by specifying the departure rates dk(t)

for t ≥ 0 and k = 1, . . . ,5. When the time t is clear from the context, we drop the
time dependence from the departure rate notation. Of course, one needs to check
that the solution satisfies the fluid model equations (2)–(7). This step is routine but
tedious, and thus is not provided here.
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Bottom cycle. As the cycle begins, buffer 1 is initially empty. Since buffer 1
has highest priority and the arrival rate to buffer 1 is slower than the service rate at
buffer 1, buffer 1 remains empty at all times. However, note that station A needs
to spend α1m1 = 0.4 fraction of its time to keep buffer 1 empty. The remaining
60% of the server’s capacity may be spent on buffers 3 and 4. If station A spends
all of this 60% remaining capacity on buffer 4, it can process class 4 fluid at a
rate of d4 = µ4(1 − α1m1) = 6, which is faster than the maximum service rate
d5 = µ5 at buffer 5. Hence, at the beginning of the bottom cycle, class 4 fluid is
being processed faster than class 5 fluid. So, fluid will accumulate at buffer 5 and,
furthermore, due to our priority policy, station B is prevented from serving any
class 2 fluid. Therefore, for an initial period of time, buffers 1 and 3 remain empty
with buffer 3 having no service activities at all, buffers 2 and 5 accumulate fluid,
and buffer 4 drains fluid. Such a state persists until buffer 4 empties at time t1. At
this point, the fluid level in the network is Z(t1) = (0,+,0,0,+), with a positive
amount of fluid in buffers 2 and 5. Since there is no input to buffer 5 immediately
after t1, buffer 5 begins draining fluid and buffer 2 continues to accumulate fluid.
Meanwhile, all other buffers remain empty, with only buffers 1 and 5 processing
fluid. This state continues until buffer 5 empties at time t2. Note that during [0, t2),
station B is spending 100% of its effort processing class 5 fluid and that it processes
exactly one unit of fluid in this time. Hence, t2 = m5 and at this time, buffer 2 has
α1m5 units of fluid. Thus, the fluid level is given by Z(t2) = (0, α1m5,0,0,0).
This is the end of the bottom cycle.

Top cycle. As soon as buffer 5 empties, station B begins processing class 2
fluid at rate d2 = µ2 = 10. This departure rate from buffer 2 overwhelms buffer 3,
which has a maximum service rate of µ3 = 2.5. Station A must continue to
devote 40% of its time to class 1 fluid. Hence, station A can only devote 60%
of its capacity to buffer 3 and the departure rate from buffer 3 will be d3 =
µ3(1−α1m1) = 1.5. Furthermore, station A cannot devote any processing capacity
to class 4 fluid. Thus, in the period immediately after t2, buffers 3 and 4 accumulate
fluid, buffer 2 drains, and buffers 1 and 5 remain empty. This state continues until
buffer 2 empties at t3. From this point on, external fluid flows through buffers
1 and 2 instantaneously to buffer 3. Since this external rate α1 = 1 < d3 = 1.5,
in the period immediately after t3, class 3 fluid drains into buffer 4, buffer 4
accumulates fluid and all other buffers remain empty. This state continues until
buffer 3 empties at time t4. At this time, all buffers are empty except buffer 4.
Thus, the fluid level is Z(t4) = (0,0,0,+,0). To calculate the amount of fluid in
buffer 4, we note that the α1m5 units of fluid which were present in buffer 2 at
time t2 have simply moved to buffer 4 at time t4. In addition, α1(t4 − t2) units of
fluid have arrived from the outside during [t2, t4] and reside in buffer 4 at t4. Thus,
Z4(t4) = α1m5 + α1(t4 − t2). To calculate t4 − t2, we note that during [t2, t4], the
departure rate from the “pipe” from buffer 1 to buffer 3 is a constant, d3. The input
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rate to this pipe is α1. The initial amount in the pipe at t2 is α1m5. Thus, the pipe
must empty in time

t4 − t2 = α1m5

(d3 − α1)
= α1m5m3

(1 − α1m1 − α1m3)
= m5m3

(1 − m1 − m3)
.

Hence,

Z4(t4) = α1m5 + α1(t4 − t2) = α1m5

1 − α1m3/(1 − α1m1)

= (1 − m1)m5

1 − m1 − m3
= 6

5
> 1.

(11)

Therefore, our top cycle ends at time t4 with fluid level (0,0,0,6/5,0). One can
check that in (11), Z4(t4) > 1 is equivalent ρpush > 1 for general mean service
times. Whenever the usual traffic conditions hold and ρpush > 1, our construction
always leads to a divergent fluid solution.

4. The deterministic network with nonpreemption. In this section, we
prove Theorem 2.1. Recall that the network has deterministic interarrival and
service times, and is operated under the nonpreemptive SBP service policy.

Our first lemma justifies our earlier definition of an a orbit.

LEMMA 4.1. Starting from an initial state (0,0,0,1,0;a) with 0 < a ≤ 0.1,
the trajectory of the network returns to the same state 1 min later.

PROOF. The proof follows from simply examining the sequence of states the
network visits in the first minute as show in Table 1. �

Theorem 2.1 asserts that the network enters an a orbit from any initial state.
We first prove the theorem for initial states that are regular type 1 or type 2 states,
which are defined shortly. We then prove that the network, starting from any initial
state, eventually reaches a regular state that is either of type 1 or type 2, thus
proving the main theorem.

TABLE 1

Time State

0 (0,0,0,1,0;a)

a (1,0,0,1,0;1)

0.1 (1,0,0,0,1;a + 0.9)

0.5 (0,1,0,0,0;a + 0.5)

0.6 (0,0,1,0,0;a + 0.4)

1.0 (0,0,0,1,0;a)
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DEFINITION 4.1.

1. A regular state is a state which is reachable after the network has been in
operation for at least 1 min.

2. A type 1 state is any state of the form (0,0,0, n,0;a) with n ≥ 0 and 0 < a ≤ 1.
3. A type 2 state is any state of the form (0,1,0, n,0;a) with n ≥ 0 and 0 < a ≤ 1.

Using Definition 4.1, it is easy to check that the following result holds.

LEMMA 4.2.

1. For a regular type 1 state, n ≥ 1 and 0 < a ≤ 0.1.
2. For a regular type 2 state, 0 < a ≤ 0.6.

PROOF. Part 1. Consider a fixed time t1 ≥ 1 and suppose Z(t1) = (0,0,0,

n,0;a) with n ≥ 1 and 0 < a ≤ 1. Note that in the time interval (t1 − 1, t1] exactly
one job must have arrived from the outside. Furthermore, this job must still be
in the system, since the total processing time to complete all steps is 1.4 min.
Thus, we have |Z(t1)| ≥ 1, which implies n ≥ 1. Next, the job that arrived in
(t1 − 1, t1] must have completed processing at steps 1 through 3, since there are
no jobs present in those buffers. Since these steps require 0.9 min, the job must
have arrived at or before t1 − 0.9 and after t1 − 1, by assumption. Thus, we have
0 < a ≤ 0.1.

Part 2. Consider a fixed time t2 ≥ 1 and suppose Z(t2) = (0,1,0, n,0;a) with
n ≥ 0 and 0 < a ≤ 1. Once again, we note that in the time interval (t2 − 1, t2]
exactly one job must have arrived from the outside. Since there are no jobs in
buffer 1, this job must have completed processing at buffer 1. Since processing at
buffer 1 requires 0.4 min, the job must have arrived at or before t2 − 0.4. Thus, we
have 0 < a ≤ 0.6. �

Without of loss of generality, we assume from now on that all initial states must
be regular.

Our first lemma shows that if the network starts from a regular type 1 state, it
enters an a orbit in a very direct manner. Note that if the network starts from any
of the intermediate states in the proof of Lemma 4.3, it enters an a orbit.

LEMMA 4.3. Starting from a regular type 1 state, the network enters an a

orbit in (n − 1) min.

PROOF. For n = 1, the proof follows from our definition of an a orbit. For
n ≥ 2, the proof follows by observation of the sequence of states in Table 2 and
induction. �

The next lemma indicates what occurs when the network starts from a regular
type 2 state.
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TABLE 2

Time State

0 (0,0,0, n,0;a)

a (1,0,0, n,0;1)

0.1 (1,0,0, n − 1,1;a + 0.9)

0.5 (0,1,0, n − 1,0;a + 0.5)

0.6 (0,0,1, n − 2,1;a + 0.4)

1.0 (0,0,0, n − 1,0;a)

LEMMA 4.4. Starting from any regular type 2 state, the network eventually
enters an a orbit.

The proof of Lemma 4.4 is left to the Appendix. Our final lemma in this section
describes what happens from a general initial state. Note that such an initial state
can be assumed to be regular, hence any subsequent state is also regular.

LEMMA 4.5. Starting from any (regular) initial state, the network eventually
enters either a regular type 1 or regular type 2 state.

PROOF. First, we set r ≡ inf{t ≥ 0 :Z1(t) = 0}, that is, r is the first time that
buffer 1 is empty. We claim that r is finite from any initial state and that Z1(t) ≤ 1
for all t ≥ r . To see this, note that since class 1 jobs have highest priority and
class 1 jobs are processed faster than the rate of arriving jobs, there is some finite
time at which Z1(t) = 0. Next, after buffer 1 has drained for the first time, any
class 1 arrival begins processing no more than 0.4 min after its arrival (it may be
delayed 0.4 min to wait for a class 3 job to complete processing). Since arrivals
occur every minute, no more than one job can be in buffer 1 after it has drained for
the first time.

Now, set t1 ≡ inf{t ≥ r :Z2(t) + Z5(t) = 0}, that is, t1 is the first time that
station B is empty after buffer 1 has drained for the first time. By Lemma A.1
of the Appendix, t1 is finite. Furthermore, from our arguments above, we have
Z(t1) = (1,0,m,n,0;a) or Z(t1) = (0,0,m,n,0;a), where m and n are arbitrary
nonnegative integers and 0 < a ≤ 1. Note that the job in service at station A may
be in the middle of service at t1.

Next, to complete the proof, we examine the following cases.

Case 1. A class 1 or class 3 job is in service at time t1. In this case, no class 4
job can be processed until buffers 1 and 3 are both empty, due to our priority
scheme.

Let us denote by t2 the first time after t1 that a buffer 4 job enters service.
Then immediately before t2, station A was serving either a class 1 or a class 3
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job, both of which require 0.4 min of processing time. Note that no buffer 5 jobs
are processed during [t1, t2], which implies that Z2(t) ≤ 1 during this interval.
If station A was serving a class 3 job just before t2, then Z2(t2) = 0 since there
are no arrivals to buffer 2 during the 0.4 min processing time of the class 3 job
and class 2 jobs require only 0.1 min of processing time. Hence, in this case we
must have Z(t2) = (0,0,0, n,0, a), with n ≥ 1 and 0 < a ≤ 0.1, which is a regular
type 1 state. If station A was serving a class 1 job just before t2, then we have
Z(t2) = (0,1,0, n,0;a). For Z(t2) to be a regular state, we must have 0 < a ≤ 0.6
at t2. Thus in Case 1, the network enters either a regular type 1 or type 2 state
at t2.

Case 2. A class 4 job is in service at t1 and Z1(t1) = Z3(t1) = 0. First
suppose that the class 4 job has just entered service. Then we must have Z(t1) =
(0,0,0, n,0;a) with n ≥ 1 and 0 < a ≤ 0.1, and we are in a regular type 1
state. If the class 4 job has a partial remaining service time at t1, then at time t0,
when this job entered service, we have either Z(t0) = (0,0,0, n,0;a) or Z(t0) =
(0,0,0, n,1;a), again with n ≥ 1 and 0 < a ≤ 0.1 in both cases. The former
state is a regular type 1 state. In the latter case, the buffer 5 job must have less
than 0.1 min partial remaining service time and one can check that the evolution
of the network from such a state is the same as starting from a “pure” regular
type 1 state.

Case 3. A class 4 job is in service at t1 and Z1(t1) = 1 or Z3(t1) > 0 (or
both). If Z1(t1) = 1, then at t2 < t1 + 0.1 the class 4 job completes service and
we have Z(t2) = (1,0,m,n − 1,1;a) with a > 0.9. At this time the class 1 and
class 5 jobs both initiate service, and 0.4 min later, the state is Z(t2 + 0.4) =
(0,1,m,n − 1,0;a). If m = 0 the network is in a (regular) type 2 state. If m > 0,
then 0.1 min later the class 2 job enters buffer 3, leaving station B empty. In
this case, the network is in a state of the form of Case 1, with a buffer 3 job in
service. On the other hand, if Z1(t1) = 0, then at t2 < t1 + 0.1 we have either
Z(t2) = (1,0,m,n − 1,1;a) with a > 0.9 or Z(t2) = (0,0,m,n − 1,1;a) with
m > 0. The former case has already been argued above. In the latter case, at t2 +0.4
we either are in a (regular) type 1 state (if there are no arrivals and m = 1) or we
are back in Case 1.

Note that the only case we have not covered is Z(t1) = (0,0,m,n,0;a) with
m = n = 0. This is because the zero state is not a regular state. To see this, we note
that |Z(t)| ≥ 1 for all t ≥ 1, since arrivals occur exactly once a minute and the time
to complete processing at all buffers is 1.4 minutes. �

PROOF OF THEOREM 2.1. The proof of Theorem 2.1 now follows from the
lemmas given in this section. Taking these lemmas together, we have that the
network enters an a orbit from any initial state. �
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5. The exponential network—preliminary proofs. The majority of this
section is devoted to proving the following theorem. Henceforth, we let t+ denote
the time immediately after time t .

THEOREM 5.1. Consider the exponential network operating under the non-
preemptive SBP service policy. Suppose Z(0) = (0, z2,0, n, z5) with a class 4 job
entering service at time 0 and a class 2 job not in service at time 0+. Then for any
0 < θ < 1, there exists an ε > 0 such that for all sufficiently large n,

P

{
Z4(T4) ≥ (1 − m1)m5

1 − m1 − m3
θn

}
≥ 1 − exp

(−ε
√

n
)
,(12)

where

T2 = inf{t > 0 :Z3(t) = Z4(t) = Z5(t) = 0},(13)

T4 = inf{t > T2 : a class 4 job enters service at time t
(14)

and a class 2 job is not in service at t+}
with P{T4 < ∞} = 1. Furthermore, for all sufficiently large n,

P
{|Z(t)| ≥ n/4 ∀ t ∈ [0, T4]} ≥ 1 − exp

(−ε
√

n
)
.

We envision n in the initial state Z(0) as large, with z2 and z5 being relatively
small. However, the theorem holds for arbitrary z2 and z5. Such an initial state
corresponds to the initial fluid model state (0,0,0,1,0) used in Section 3.
Note that at T4, a class 4 job has just entered service. Thus it is necessarily
true that buffers 1 and 3 are empty at T4. Hence, at time T4, the network
has returned to a state similar to the initial state, with a magnification factor
θ(1 − m1)m5/(1 − m1 − m3). We refer to the time interval [0, T4] as a cycle, in
alignment with the fluid network dynamics. Similarly, the interval [0, T2] is said to
form a bottom cycle and the interval [T2, T4] is said to form a top cycle.

The analogy between Theorem 5.1 and the unstable fluid solution constructed in
Section 3 is evident. The magnification factor for the exponential network in (12)
is smaller than the one for the fluid model in (11) due to randomness in our
exponential network. However, since (1 − m1)m5/(1 − m1 − m3) > 1, one can
always choose a θ < 1 such that the factor for the stochastic network in (12) is
still strictly greater than 1.

Although we said that our attention would be restricted to the network with a
mean service time vector of m = (0.4,0.1,0.4,0.1,0.4), the proof of Theorem 5.1
is actually general and holds for any service time vector for which ρA < 1, ρB < 1
and ρpush > 1.

In Section 6, we use Theorem 5.1 to complete the proof of Theorem 2.2. The
remainder of this section is devoted to the proof of Theorem 5.1. The actual
proof of Theorem 5.1 is presented in Section 5.5, with the various lemmas
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presented in Sections 5.1–5.4. In Section 5.1, we show that during the bottom
cycle, the exponential network closely follows the unstable fluid solution in [0, t2].
In Section 5.3, we show that during the top cycle the exponential network closely
follows the unstable fluid solution in [t2, t4]. Sections 5.2 and 5.4 detail how the
exponential network moves from the bottom cycle to the top cycle and from the
top cycle to the bottom cycle, respectively. Readers who intend to read the rest of
this section seriously should first understand thoroughly the unstable fluid solution
constructed in Section 3.

In the following sections, we introduce a number of positive constants:
ε1, ε2, . . . . Since the exact values of the constants are not important for our final
result, we do not keep track of the values or relationships between the constants.

5.1. The bottom cycle. At the beginning of what we call the bottom cycle,
there are a large number of jobs in buffer 4. We wish to show that once these jobs
begin processing, buffer 5 eventually is overwhelmed with jobs, thus preventing
buffer 2 jobs from being processed. Hence, once the large number of original
class 4 jobs have completed processing at buffers 4 and 5, there will be a large
buildup of jobs waiting at buffers 1 and 2. The goal of this subsection is show that
with high probability, the behavior described above occurs and that the number
of jobs in buffers 1 and 2 at the end of the bottom cycle is θ1m5n, where θ1 is
a constant arbitrarily close to 1. These statements are made more precise in the
following theorem, which is the main result for the bottom cycle.

THEOREM 5.2. Suppose Z(0) = (0, z2,0, n, z5) with a class 4 job entering
service at time 0 and a class 2 job not in service at time 0+. Then for all
0 < θ1 < 1, there exist an ε1 > 0 and a Markov time T2 [as defined in (13)] with
Z(T2) = (Z1(T2),Z2(T2),0,0,0) such that for all n sufficiently large,

P{Z1(T2) + Z2(T2) ≥ θ1m5n} ≥ 1 − exp
(−ε1

√
n

)
.

We now introduce a number of definitions needed for the proof of Theorem 5.2.

5.1.1. Buffer 5 busy and impure periods. Recall that we have interpreted T2 as
being the time a bottom cycle is completed, that is, the large number of jobs
originally in buffer 4 have been cleared from buffers 4 and 5, and all the jobs
in the network are in buffers 1 and 2. Unlike the unstable fluid model solution
in Section 3, buffer 5 may not be always busy during the entire interval [0, T2]
even if buffer 5 initially contains a job. Although, on average, the processing time
of a class 5 job is longer than that of a class 4 job, buffer 5 may be empty from
time to time in (0, T2) due to the randomness in these processing times. Each
time buffer 5 is busy and a class 4 job enters service, buffer 4 has a chance to
“overwhelm” buffer 5 entirely until buffer 4 is empty. However, there is also the
possibility that buffer 4 does not succeed in overwhelming buffer 5, if buffer 5
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empties prematurely (i.e., before buffer 4 is cleared of all jobs). Obviously, such
emptying times are important for our analysis. We recursively define these times
here. Let σ1 = 0 and define

τ1 = inf{t ≥ σ1 : a class 2 job enters service at time t}.
Next, we define σi and τi recursively as

σi+1 = inf{t ≥ τi : a class 4 job enters service at time t

and a class 2 job is not in service at t+},
τi+1 = inf{t ≥ σi+1 : a class 2 job enters service at time t}.

Note that at time σi < ∞, it is necessarily true that buffers 1 and 3 are empty.
During [σi, τi), station B either serves class 5 jobs or stays idle. Thus, there are no
jobs moving from buffer 2 to buffer 3, and hence buffer 3 remains empty during
the period. If buffer 4 happens to be empty at τi , we know that the entire bottom
cycle ends at that time. Let

r = inf{i ≥ 0 :Z4(τi) = 0}.(15)

It is clear that T2 ∈ (σr , τr]. Thus, r is also the smallest i such that τi ≥ T2. For
future purposes, we summarize some basic properties in the following proposition.

PROPOSITION 5.3. (a) For each i, buffer 3 is empty throughout the inter-
val [σi, τi).

(b) Throughout the interval [σi, τi), station B is either working on class 5 jobs
or stays idle. In the latter case, buffer 2 is necessarily empty.

(c) For each i < r , buffer 4 is nonempty throughout the interval [σi, τi).

We call the interval [σi, τi) the ith buffer 5 busy period or simply the ith busy
period, and call [τi, σi+1) the ith impure period for i = 1,2, . . . . When i < r , the
ith busy period is said to be incomplete. When i = r , the busy period is said to be
the last busy period. Note that it is possible for there to be only one (initial) busy
period and no impure periods in [0, T2).

It is clear that all these random times depend on the parameter n or more
generally on the initial state Z(0). To keep our notation simple, we do not explicitly
denote such dependence.

Next, we note that while the network is in buffer 5 busy periods, class 4 jobs
will be, on average, processed faster than class 5 jobs, even with interruptions to
serve the higher priority class 1 jobs. The next lemma makes this statement more
precise.

LEMMA 5.4. Suppose that at time t a class 4 job enters service and no class 2
job is in service at t . Let t ′ be the time at which the current class 4 job completes
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service. Further, let t ′′ ≥ t ′ be the first time that buffer 1 is empty, after the class 4
service completion. Let u1 = t ′′ − t . Then

E[u1] = m4

1 − m1
< m5.

Furthermore, u1 is independent of events occurring before t .

PROOF. Once the class 4 job has completed service, station A must serve any
class 1 jobs which arrived during this class 4 service, until buffer 1 is empty. Once
all class 1 jobs are cleared, station A is available to process lower priority classes.
Hence

E[u1] = E[v1 + s1],
where v1 is the time it takes to complete the class 1 jobs after the service at buffer 4
and s1 is the service time at buffer 4. Thus, we have

E[u1] = E[v1] + m4.(16)

We now proceed to derive an expression for E[v1]. Let N be the number of jobs
in buffer 1 after the service completion at buffer 4. Conditioning on s1, we have

E[N ] = E(E[N |s1])
= E(α1s1)

= E(s1) = m4.

Using the same procedure after conditioning on N , we have

E[v1] = E(E[v1|N ])
= E

[
m1

1 − m1
N

]

= m1

1 − m1
E[N ]

= m1

1 − m1
m4.

The second line is obtained by applying the formula for the mean absorption time
to zero from state N , for a birth–death process with constant birth rate 1 and
constant death rate 1/m1 (see, e.g., [21], page 149).

Plugging the above expression into (16) and doing some algebra yields

E[u1] = m4

1 − m1
.

One can check that when the usual traffic conditions are satisfied and ρpush > 1,
that m4/(1 − m1) < m5.
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Finally, note that each time a class 4 job enters service, there must be zero
jobs in both buffers 1 and 3. This fact, along with the memoryless property of
the interarrival times, implies that v1 is independent of events before t . Using
the independence assumptions on the service times for jobs, we have that u1 is
independent of events before t . �

Lemma 5.4 implies that in a buffer 5 busy period, jobs arrive at buffer 5 faster
than they depart from buffer 5, on average. There is a positive probability that
buffer 5 empties during a busy period before buffer 4 has emptied, which leads to
the end of an incomplete busy period. However, such a sequence of events cannot
happen too often, which we demonstrate in the next lemma.

LEMMA 5.5. There exists a constant 0 < c < 1 such that for each i ≥ 1,

P{r ≥ i} ≤ ci.

PROOF. We note that

P{r > i} = P{r > i − 1, τi < ∞,Z4(τi) > 0}
= P{r > i − 1}P{τi < ∞,Z4(τi) > 0|r > i − 1}.(17)

Now, on the event that {r > i − 1}, {σi < ∞} and the network starts a new busy
period at σi with state Z(σi).

Consider a random walk on {0,1,2,3, . . . } with positive drift. By Lemma 5.4,
the number of jobs in buffer 5 during the busy period [σi, τi) is such a random
walk, assuming that buffer 4 never runs out of jobs within the period. At the
beginning of the busy period, either a class 5 job is in service or station B is empty.
In the latter case, a job arrives at buffer 5 when the first job in the period finishes
its service at buffer 4. In either case, we assume without loss of generality that the
random walk starts from a state that is greater than or equal to 1.

Since

{τi < ∞,Z4(τi) > 0} ⊂ {the random walk ever reaches state 0}
and the probability c for the random walk with positive drift to ever reach state 0
is strictly less than 1, it follows from (17) that P{r > i} ≤ P{r > i − 1}c for each i.
From this and induction, the lemma follows. �

COROLLARY 5.1. (a) P{r < ∞} = 1 and (b) P{T2 < ∞} = 1.

PROOF. Part (a) follows from Lemma 5.5. From part (a), we have P{σr <

∞} = 1. It follows that P{τr < ∞} = 1, which implies (b). �
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5.1.2. Proof for bottom cycle. The goal in this subsection is to provide a
probabilistic bound on the number of jobs remaining in buffers 4 and 5 when the
last busy period begins. This is the content of Theorem 5.6.

THEOREM 5.6. For any 0 < θ2 < 1, there exists an ε2 > 0, such that for all
sufficiently large n,

P{Z4(σr) + Z5(σr) ≥ θ2n} ≥ 1 − exp
(−ε2

√
n

)
.

Theorem 5.6 says that by time σr , the number of jobs that have departed from
buffer 5 is a small fraction of n with large probability. The proof of the theorem is
given at the end of the subsection. To aid the proof, we need to examine in detail
how jobs depart buffer 5. We call a job a leak if it completes processing at buffer 5
during [0, σr ]. We show that within a period (σi, σi+1), there cannot be too many
leaks, when i < r .

So let us fix a period (σi, σi+1). Recall that the interval [σi, τi) is called a
buffer 5 busy period and the interval [τi, σi+1) is called an impure period. The
number of leaks that can happen during the busy period is shown to be small using
Lemma A.3 when i < r . We now first control the number of leaks during the
impure period [τi, σi+1).

By definition, buffer 5 must be empty at the beginning of an impure period
[τi, σi+1). Hence, during any impure period, the number of leaks is bounded above
by the number of class 4 service completions during this period. It is possible that
the first class 4 job completed during the impure period entered service before the
impure period started. However, all subsequent class 4 service completions must
be due to jobs which entered service during the impure period. In the next lemma,
we derive a bound for such service completions.

LEMMA 5.7. Let qi be the number of class 4 jobs that enter service within the
ith impure period. There exists a constant c with 0 < c < 1 such that for i = 1, . . . ,

P{qi > 2j} ≤ cj for j = 0,1, . . . .(18)

PROOF. Fix an impure period [τi, σi+1). Each time a class 4 job enters service
at time t ∈ [τi, σi+1), a class 2 job must be in service at t . Otherwise, the impure
period ends at a time t that is strictly less than σi+1, contradicting the definition
of σi+1.

Now consider the following sequence of events starting at time t (assume, for
now, that the next interarrival time to buffer 1 is very long):

1. The class 4 job completes service before the class 2 job.
2. A second class 4 job enters the service.
3. The class 2 job completes service and becomes a class 3 job.
4. A class 5 job enters service.
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5. The second class 4 job completes service.
6. The class 3 job enters service.
7. The class 3 job completes service and becomes a class 4 job. At this moment,

the third class 4 job enters service while the class 5 job is still in service, thus
ending the impure period.

For the above sequence of events to be possible, it is enough to assume that there
are no job arrivals to buffer 1 during the entire impure period.

Let ξk be the time that the kth job enters class 4 service within the impure
period and let Ak denote the intersection of the corresponding sequence of events
(1–7 above) initiated by the kth job. If Ak occurs, the impure period ends with
k + 1 class 4 jobs having initiated services. Thus,

{qi > 2j} = {ξ2j+1 < σi+1} ⊂ {ξ2j−1 < σi+1} ∩ Ac
2j−1,

where Ac
k is the complement of Ak.

By the memoryless property of exponential distributions, the probability
P{Ak|ξk < σi+1} is strictly greater than 0. Denoting this nonzero probability by
1 − c, we have c = P{Ac

k|ξk < σi+1} < 1. Note that this probability c depends only
on the network parameters, that is, the mean interarrival and service times. Thus,
we have

P{qi > 2j} = P{ξ2j+1 < σi+1}
≤ P{ξ2j−1 < σi+1} · P{Ac

2j−1|ξ2j−1 < σi+1}
= P{ξ2j−1 < σi+1}c

...

≤ P{ξ1 < σi+1}cj

≤ cj ,

proving (18). �

Next, we want to control the number of leaks which occur during the ith busy
period for i < r .

LEMMA 5.8. There exists an ε3 > 0, such that for all n large enough, for each
i = 1,2, . . . ,

P
{
number of leaks during [σi, τi) exceeds

√
n, i < r

} ≤ exp
(−ε3

√
n

)
.

PROOF. Consider the number of jobs in buffer 5 during the busy period
[σi, τi). The buffer 5 queue length process is identical to the queue length process
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in a G/G/1 queue with interarrival times given by the interdeparture times
from buffer 4. Lemma 5.4 implies that the interarrival times are i.i.d. with mean
m4/(1 − m1), which is smaller than m5, the mean service time at buffer 5. At
time σi , station B is either working on a class 5 job or is idle. In the latter case,
buffer 2 is necessarily empty and the first class 4 job to complete service during
the busy period passes to buffer 5 and begins service during the busy period. In
either case, applying Lemma A.3 at the time when a class 5 job is first in service
during the busy period, the result follows. �

PROOF OF THEOREM 5.6. Let δ = 1 − θ2. Then δ > 0 and

P{Z4(σr) + Z5(σr) ≥ θ2n}
≥ 1 − P{more than δ n leaks from buffer 5 in [0, σr ]}.

Let A = {more than δ n leaks during [0, σr]}. To estimate the probability of A,
we have

P(A) = P
(
A ∩ {

r ≥ √
n

}) + P
(
A ∩ {

r <
√

n
})

≤ P
({

r ≥ √
n

}) + P

(�√n⋃
i=1

{
at least δ

√
n leaks during [σi, σi+1), i < r

})

≤ P
({

r ≥ √
n

}) +
�√n ∑
i=1

P
{
at least δ

√
n leaks during [σi, σi+1), i < r

}

≤ exp
(−ε4

√
n

) + �√n exp
(−ε5

√
n

)
≤ exp

(−ε2
√

n
)
.

In the second to last line of this equation, the first term follows directly from
Lemma 5.5, with an appropriate ε4. The second term in the same line follows
from Lemmas 5.7 and 5.8, again with an appropriate ε5. The final inequality is
valid for some ε2 > 0 if n is sufficiently large. �

5.2. From bottom to top. Our primary goal in this subsection is to show that,
with high probability, there are roughly θ1m5n jobs in buffers 1 and 2 at time T2.
In other words, the n original jobs at buffer 4 have now “become” θ1m5n jobs in
buffers 1 and 2. We begin with some lemmas.

LEMMA 5.9. Let the Markov times σr and T2 be defined as in (15) and (13),
respectively. Then for any 0 < θ3 < 1, there exists an ε6 > 0 such that for n large
enough,

P{T2 − σr < θ3m5n} ≤ exp
(−ε6

√
n

)
.
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PROOF. By the definition of T2, all jobs present in buffers 4 and 5 at time
σr will have departed the network by time T2. By Theorem 5.6, we have that for
any 0 < θ2 < 1, buffer 5 must process θ2n jobs, except on an exponentially small
set. So T2 − σr is the sum of at least θ2n i.i.d. exponential random variables with
mean m5. Applying Lemma A.2 and using Theorem 5.6 we have that for all α > 0
there exists an ε7 > 0 such that for all n large enough,

P{T2 − σr < θ2m5n − αn} ≤ exp(−ε7n) + exp
(−ε2

√
n

)
,

P{T2 − σr < θ3m5n} ≤ exp(−ε7n) + exp
(−ε2

√
n

)
,

P{T2 − σr < θ3m5n} ≤ exp
(−ε6

√
n

)
,

where we have set θ3 = θ2 −α/m5 to obtain the second expression above. Note that
since α can be arbitrarily small, we can obtain the inequality for any 0 < θ3 < 1.

�

Now, since we have a lower bound on the time that buffer 5 is busy, we can
obtain a lower bound on the number of jobs which must be in buffers 1 and 2 at
time T2. This is the main theorem for the bottom cycle, Theorem 5.2.

PROOF OF THEOREM 5.2. Let E1(·) be the counting process for exogenous
arrivals to buffer 1 and let Yn be the time of the nth arrival during [σr, T2]. We
choose any α > 0. By applying Lemma 5.9, we have

P{E1[σr, T2] < θ3m5n − αn}
(19)

≤ P
{
E1[σr, T2] < θ3m5n − αn|T2 − σr ≥ θ3m5n

} + exp
(−ε6

√
n

)
.

Next, we do some rearranging and apply Lemma A.2 in the last inequality:

P
{
E1[σr, T2] < θ3m5n − αn|T2 − σr > θ3m5n

}
= P

{
Y�θ3m5n−αn > T2 − σr |T2 − σr ≥ θ3m5n

}
≤ P

{
Y�θ3m5n−αn > θ3m5n

}
≤ P

{
Y�θ3m5n−αn > αn + θ3m5n − αn

}
≤ P

{
Y�θ3m5n−αn > αn + �θ3m5n − αn}

≤ exp(−ε8n).

Now, plugging the above into (19) and setting θ1 = θ3 − α/m5, we have

P{E1[σr, T2] < θ1m5n} ≤ exp(−ε8n) + exp
(−ε6

√
n

)
< exp

(−ε1
√

n
)

for n sufficiently large. Next, since all the exogenous arrivals in the interval [σr, T2]
must still be at buffers 1 and 2 at T2, we have that

Z1(T2) + Z2(T2) ≥ E1[σ,T2].
Combining this with our previous inequality yields the theorem. �
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5.3. The top cycle. Time T2 is the beginning of what we call the top cycle. By
virtue of Theorem 5.2, at time T2 there are at least θ1m5n jobs in buffers 1 and 2
off an exponentially small set. Once buffer 2 begins processing this large number
of jobs, we expect, with high probability, buffer 3 to be overwhelmed with jobs.
However, it is possible for buffer 3 to catch up, which may allow a class 4 job into
service, and as in the bottom cycle, we may have buffers 3 and 5 processing jobs
simultaneously. In this section, we wish to show that such a state does not persist
for long and with high probability that buffer 2 overwhelms buffer 3.

To state our main results, we need several definitions.

DEFINITION 5.1. Let

T3 = inf{t > T2 :Z2(t) = Z3(t) = 0},
that is, T3 is the time at which we clear the large number of jobs from buffers
2 and 3. Note that T3 is not analogous to the t3 of the fluid iteration.

As in the previous subsection we wish to recursively define buffer 3 busy periods
and other times, which we call impure periods. Let σ̂1 = T2 and define

τ̂1 = inf{t ≥ σ̂1 : a class 4 job enters service at time t}.
The interval [σ̂1, τ̂1) is called the initial buffer 3 busy period. Next, we define
σ̂i and τ̂i :

σ̂i+1 = inf{t ≥ τ̂i : a class 2 job enters service at time t

and there is no class 4 job in service at t},
τ̂i+1 = inf{t ≥ σ̂i+1 : a class 4 job enters service at time t}.

We call the interval [σ̂i , τ̂i) the ith buffer 3 busy period or simply the ith busy
period, and call [τ̂i , σ̂i+1) the ith impure period for i = 1,2, . . . . Note that it is
possible for there to be only one busy period and no impure periods in [T2, T3).
Let

r = inf{i :Z2(τ̂i) = 0}.(20)

Note that r is the smallest i such that τ̂i ≥ T3. Analogous to Lemma 5.5, we have
the following lemma.

LEMMA 5.10. There exists a constant c with 0 < c < 1 such that

P{r ≥ j} ≤ cj for j = 0,1, . . . .

The proof of this lemma is actually simpler than that of Lemma 5.5 because
there are no analogous external job arrivals to interfere with class 2 services. Thus,
we do not need an additional lemma that is analogous to Lemma 5.4 for this proof.
As before, we have the following corollary.



352 J. G. DAI, J. J. HASENBEIN AND J. H. VANDE VATE

COROLLARY 5.2. (a) P{r < ∞} = 1 and (b) P{T3 < ∞} = 1.

For i < r , the ith busy period is said to be incomplete and for i = r , the ith busy
period is said to be the last busy period. Thus, we call [σ̂r , T3) the last buffer 3
busy period. In this interval, buffer 3 never “catches up” with buffer 2. Again, it
is possible for σ̂1 = σ̂r = T2, in which case the initial buffer 3 busy period and the
last buffer 3 busy period coincide.

As in the case for the bottom cycle, we want to control the number of jobs
which “leak” during [T2, σ̂r]. Within the period [T2, T3], a job is called a leak if it
is processed by buffer 2 during [T2, σ̂r]. Again, it is possible to have no leaks,
in particular if buffer 3 is always kept busy from the first moment after T2 at
which it begins processing jobs, up until T3. Intuitively, leaks are jobs which do
not contribute to a large buildup of jobs at buffer 4 during the last buffer 3 busy
period.

Here is the main theorem for the top cycle:

THEOREM 5.11. For any 0 < θ4 < 1, there exists an ε9 > 0, such that for all
sufficiently large n,

P{Z1(σ̂r ) + Z2(σ̂r ) ≥ θ4m5n} ≥ 1 − exp
(−ε9

√
n

)
.

The proof of Theorem 5.11 depends crucially on the following lemmas, which
give bounds on the number of leaks before the last busy period.

LEMMA 5.12. Let qi be the number of class 2 jobs that have started their
services during a single impure period [τ̂i , σ̂i+1). Then there exists a constant c

with 0 < c < 1 such that for i = 1, . . . ,

P{qi > j} ≤ cj for j ≥ 0.

PROOF. The proof of the lemma is analogous to the proof of Lemma 5.7. Since
the current lemma has a stronger result, we repeat some of the details here.

Fix an impure period [τ̂i , σ̂i+1). Each time a class 2 job enters service at time t

within the period, a class 4 job must be in service at t . Otherwise, the impure
period ends at a time t that is strictly less than σ̂i+1, contradicting the definition
of σ̂i+1.

Now consider the following sequence of events starting at time t :

1. An external arrival occurs before the class 4 job completes service.
2. The class 4 job completes service and becomes a class 5 job.
3. The class 1 job enters the service.
4. The class 2 job completes its service and becomes a class 3 job.
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5. The class 5 job enters service.
6. The class 5 job completes its service before the class 1 job. At this moment, the

second class 2 job enters service and ends the impure period.

Let ξk be the time that the kth job enters class 2 service within the impure period
and let Ak be the intersection of the corresponding sequence of events (items 1–6
above) initiated by the kth job. If the event Ak occurs, the impure period ends
with k jobs having initiated service at buffer 2. Thus,

{qi > j} = {ξj+1 < σ̂i+1} ⊂ {ξj < σ̂i+1} ∩ Ac
j .

Since the probability P{Ak|ξk < σ̂i+1} is strictly positive, depending only on
the network parameters mean interarrival and service times, we have P{Ac

k|ξk <

σ̂i+1} = c < 1. Thus,

P{qi > j} ≤ P{ξj < σ̂i+1}c
...

≤ P{ξ1 < σ̂i+1}cj

≤ cj ,

where the chain of inequalities is similar to that in the proof of Lemma 5.7. �

LEMMA 5.13. There exists an ε10 > 0 such that for all n sufficiently large,

P
{
number of leaks from buffer 2 during [σ̂i , τ̂i) exceeds

√
n, i < r

}
≤ exp

(−ε10
√

n
)
.

PROOF. The proof of the lemma is analogous to the proof of Lemma 5.8.
However, in the top cycle case, in applying Lemma A.3, the interarrival times are
determined by the service times of class 2 jobs. Thus, there is no need to use a
lemma that is analogous to Lemma 5.4. �

With this lemma in hand, we have a result similar to the bottom cycle case.

LEMMA 5.14. Let 0 < δ < 1. Then there exists an ε11 > 0 such that for
sufficiently large n,

P{more than δn leaks from buffer 2 in [T2, σ̂r ]} ≤ exp
(−ε10

√
n

)
.

PROOF. The proof follows from Lemmas 5.10, 5.12 and 5.13. �
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PROOF OF THEOREM 5.11.

P{Z1(σ̂r ) + Z2(σ̂r ) < θ4m5n}
≤ P

{
Z1(σ̂r ) + Z2(σ̂r) < θ4m5n|Z1(T2) + Z2(T2) ≥ θ1m5n

}
+ exp

(−ε1
√

n
)

≤ exp
(−ε10

√
n

) + exp
(−ε1

√
n

)
≤ exp

(−ε9
√

n
)
.

The first inequality follows by conditioning and applying Theorem 5.2. The second
follows from Lemma 5.14. The third holds for appropriate ε9 and sufficiently
large n. �

5.4. From top to bottom. Next, we need to consider in detail what occurs
during the interval [σ̂r , T3]. Recall that once buffer 3 begins processing its first
job after time σ̂r , it remains positive until T3. Thus, no class 4 job is processed
during [σ̂r , T3] and hence buffer 5 remains empty during [σ̂r , T3).

We divide [σ̂r , T3] into subintervals. We need the following definitions. First,
set R0 = σ̂r .

DEFINITION 5.2. Consider the jobs which are in buffers 1–3 at time R0 = σ̂r .
Let R1 be the time at which all these jobs have completed services at buffer 3.

DEFINITION 5.3. Assume that Ri has been defined. Consider all jobs in
buffers 1–3 at time Ri . Let Ri+1 be the time at which all these jobs have completed
service at buffer 3.

For convenience, we define

Si+1 = Ri+1 − Ri for i = 0,1,2, . . . ,

which is the amount of time needed for all jobs in buffers 1–3 at time Ri to
complete service at buffer 3. Also, let v = inf{i : Ri ≥ T3}.

PROPOSITION 5.15. We have P{v < ∞} = 1.

PROOF. In every interval [Ri,Ri+1) the network must process at least one
class 1 job. By the strong law of large numbers, Ri → ∞ almost surely as i → ∞.
Since T3 is almost surely finite by Corollary 5.2, there are a finite number of Ri’s
before T3. �

We now wish to obtain a lower bound on T3 − σ̂r and the number of jobs which
arrive in that time. This then gives a lower bound on the number of jobs in buffer 4
at time T3.
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LEMMA 5.16. Suppose that at time t a class 3 job enters service. Let t ′ be the
time at which the current class 3 job completes service. Further, let t ′′ ≥ t ′ be the
first time that buffer 1 is empty after the class 3 service completion. Let u1 = t ′′ − t .
Then

E[u1] = m3

1 − m1
> m2.

Furthermore, u1 is independent of events occurring before t .

PROOF. The proof of the lemma is exactly analogous to that of Lemma 5.4.
If ρpush > 1 and the usual traffic conditions hold, then one can check that
m3/(1 − m1) > m2. �

LEMMA 5.17. Let θ5 be any fixed constant with 0 < θ5 < 1. There exists an
ε11 > 0 such that for all si sufficiently large,

P

{
Si+1 < θ5

m3

(1 − m1)
· si

∣∣∣Z1(Ri) + Z2(Ri) + Z3(Ri) = si

}

≤ exp(−ε11si) for i = 0,1, . . . .

PROOF. During [Ri,Ri+1], buffer 3 must process all the jobs present in
buffers 1–3 at time Ri . The result then follows from Lemmas A.2 and 5.16, as
in the proof of Lemma 5.9. �

In the next lemma, recall that E1[s, t] denotes the number of external arrivals in
the interval [s, t].

LEMMA 5.18. Let θ6 be any fixed constant with 0 < θ6 < 1. There exists an
ε12 > 0 such that for all si sufficiently large,

P

{
E1[Ri,Ri+1] < θ6

m3

(1 − m1)
· si

∣∣∣Z1(Ri) + Z2(Ri) + Z3(Ri) = si

}

≤ exp(−ε12si).

The proof here is analogous to the proof of Theorem 5.2.
We can now put all of the preceding estimates together to get an estimate of the

number of jobs that have arrived during [σ̂r , T3]. By definition, all of these jobs
must then be in buffer 4 at time T3. This leads to the following result.

THEOREM 5.19. Suppose Z(0) = (0, z2,0, n, z5) with a class 4 job entering
service at time 0 and a class 2 job not in service at time 0+. Then for all
0 < θ7 < 1, there exists an ε13 > 0 and a Markov time T3, with Z(T3) =
(Z1(T3),0,0,Z4(T3),0) such that for all n sufficiently large,

P

{
Z4(T3) ≥ (1 − m1)m5

1 − m1 − m3
θ7 n

}
≥ 1 − exp

(−ε13
√

n
)
.
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PROOF. By Theorem 5.11, we have that, off an exponentially small set, there
are at least s0 = θ4m5n jobs in buffers 1 and 2 at time R0 = σ̂r . An application of
Lemmas 5.17 and 5.18 yields that for n large enough, off an exponentially small
set there are at least (

θ6
m3

1 − m1

)
θ4m5n

arrivals while we are processing the jobs present at σ̂r . So, at time R1, there are at
least

s1 =
(
θ6

m3

1 − m1

)
θ4m5n

jobs in buffers 1, 2 and 3 off an exponentially small set. Reasoning similarly, again
off exponential sets, at time Ri there are at least

si =
(
θ6

m3

1 − m1

)i

θ4m5n

jobs in buffers 1–3.
Next, fix a positive integer N . Define

K =
N∑

i=0

(
θ6

m3

1 − m1

)i

θ4m5.

Since
∞∑
i=0

(
θ6

m3

1 − m1

)i

θ4m5 = θ6(1 − m1)

1 − m1 − θ6m3
θ4m5

for any θ7 with 0 < θ7 < 1, one can choose θ4, θ6 and N with 0 < θi < 1 such that

K ≥ θ7
(1 − m1)m5

1 − m1 − m3
.(21)

Next, for n large enough so that si , i = 1, . . . ,N , is large enough to apply
Lemmas 5.17 and 5.18, we show that at RN we have processed Kn jobs at buffer 3
off an exponentially small probability set. Note that at T3, buffer 4 must contain
all of the jobs processed at buffer 3 during [σ̂r , T3). In particular, buffer 4 must
contain at least Kn ≥ θ7(1 − m1)m5/(1 − m1 − m3) jobs at T3 off a small set.

To complete the proof, we must indeed verify that the above claim is true except
off an exponentially small set. To see this, first note that the size of N required to
make (21) valid depends only on the problem data mi , which is fixed, and the θi ,
which have necessary closeness to 1 also fixed, depending on the problem data mi .
Hence the necessary size of N can be fixed once and for all given the problem data.
Next, we need to have the s1, s2, . . . , sN sufficiently large at times R1, . . . ,RN to
apply Lemmas 5.17 and 5.18. Since N does not depend on the initial number of
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jobs n in the system, we can make n large enough so that sN , and thus si for
i = 0, . . . ,N − 1, is large enough to apply Lemmas 5.17 and 5.18. Thus, we have

P{Z1(Ri+1) + Z2(Ri+1) + Z3(Ri+1) ≤ si+1}
≤ P{Z1(Ri) + Z2(Ri) + Z3(Ri) ≤ si}

+
∞∑

s=si

P
{
Z1(Ri+1) + Z2(Ri+1) + Z3(Ri+1) ≤ si+1|

Z1(Ri) + Z2(Ri) + Z3(Ri) = s
}

× P{Z1(Ri) + Z2(Ri) + Z3(Ri) = s}
≤ P{Z1(Ri) + Z2(Ri) + Z3(Ri) ≤ si} + exp(−ε12si)

...

≤ P{Z1(R0) + Z2(R0) + Z3(R0) ≤ s0} +
i∑

k=0

exp(−ε12sk)

≤ P{Z1(R0) + Z2(R0) + Z3(R0) ≤ s0} + (i + 1) exp(−ε12si)

≤ exp
(−ε9

√
n

) + N exp(−ε12sN) for i = 0, . . . ,N − 1,

where, in obtaining the last inequality, we have used Theorem 5.11. Now,

P

{
Z4(T3) ≤ θ7n

m5(1 − m1)

1 − m1 − m3

}

≤ P

{
N∑

k=0

(
Z1(Rk) + Z2(Rk) + Z3(Rk)

) ≤ θ7n
m5(1 − m1)

1 − m1 − m3

}

≤ P

{
N∑

k=0

(
Z1(Rk) + Z2(Rk) + Z3(Rk)

) ≤
N∑

k=0

sk

}

≤
N∑

k=0

P{Z1(Rk) + Z2(Rk) + Z3(Rk) ≤ sk}

≤ (N + 1)
(
exp

(−ε9
√

n
) + N exp(−ε12sN)

)
≤ exp

(−ε13
√

n
)
.

So we conclude that for any 0 < θ7 < 1, there exists ε13 > 0 such that
for n sufficiently large,

P

{
Z4(T3) ≥ θ7n

m5(1 − m1)

1 − m1 − m3

}
≥ 1 − exp

(−ε13
√

n
)
.

By definition we have Z(T3) = (Z1(T3),0,0,Z4(T3),0) and a class 3 job was
completed at T3−. This concludes the proof of the theorem. �
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5.5. Proof of Theorem 5.1. Theorem 5.19 essentially shows that if we start
with a large number of jobs in buffer 4, then with very high probability there will
be a large number of jobs in buffer 4 some time later. To complete the proof of our
main result, Theorem 2.2, we must obtain three additional results.

First, we note that the beginning and ending states in Theorem 5.19 are not
qualitatively identical. In the theorem, at time 0 a class 4 job enters service. In the
conclusion of the theorem, we have that at time T3 a class 1 job may be in service
[if Z1(T3) �= 0]. At time 0, the network enters what we call a buffer 5 busy period.
Our first task is to “complete the loop” in Theorem 5.19. Specifically, we wish to
show that at time T4 ≥ T3, the network once again enters a buffer 5 busy period,
without losing too many jobs from buffer 4 ( jobs which were present at T3). We
show this, along with the finiteness of T4, in Theorem 5.1.

Next, we use the results of Section 5 and Theorem 5.1 to show that we can put a
lower bound on the total number of jobs in the network at any time during a cycle.
We demonstrate this in Theorem 5.20.

PROOF OF THEOREM 5.1. We first prove that T4 is finite with probability 1.
Recall that T2 is finite with probability 1, as shown in Corollary 5.1. Let V1,V2, . . .

be the sequence of times after T2 at which a class 4 job enters service. Since
both stations empty infinitely often with probability 1, each Vi is finite with
probability 1. Note that if there is no class 2 job in service at Vi , then we set
T4 := Vi by definition. On the other hand, suppose that there is a class 2 job in
service at Vi . Then the state of the network must be Z(Vi) = (0, n,0,m, r), where
n > 0, m > 0 and r ≥ 0, with a class 2 job in service.

Next, we note that every time the network enters such a state, there is a strictly
positive probability that the following sequence of events occurs:

1. The class 4 job completes service and moves to buffer 5. Another class 4 job (if
m > 0) enters service.

2. The class 2 job completes service and moves to buffer 3. The buffer 5 job enters
service.

3. The next class 4 job completes service (again, in the case m > 0).
4. The class 3 job completes service and moves to buffer 4.
5. A class 4 job enters service (either the job that just arrived from buffer 3 or

another class 4 job).

This sequence of events assumes that steps 3 and 4 occur before the class 5
job completes service and that there are no external arrivals to the system during
the entire sequence. Every time a class 4 job enters service, buffers 1 and 3 must
be empty. Using this and the Markov property, we conclude that at each Vi there
is a positive probability, which can be bounded away from zero independently of
past events, that Vi+1 = T4. Hence, T4 − T2 can be bounded above by a proper
geometric sum of proper random variables, which implies that P{T4 < ∞} = 1.
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Next, we prove the main part of the theorem, which is the probabilistic bound
on the number of jobs in buffer 4 at T4. If Z1(T3) = 0, then we set T4 := T3 and
we are done. If not, then after the class 3 job has completed service at time T3,
the network is entering a typical impure period for the bottom cycle. When it exits
this impure period, it enters a buffer 5 busy period and the network is in a state
as described by the conclusion of the theorem. We call the time that it exits the
impure period T4. Note that this definition is consistent with the definition of T4

given in the statement of Theorem 5.1.
Next, let N be the number of jobs which are leaked from buffer 4 during this

impure cycle interval, [T3, T4). It is bounded by q + 1, where q is the number of
class 4 jobs that have started service in the interval. By Lemma 5.7, we have that
there exists an ε14 > 0 such that for all n sufficiently large,

P
{
N ≥ √

n
} ≤ exp

(−ε14
√

n
)
.

We can now combine this estimate with the result of Theorem 5.19 as

P
{
Z4(T4) ≤ cθ7n − cθ7

√
n

}
≤ P

{
Z4(T4) ≤ c θ7n − c θ7

√
n
∣∣Z4(T3) ≥ c θ7n

} + P{Z4(T3) < c θ7n}
≤ exp

(−ε14
√

n
) + exp

(−ε13
√

n
)

≤ exp
(−ε15

√
n

)
,

where

c = (1 − m1)m5

1 − m1 − m3
.

The last inequality holds for appropriate ε15 > 0 and n large enough. Continuing,
we have

P
{
Z4(T4) ≤ cθ7n

(
1 − √

n/n
)} ≤ exp

(−ε15
√

n
)
,

which implies

P{Z4(T4) ≤ c θ8n} ≤ exp
(−ε15

√
n

)
for any 0 < θ8 < 1, since both θ7 and (1 − √

n/n) can be made arbitrarily close
to 1 for n sufficiently large. �

A lower bound on the total jobs in the network. We now wish to show that, off
a set of small probability, there are at least n/4 jobs in the network in [0, T4]. In all
previous results above, recall that all θi can be made arbitrarily close to 1. In the
following arguments, we assume that the θi ’s are sufficiently close to 1 to suit our
needs.
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THEOREM 5.20. There exists an ε16 > 0 such that, for sufficiently large n,

P {|Z(t)| ≥ n/4 ∀ t ∈ [0, T4]} ≥ 1 − exp
(−ε16

√
n

)
.

PROOF. On [0, σr] the lower bound on |Z(t)| follows directly from the proof
of Theorem 5.6, as long as θ2 is close to unity. Next, let σ̃r > σr be the time at
which only n/4 of the original jobs from buffer 4 remain in buffers 4 and 5. Then
by our definition of σ̃r and Theorem 5.6, the lower bound in fact holds on [0, σ̃r ].
Now, we need only show that, off a small set, there are at least n/4 arrivals to the
network during [σr, σ̃r ]. If this is so, then the bound holds on [0, T2].

In [σr, σ̃r ], buffer 5 must process (θ2 − 1/4)n jobs, off an exponentially small
set. Now, by arguments analogous to the proof of Lemma 5.9, the amount of time
needed to process (θ2 − 1/4)n jobs at buffer 5 is (θ9 − 1/4)m5n, off a small
set, where 0 < θ9 < 1. By arguments analogous to the proof of Theorem 5.2,
the number of exogenous arrivals during [σr, σ̃r ] is (θ10 − 1/4)m5n off an
exponentially small set for 0 < θ10 < 1. Note that (0.75)m5 = 0.3; hence, it is easy
to make the expression above close to n/4 for θ10 sufficiently close to 1. Now, since
all jobs that arrive during [σr, σ̃r] are in buffers 1 or 2, we have established that for
any 0 < θ10 < 1, there exists an ε17 > 0 such that for all sufficiently large n,

P
{
Z1(σ̃r ) + Z2(σ̃r) ≥ (θ10 − 1/4)m5n

} ≥ 1 − exp
(−ε17

√
n

)
.

Thus, the lower bound on |Z(t)| of the theorem holds on [0, T2]. Now, we need
to show that the bound holds on [T2, T3]. On this interval, which is the top cycle,
the bound follows automatically from the arguments in Section 5.3. In particular,
Theorem 5.11 guarantees that the total number of jobs in the network during the
top cycle is at least θ4m5n (off a small set), which again is easily greater than n/4
for θ4 close to 1.

Finally, Theorem 5.1 insures that the network does not lose too many jobs
during [T3, T4], off a small set. In particular Theorem 5.1 implies that with high
probability, there are at least θm5n jobs in the network during [T3, T4]. (Note that
the constant c which appears in the proof of Theorem 5.1 is larger than m5.)

We obtain the probabilistic lower bound on |Z(t)| for all t ∈ [0, T4] by taking
all of the exponential bounds together. �

6. The exponential network—proof of Theorem 2.2. Finally, we need to
use all of our previous results to complete the proof of Theorem 2.2. Specifically,
we need to show that Theorem 5.1 implies our main result.

PROOF OF THEOREM 2.2. We are now ready to prove Theorem 2.2. Our
proof is similar to the proof of instability given by Bramson [2], although we
provide some extra details of the method. We let Z = {Z(t), t ≥ 0} be the queue-
length process for our network. In the case when there is more than one job class
present at a station, we assume that Z(t) has the information of which job is in



TWO-STATION QUEUEING NETWORK 361

service appended to it. In the nonpreemptive case, this information is required to
make Z a Markov process. So Z is then a discrete state, continuous-time Markov
process. For clarity, we sometimes explicitly denote the dependence of Z(t) on the
sample path by writing Z(t,ω).

We now prove Theorem 2.2 by contradiction. So suppose that there exists an
initial state z0 such that

Pz0

({ω :Z(t,ω) �→ ∞}) > 0,(22)

where Pz(·) is the probability measure induced when starting in state z. For an
integer �, let A� = {state z : |z| ≤ �}. Then (22) implies that there exists an � > 0
such that

Pz0

( ∞⋂
k=1

⋃
t∈[k,∞)

{ω :Z(t,ω) ∈ A�}
)

≡ δ > 0.(23)

Now suppose we begin in an initial state z1 = (0,0,0, n,0). Note that this state
is a special case of the initial state as given in Theorem 5.1. Fix θ < 1 such that
c θ > 1, where

c = (1 − m1)m5

1 − m1 − m3
.

By repeatedly applying Theorem 5.1 and the strong Markov property, we have for
large enough n,

Pz1

({ω :Z(t,ω) < n/4 for some t ≥ 0}) ≤ 2
∞∑
i=0

exp
[−ε

√
n(cθ)i

]
.(24)

Note in particular that the right-hand side of (24) approaches zero as n goes to
infinity; hence, the probability on the left can be made as small as desired. Choose
an n > 4� which is large enough to satisfy Theorem 5.1 and such that the left-hand
side of (24) is smaller than δ/2.

One can check that any initial state of the form given in Theorem 5.1 is
accessible from the zero state. Since any state can access the zero state, we have

Pz{the Markov process Z eventually reaches state z1} > 0

for any initial state z. Because the set A� is finite, we have

min
z∈A�

Pz{the Markov process Z eventually reaches state z1} > 0.

Now for any ω in
⋂∞

k=1
⋃

t∈[k,∞){ω :Z(t,ω) ∈ A�}, there exists a sequence {tk}
such that tk > k and Z(tk,ω) ∈ A� for k ≥ 1. Each time the process en-
ters A�, it has a positive probability hitting state z1. Thus, on the event



362 J. G. DAI, J. J. HASENBEIN AND J. H. VANDE VATE

⋂∞
k=1

⋃
t∈[k,∞){ω :Z(t,ω) ∈ A�}, the process Z hits z1 with probability 1. There-

fore, we have

δ = Pz0

( ∞⋂
k=1

⋃
t∈[k,∞)

{ω :Z(t,ω) ∈ A�}
)

= Pz0

( ∞⋂
k=1

⋃
t∈[k,∞)

{ω :Z(t,ω) ∈ A�} ∩ {Z(T ) = z1}
)

≤ Pz1

( ∞⋂
k=1

⋃
t∈[k,∞)

{ω :Z(t,ω) ∈ A�}
)

≤ Pz1

({ω :Z(t,ω) < n/4 for some t ≥ 0})
≤ δ/2,

yielding a contradiction. In the second display, T is the first hitting time to the
state z1. We obtain the first inequality via the strong Markov property. The last
inequality follows from (24). �

7. The uniform network. In Sections 5 and 6, we proved that the non-
preemptive exponential network is unstable in the sense that the number of jobs
in the system goes to infinity with probability 1. In Section 4 we proved that the
network operating under the same policy is stable when interarrival and service
times are deterministic. In particular, from any initial state, the deterministic
network reaches (and stays in) a set of states with less than two jobs. The
interarrival and service time distributions in both of these cases are in some sense
extreme. The exponential distribution has unbounded support and the deterministic
“distribution” is degenerate. One may then wonder how the stability or instability
of our network depends on the range or variability of the network primitives. In
this section, we report the results of simulation studies undertaken to give some
insight into this question.

We again investigated the two-station network of Figure 1. As before, we fix the
arrival rate and mean service times to be

α1 = 1, m1 = 0.4, m2 = 0.1,

m3 = 0.4, m4 = 0.1 and m5 = 0.4.
(25)

Also, the network is once again assumed to be operating under the nonpreemptive
SBP service policy. However, in our simulations, the service times for class i jobs
are set to be uniform random variables with a range of (mi −ε/2,mi −ε/2) and the
interarrival times are uniform random variables with a range of (1 − ε/2,1 − ε/2),
where ε ≥ 0. We refer to such a network as a uniform(ε) network. In particular,
Section 4 demonstrates (analytically) that the uniform(0) network is stable. For
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other values of ε, we conducted various simulations to determine stability or
instability of a uniform(ε) network. Note that we do not provide any proofs
or formal statistical results in this section. Our simulation studies simply give
an indication of stability or instability. However, we believe that the simulation
evidence presents a convincing case for the stability characterization in each case.

Simulation studies. All simulations were performed in Arena 3.03. Table 3
provides a short summary of our simulation results. Each network was simulated
for 110,000 min of simulation time, with 100 independent replications being
performed. The statistics we report in the table and our analysis below are based
on the utilization at each station. The simulation statistics were collected only
for the last 100,000 min of simulation time to reduce initialization bias. Note
that using (8), one can calculate the “nominal utilization” levels for stations
A and B, which are ρA = 0.9 and ρB = 0.5, respectively. One can show that in
any multiclass network, if the average utilization over [0, t] on any sample path
does not converge to the nominal utilization as t goes to infinity (at any station),
then the number of jobs goes to infinity on this sample path. To be more precise,
let Bi(t) be the amount of time station i spent serving jobs in [0, t]. Then it can be
shown that

lim sup
t→∞

Bi(t,ω)

t
< ρi for some station i implies

|Z(t,ω)| → ∞ as t → ∞
for a sample path ω. On the other hand, if the average utilization converges
to the nominal utilization at each station i for a given sample path, that is,
limt→∞ B(t,ω)/t = ρi , then the network is rate stable on this path.

For the case ε = 0.1 we initialized the network with varying numbers of jobs
in buffer 4 and zero jobs in all other buffers. The smallest value of Z4(0) which
makes all 100 replications unstable is 49. For these runs with Z4(0) = 49, among
the 100 replications, we recorded both the maximum average utilization and the
minimum average utilization (labeled Utilization range in the table) at station A
and station B. We also recorded the average utilization at each station across all

TABLE 3
Simulation study results

Average utilization Utilization range

ε Stable Station A Station B Station A Station B

0.1 No 0.87809 0.45226 (0.86798, 0.88774) (0.43085, 0.47405)

0.001 Yes 0.90005 0.50008 (0.89999, 0.90379) (0.50000, 0.50371)
±7.87 × 10−5 ±1.02 × 10−4
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100 runs. From Table 3, we see that no replication in this set of runs achieved the
nominal utilization at either station and that the average utilizations are far below
the nominal values. We also did 100 replications starting with Z4(0) = 48. In this
case, we found that the utilizations in three replications were close to the nominal
values, indicating the network is stable along three sample paths. This seems to
suggest that the number of jobs goes to infinity with positive probability, but that
this probability is strictly less than 1. Presumably, if the network is initialized with
more than 49 jobs in buffer 4, most or all similar simulation runs would indicate
instability of the uniform(0.1) network.

For the case of ε = 0.001, we initialized the network with 100 jobs in every
buffer. The network was intentionally initialized in a “worse” (more heavily
loaded) state for these runs, as compared to the runs with ε = 0.1. For these
runs we again recorded the average utilization and, in addition, calculated 95%
confidence intervals for the average utilization. For comparison, we also report
the maximum and minimum average utilizations over the 100 replications. Our
simulation results are presented in Table 3. The last row of the table gives the half-
lengths of the confidence intervals for average utilization from the uniform(0.001)
network simulations. We see that the average utilizations are near the nominal
values and that the nominal values are also within the confidence intervals, as
expected for a stable network. We also simulated the network from a number of
other initial states. All the results from these runs indicate that the uniform(0.001)
network is stable from these initial states.

In Figure 2, we provide a WIP profile for one run of the uniform(0.001) network,
which seems to be stable according to our studies. Figure 3 provides a WIP
profile for one run of the uniform(0.1) network, which our simulation studies
indicate to be unstable. From examining other runs for both networks, these WIP
profiles appear to be representative of the typical behavior of these networks. Our
simulation studies seem to indicate that the variability of interarrival and service

FIG. 2. A stable sample path.
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FIG. 3. An unstable sample path.

times has an effect on network stability, that is, if these times are “close” to
deterministic, then the network is stable. Otherwise, if there is sufficient variability
in these times, the network is pushed into the instability regime. This indicates
that the deterministic and exponential networks studied in earlier sections are not
simply pathological cases, but perhaps typical examples of the effect of variability
on stability.

8. The deterministic network with preemption. In this section, we again
consider the two-station deterministic network. As in Section 4, the network has
deterministic (i.e., constant) interarrival and service times. However, in this section
and the next, the network is assumed to be operating under the preemptive SBP
service policy, as described in Section 2.1. We prove Theorem 2.3, which implies
that such a network is not rate stable, from many initial states. It should be noted
that the preemptive deterministic network is not unstable from all initial states.
In particular, if the initial state is (0,0,0,1,0;a) with 0.1 ≤ a < 0.2, then the
network falls into an orbit like the a orbit introduced in Section 2.2. There may
also be many other initial states from which this network is stable.

Theorem 2.3 follows directly from Lemma 8.1. We first need the following
definition.

DEFINITION 8.1. Let I be the set of states of the following types:

• (0,0,0, n,0;a) with 0 < a < 1 and a class 4 job having zero remaining service
time;

• (0,1,0, n,0;a) with 0.5 < a < 0.6 and a class 4 job having zero remaining
service time.

In both cases, we assume n ≥ 1.
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LEMMA 8.1. Consider the deterministic network operating under the pre-
emptive SBP service policy. Let Z(0) ∈ I and Z4(0) = n. Then for any constants
k1 < 1.2 and k2 > 1.2, for n sufficiently large, there exists a time T such that:

(a) Z(T ) ∈ I and Z4(T ) > k1 · n;
(b) T ≤ k2 · n.

PROOF. (a) We assume that Z(0) ∈ I and that one class 4 job has zero
remaining service time at time 0, that is, at time 0+ a class 4 job is be passed
to buffer 5. If the class 2 job also has zero remaining service time at time 0, we
resolve the simultaneous events in the following manner. The class 4 job completes
service “first,” is passed to buffer 5 and then preempts the zero service time job in
buffer 2.

Since class 4 jobs require only 0.1 min of service time, whereas class 5
jobs require 0.4 min of service time, we claim that buffer 5 remains positive,
independently of the initial state, until after buffer 4 has drained for the first time.

Next, we let t2 = inf{t > 0 :Z5(t) = 0}. Note that under the SBP policy, no jobs
are processed at buffer 2 in the interval [0, t2). Furthermore, since Z1(0) = 0 and
class 1 jobs have preemptive priority, it is clear that Z1(t) ≤ 1 for all t ≥ 0. Hence,
at t2 the network state is of the form Z(t2) = (0/1, z2,0,0,0), where buffer 1 has
either one job or no jobs. Now, since all jobs which arrived during [0, t2) must be
in buffers 1 or 2, we have z2 ≥ t2 − 2. We subtract 2 to account for round-off
error in the number of arrivals in [0, t2) and the possibly one job in buffer 1.
Note that in [0, t2], exactly n jobs were processed at buffer 5. Hence t2 = 0.4 n.
Combining our last two observations, we have z2 ≥ 0.4 n − 2.

Note that for n sufficiently large, we have Z2(t2) > 0. Next, let t3 = inf{t >

t2 :Z2(t) = 0} and

t4 = inf{t > t2 : a class 4 job departs buffer 4 at t}.
At t2, a class 2 job begins processing and is sent to buffer 3 at t2 + 0.1. Since
class 2 jobs are processed faster than class 3 jobs, it is clear that buffer 3 becomes
overwhelmed with jobs and cannot be empty until after t3. Now, we let t ′4 = inf{t >

t2 + 0.1 :Z3(t) = 0}. Under the SBP policy, we must have t ′4 ≤ t4. We now wish to
provide a lower bound on t ′4.

We have already argued that buffer 1 can contain at most one job at any time.
Similarly, since Z5(t) = 0 for t ∈ (t3, t4), buffer 2 can contain at most one job.
In fact, for t in this interval, we have Z1(t) + Z2(t) ≤ 1. Thus, when buffer 3
becomes empty for the first time at t ′4, it must have processed all z2 jobs which
were in buffer 2 at t2 and all but possibly one of the jobs which arrived during
(t2, t

′
4). Furthermore, buffer 1 has processed all of the jobs which arrived in this

interval. Combining all of these observations, we have

t ′4 − t2 ≥ 0.4z2 + (0.4 + 0.4)[t ′4 − t2 − 2].
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Rearranging yields t ′4 − t2 ≥ 2z2 −8. Finally, the number of jobs present at buffer 4
at time t4− must include all jobs which arrived in (t2, t4), except possibly one job
which could be in buffer 2, plus the z2 jobs present in buffer 2 at t2. The number
of jobs which arrived in (t2, t4) is bounded below by the number which arrived
in (t2, t

′
4), which in turn is bounded below by t ′4 − t2 − 1. We now combine these

observations with previous inequalities:

Z4(t4) ≥ t ′4 − t2 − 2 + z2

≥ 2 z2 − 10 + z2

≥ 3 z2 − 10

≥ 3(0.4n − 2) − 10

= 1.2n − 16.

Clearly, for n sufficiently large, we can insure Z4(t4) > k1n for any k1 < 1.2.
We now argue that Z4(t4) ∈ I. Since a buffer 4 job is completed at t4+, we must

have Z1(t4) = Z3(t4) = 0 due to the preemptive policy. Furthermore, we know
that Z5(t4) = 0 from our definitions above. If Z2(t4) = 0, then we automatically
have Z(t4) ∈ I. If Z2(t4) = 1, then this job must have been passed to buffer 2 in
the interval (t4 − 0.1, t4). Since class 1 jobs have highest priority, the same job
must have arrived at buffer 1 during (t4 − 0.5, t4 − 0.4). Hence the next arrival to
the network occurs in (t4 + 0.5, t4 + 0.6). In this case we also have Z(t4) ∈ I.

(b) First we recall from above that t2 = 0.4n. Next, once buffer 3 becomes
empty for the first time at t ′4, it is straightforward, but tedious, to show that buffer
4 completes processing of a job within 2 min. We also observe that buffer 1 or
buffer 3 must constantly be processing jobs during (t2 + 0.1, t ′4). The amount of
processing time devoted to processing such jobs cannot be more than 0.4z2 (the
time buffer 3 spends on the original buffer 2 jobs) plus 0.8(t ′4 − t2) (the amount of
time buffers 1 and 3 require to process all the jobs arriving in the interval). We also
observe that z2 ≤ t2 = 0.4n. So we have

t ′4 − t2 − 0.1 ≤ 0.4z2 + 0.8(t ′4 − t2)

≤ 0.4 · 0.4n + 0.8(t ′4 − t2).

Rearranging, we have t ′4 − t2 ≤ 0.8 n + 0.5. Finally, t4 ≤ t2 + t ′4 − t2 − 0.1 + 2 ≤
1.2n + 2.4. Hence, for n sufficiently large, we can satisfy part (b) of the lemma.

�

PROOF OF THEOREM 2.3. We note that the initial state in Theorem 2.3 is in
the class I of Lemma 8.1. Hence, we can apply the lemma starting at time 0. Since
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the lemma indicates that we always return to a state in the same class as the initial
state, we conclude that there exists a sequence of times s1, s2, . . . with

Z4(si) > (k1)
in, i = 1,2, . . . .

Also, from the lemma we have that

Z4(si+1) − Z4(si)

si+1 − si
≥ k1 − 1

k2
.

Since k1 can be chosen greater than 1 and k2 can be chosen to be positive,
this implies that Z(t) is going to infinity linearly along the sequence of times
{si, i ≥ 1}. �

9. The exponential network with preemption. In this section, we consider
the two-station exponential network operating under the preemptive SBP policy.
As in Sections 5 and 6, all interarrival and service times are assumed to be
i.i.d. exponential random variables. We refer to this network as the preemptive
exponential network. As before, we let |Z(t)| denote the total number of jobs in
the network at time t .

For the preemptive exponential network, it turns out that an analog of our main
result for the nonpreemptive exponential network (Theorem 2.2) holds:

THEOREM 9.1. For the exponential network operating under the preemptive
SBP service policy, starting from any initial state,

|Z(t)| → ∞
as t → ∞ with probability 1.

In this section, we provide only an outline for the proof of Theorem 9.1. The
full proof of the theorem proceeds in an exactly analogous manner to the proof of
Theorem 2.2, but in fact can be considerably simplified due to the preemptive
assumption. However, the basic idea is the same: Use simple large deviations
estimates to show that the queueing network roughly follows the unstable fluid
behavior (outlined in Section 3), with high probability.

Proof outline for Theorem 9.1. As in the nonpreemptive case, the majority
of the proof of Theorem 9.1 involves proving a theorem similar to Theorem 5.1.
The following theorem can be proven more directly than Theorem 5.1 due to the
preemption employed.

THEOREM 9.2. Consider the exponential network operating under the pre-
emptive SBP service policy. Suppose Z(0) = (0, z2,0, n,0). Then for any
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0 < θ < 1, there exist an ε > 0 and a Markov time T4 with Z(T4) = (0,Z2(T4),0,

Z4(T4),0) such that for all sufficiently large n,

P

{
Z4(T4) ≥ (1 − m1)m5

1 − m1 − m3
θn

}
≥ 1 − exp

(−ε
√

n
)
,

where

T2 = inf{t > 0 :Z3(t) = Z4(t) = Z5(t) = 0},
T4 = inf{t > T2 :Z1(t) = Z3(t) = Z5(t) = 0}.

Furthermore, for all sufficiently large n,

P{|Z(t)| ≥ n/4 ∀ t ∈ [0, T4]} ≥ 1 − exp
(−ε

√
n

)
.

The main result in the preemptive case, Theorem 9.1, follows directly from
Theorem 9.2, as in the nonpreemptive case.

Next, we briefly outline the arguments needed to establish Theorem 9.2. As
before, one needs to employ basic large deviations estimates to show that, with
high probability, very few jobs “leak” from buffer 4 before the network enters the
last busy period in the bottom cycle. This is analogous to the result of Theorem 5.6.
However, in the preemptive case the arguments can be simplified considerably.
During the analogous impure periods in the preemptive case, jobs cannot be
processed or leaked from buffer 5. Hence, it is not necessary to derive bounds
for such impure periods or jobs leaked during these periods. The main reason for
the simplification is the fact the jobs can never be processed simultaneously at
buffers 3 and 5 in the preemptive network. Now, once a modified Theorem 5.6
has been established, the analogous result to Theorem 5.2 follows exactly as in the
nonpreemptive case.

For the second half of the proof (the top cycle), the preemptive case is similar,
yet simpler. Once again, establishing a result like Theorem 5.11 is easier because
leaks from buffer 2 cannot occur during top cycle impure periods in the preemptive
case. Otherwise, the arguments for the top cycle in the preemptive case are exactly
analogous to the nonpreemptive case.

10. Virtual stations and push starts. In this section, we give a more detailed
discussion of virtual station and push start conditions. We also attempt to give
deeper insight into the results of this article.

As was mentioned in Section 3, an unstable fluid model solution exists because
the push start condition

ρpush = m3

1 − m1
+ m5 ≤ 1(26)

is violated. The push start condition is a magnification of a virtual station condition
identified in [13]. The virtual station effect can most easily be seen in the queueing
network operating the preemptive SBP service policy. The following proposition
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is a special case of Proposition 3.1 in [19]. Note that the result holds even if we
allow the occurrence of simultaneous events, as long as they are processed one at
a time, consistent with the given preemptive SBP service policy.

PROPOSITION 10.1. For the two-station, five-class queueing network under
any distributional assumptions on interarrival and service times, assume the
preemptive SBP service policy is employed. Then, for every sample path,

Z3(t)Z5(t) = 0 for all t ≥ 0(27)

as long as Z3(0)Z5(0) = 0.

Let us suppose that the network is initially empty. A consequence of (27) is
that jobs in classes 3 and 5 can never be processed simultaneously. Thus, one can
envision that these two classes constitute a virtual station, with at most one class
being served at a time. Therefore,

m3 + m5 ≤ 1(28)

is necessary for the stability of the queueing network and the corresponding fluid
model. Condition (28) is called a virtual station condition.

To describe the push start condition, we consider a two-station, four-class
queueing network obtained by deleting class 1 from the five-class network in
Figure 1. We retain the priority scheme from the five-class network. The resulting
four-class network is the well known Lu–Kumar network [24]. For simplicity,
in the four-class network, we retain the class designations from the five-class
network. For example, jobs in the first step of processing in the Lu–Kumar network
are labeled as class 2 jobs. One can show that (27) continues to hold in the
Lu–Kumar queueing network. Thus, (28) is necessary for the stability of both
the Lu–Kumar queueing network and the Lu–Kumar fluid model.

Now let us consider the fluid model of our five-class network. Since class 1
has highest priority, and α1 = 1 < µ1, buffer 1 empties in finite time and remains
empty thereafter. In keeping buffer 1 empty, server A spends α1m1 = 40% of its
effort on class 1 fluid. The remaining 1 − m1 of its effort can be spent on fluid
in classes 3 and 4. Since buffer 1 remains empty, one would like to delete the
buffer from our analysis in the five-class fluid model. The resulting fluid model,
after the deletion, is identical to the Lu–Kumar fluid model, except that mean
processing time at classes 3 and 4 needs to be expanded by a factor of 1/(1 −m1).
The necessity condition (28) in the Lu–Kumar fluid model leads to the necessity
condition (26) in our five-class fluid model.

As we have seen, the derivation of the push start condition (26) relies on the
following factors: (a) the service policy is preemptive so that the virtual station
phenomenon (27) occurs; (b) fluid model analysis is used to fully exploit the push
start effect. For the queueing network operating under the SBP service policy, the
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push start condition (26) may not be necessary for its stability, either because a
nonpreemptive policy is used or because the queueing network cannot realize the
push start effect as demonstrated in the fluid model. The results of Sections 5 and 6
show that for the exponential network, even under the nonpreemptive SBP policy,
the push start condition is necessary. Section 8 demonstrates that the deterministic
network operating under the nonpreemptive SBP policy is stable even if the push
start condition is violated.

In the queueing network, for the push start phenomenon to have a full effect as
in the fluid model, there must be some independence (loosely defined) between
arrival times to buffer 1 and times when buffer 3 is positive. Although it is
somewhat hidden in our analysis and proofs, the basic reason that this push
start effect holds in the exponential network is that arrivals to the network are
Poisson. The push start effect is precisely demonstrated in Lemma 5.16 for the
nonpreemptive case. A similar lemma can be proven, using slightly different
techniques, in the preemptive case. If the Poisson arrival assumption is removed,
then the push start effect need not hold or, at the least, the magnifying factor may
not be the same.

Under the nonpreemptive SBP policy, one cannot expect the full virtual station
phenomenon as in (27) to occur. Rather, in this case we have a “partial” virtual
station effect. The proof of the following proposition is analogous to the proof of
Proposition 3.1 in [19] and is thus omitted.

PROPOSITION 10.2. For the two-station, five-class queueing network under
any distributional assumptions on interarrival and service times, assume the
nonpreemptive SBP service policy is employed. Then, for every sample path,

[Z3(t) − 1]+ · [Z5(t) − 1]+ = 0 for all t ≥ 0

as long as [Z3(0) − 1]+ · [Z5(0) − 1]+ = 0. Here x+ = max{x,0} for a real
number x.

The proposition asserts that under the nonpreemptive SBP policy, only one of
the two buffers can have more than one job at any time. However, the partial virtual
station effect in Proposition 10.2 is not sufficient to cause instability, even though
the virtual station condition (28) is violated. In particular, if buffers 3 and 5 are
both processing jobs a large portion of the time, the network is, in fact, stable,
given that the usual traffic conditions hold. This is the crucial difference between
the exponential and deterministic networks. The key feature, demonstrated in
the instability proof for the nonpreemptive exponential network, is that although
buffers 3 and 5 may sometimes process jobs simultaneously, they only do so a small
percentage of the time. This key feature is missing in the deterministic analog. In
the deterministic nonpreemptive case, the network always eventually reaches a
state where buffers 3 and 5 are processing jobs simultaneously a large percentage
of the time. At this point, we do not know the exact source of the nonnecessity
of push start condition for the deterministic network. The nonpreemption makes
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the virtual station less tight, but it could also make the push start factor smaller.
Identifying the exact source of nonnecessity is a future research topic.

A major question which arises from the instability results we have demonstrated
in the exponential case is whether the result can be generalized to any larger
class of networks. We conjecture that the results can indeed be extended, at least
for two-station multiclass queueing networks. A plausible conjecture is that for
two-station reentrant lines with exponential interarrival and service times, the
virtual station and push start conditions of [13] are necessary and sufficient for
global stability. In fact, it is likely that such a result holds for the broader class of
networks considered in [20]. In light of the results in [5], it is unclear if such a
principle holds for networks with more than two stations.

APPENDIX

PROOF OF LEMMA 4.4. The proof essentially follows by examining the
sequence of states which occur from the starting states given in the lemma.
We begin by initializing the network in a state (0,1,0, n,0;a) with n ≥ 1 and
0.1 < a ≤ 0.2. Table 4 lists the sequence of states from this initial state.

The sequence of states in Table 4 proves the lemma for initial states of the form
(0,1,0, n,0;a) with n ≥ 1 and 0.1 < a ≤ 0.6 by examining of the state in the
table at times 0, 0.9, 1.8, 2.7 and 3.6, since all such states eventually enter the state
at time 4.1 in the table, which is of the form in Lemma 4.3. Thus, the lemma is

TABLE 4
Iteration for n ≥ 1 and 0.1 < a ≤ 0.2

Time State

0 (0,1,0, n,0;a)

0.1 (0,0,1, n − 1,1;a − 0.1)

a (1,0,1, n − 1,1;1)

0.2 (1,0,1, n − 1,1;a + 0.8)

0.5 (1,0,0, n,0;a + 0.5)

0.9 (0,1,0, n,0;a + 0.1)

1.0 (0,0,1, n − 1,1;a)

1.2 (1,0,1, n − 1,1;a + 0.8)

1.4 (1,0,0, n,0;a + 0.6)

1.8 (0,1,0, n,0;a + 0.2)

1.9 (0,0,1, n − 1,1;a + 0.1)

2.2 (1,0,1, n − 1,1;a + 0.8)

2.3 (1,0,0, n,0;a + 0.7)

2.7 (0,1,0, n,0;a + 0.3)

2.8 (0,0,1, n − 1,1;a + 0.2)

3.2 (1,0,0, n,0;a + 0.8)

3.6 (0,1,0, n,0;a + 0.4)

3.7 (0,0,1, n − 1,1;a + 0.3)

4.1 (0,0,0, n,0;a − 0.1)
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TABLE 5

Time State

0 (0,1,0,0,0;a)

0.1 (0,0,1,0,0;a − 0.1)

a (1,0,1,0,0;1)

0.5 (1,0,0,1,0;a + 0.5)

0.9 (0,1,0,1,0;a + 0.1)

proved for n ≥ 1 and 0.1 < a ≤ 0.6.
For the case n = 0 and 0.1 < a ≤ 0.5, we have the sequence of states in Table 5.
The last state of the table is a type 2 state with n = 1 and 0.2 < a ≤ 0.6, and

we have already proven the lemma for this case, via Table 4. In the case n = 0 and
0.5 < a ≤ 0.6, we note that at t = 0.5, the network enters an a orbit.

Finally, we need to prove the lemma for the remaining cases, that is, an initial
state of the form (0,1,0, n,0;a) with n ≥ 1 and 0 < a ≤ 0.1 and an initial state
of the form (0,1,0,0,0;a) with 0 < a ≤ 0.1. For the former case, we iterate the
network from such a starting state as given in Table 6. At time t = 1.7, we see
that the network has entered a state which is qualitatively the same as time 1.8
in Table 4; hence, the network enters an a orbit, as the conclusion of the lemma
requires, in another 2.3 min. For the latter case, we have the sequence of states in
Table 7, where the last state is a state in Table 4 at time 1.8 with n = 2 and a = 0.2.

�

LEMMA A.1. Consider a multiclass queueing network as defined in Section 2
in [10]. Assume that the strong laws of large numbers (2.1)–(2.3) in [10] holds for
the external arrival, service and routing processes. Assume further that the traffic
intensity at a given station is less than 1. Then, with probability 1, the station
empties infinitely often when the network is operated under any nonidling service
policy.

TABLE 6

Time State

0 (0,1,0, n,0;a)

a (1,1,0, n,0;1)

0.1 (1,0,1, n − 1,1;a + 0.9)

0.5 (0,1,1, n − 1,0;a + 0.5)

0.6 (0,0,2, n − 1,0;a + 0.4)

0.9 (0,0,1, n,0;a + 0.1)

1.3 (1,0,0, n + 1,0;a + 0.7)

1.7 (0,1,0, n + 1,0;a + 0.3)
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TABLE 7

Time State

0 (0,1,0,0,0;a)

a (1,1,0,0,0;1)

0.1 (1,0,1,0,0;a + 0.9)

a + 0.4 (0,1,1,0,0;0.6)

a + 0.5 (0,0,2,0,0;0.5)

a + 0.8 (0,0,1,1,0;0.2)

a + 1.0 (1,0,1,1,0;1)

a + 1.2 (1,0,0,2,0;0.8)

a + 1.6 (0,1,0,2,0;0.4)

PROOF. We follow the notation in [10]. Let ω be a sample path on which
(2.1)–(2.3) in [10] hold. Consider a fluid limit (Z̄, T̄ ) along the sample path as
in [10]. (Here, we use Z̄, instead of Q̄ in [10], to denote the limiting queue length
process.) The fluid limit must satisfy the fluid model equations (4.1)–(4.6) in [10].

Now suppose that we have ρi < 1 at station i, but station i never empties after
some time t0 ≥ 0. Since the network is operating under a nonidling service policy,
station i is never idle after this finite time t0. Passing this property to the fluid
limit, we have

∑
k : σ(k)=i T̄k(t) = t for t > 0. (Time t0 in the queueing network

corresponds to time 0 in a fluid limit.) Let Q̄(t) = (I − P ′)−1Z̄(t). We have

∑
k : σ(k)=i

1

µk

Q̄k(t) = ρit − ∑
k : σ(k)=i

T̄k(t)

= ρit − t = (ρi − 1)t

< 0

for t > 0, leading to a contradiction. �

We repeatedly use the following large deviations estimates in the proofs of
Section 5. An elementary proof of Lemma A.2 can be found in [29], Section 1.2.

LEMMA A.2. Let X1,X2, . . . be an i.i.d. sequence of nonnegative random
variables with mean E(X1) = m. Set Yn = X1 +· · ·+Xn. Suppose further that the
Xi possess exponential moments, that is, there exists a constant κ > 0 such that

E[exp(κX1)] < ∞.

Then for every α > 0, there exists an ε > 0, so that for all n ≥ 1:

(i) P{Yn > mn + αn} ≤ exp(−εn);
(ii) P{Yn < mn − αn} ≤ exp(−εn).
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LEMMA A.3. Consider a GI/GI/1 queue with i.i.d. interarrival times {ui}
and i.i.d. service times {vi}. Assume that E[u1] < E[v1], that the queue is empty at
time zero and that the first arrival occurs at time 0. Assume further that for some
κ > 0, E[exp(κ(u1 + v1))] < ∞. Then for 0 < δ < 1, there exists a constant ε > 0
such that for n sufficiently large (in particular we take �δ√n > 0),

P
{
queue first empties in

[
S�δ√n, Sn

]} ≤ exp
(−ε

√
n

)
,

where Sn is the arrival time of the nth job.

PROOF.

P{queue first empties between the ith and (i + 1)st arrival}
= P

{
u2 < v1, u2 + u3 < v1 + v2, . . . , u2 + · · · + ui < v1 + · · · + vi−1,

u2 + · · · + ui+1 > v1 + · · · + vi

}
≤ P{u2 + · · · + ui+1 > v1 + · · · + vi}
= P{(v1 − u1) + · · · + (vi − ui) < 0}
≤ exp(−ε1i) for all i for some ε1 > 0.

The last inequality follows from Lemma A.2 and the fact that E[v1 − u1] > 0.
Thus,

P
{
queue first empties in

[
S�δ√n, Sn

]}

≤
n∑

i=�δ√n
exp(−ε1i)

≤ n exp
(−ε1

⌊
δ
√

n
⌋)

≤ exp
(−ε2

⌊
δ
√

n
⌋)

(for large enough n)

≤ exp
(−ε

√
n

)
.

The last inequality is possible because for large n, �δ√n/√n can be bounded
away from zero, allowing us to pick an ε which satisfies the inequality for all
large n. �
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